diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/crypto/rsa | |
parent | Initial commit. (diff) | |
download | golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/crypto/rsa')
-rw-r--r-- | src/crypto/rsa/boring.go | 130 | ||||
-rw-r--r-- | src/crypto/rsa/boring_test.go | 148 | ||||
-rw-r--r-- | src/crypto/rsa/equal_test.go | 51 | ||||
-rw-r--r-- | src/crypto/rsa/example_test.go | 157 | ||||
-rw-r--r-- | src/crypto/rsa/notboring.go | 16 | ||||
-rw-r--r-- | src/crypto/rsa/pkcs1v15.go | 375 | ||||
-rw-r--r-- | src/crypto/rsa/pkcs1v15_test.go | 315 | ||||
-rw-r--r-- | src/crypto/rsa/pss.go | 372 | ||||
-rw-r--r-- | src/crypto/rsa/pss_test.go | 308 | ||||
-rw-r--r-- | src/crypto/rsa/rsa.go | 737 | ||||
-rw-r--r-- | src/crypto/rsa/rsa_export_test.go | 10 | ||||
-rw-r--r-- | src/crypto/rsa/rsa_test.go | 882 | ||||
-rw-r--r-- | src/crypto/rsa/testdata/pss-vect.txt.bz2 | bin | 0 -> 28526 bytes |
13 files changed, 3501 insertions, 0 deletions
diff --git a/src/crypto/rsa/boring.go b/src/crypto/rsa/boring.go new file mode 100644 index 0000000..b9f9d31 --- /dev/null +++ b/src/crypto/rsa/boring.go @@ -0,0 +1,130 @@ +// Copyright 2017 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build boringcrypto + +package rsa + +import ( + "crypto/internal/boring" + "crypto/internal/boring/bbig" + "crypto/internal/boring/bcache" + "math/big" +) + +// Cached conversions from Go PublicKey/PrivateKey to BoringCrypto. +// +// The first operation on a PublicKey or PrivateKey makes a parallel +// BoringCrypto key and saves it in pubCache or privCache. +// +// We could just assume that once used in a sign/verify/encrypt/decrypt operation, +// a particular key is never again modified, but that has not been a +// stated assumption before. Just in case there is any existing code that +// does modify the key between operations, we save the original values +// alongside the cached BoringCrypto key and check that the real key +// still matches before using the cached key. The theory is that the real +// operations are significantly more expensive than the comparison. + +type boringPub struct { + key *boring.PublicKeyRSA + orig PublicKey +} + +var pubCache bcache.Cache[PublicKey, boringPub] +var privCache bcache.Cache[PrivateKey, boringPriv] + +func init() { + pubCache.Register() + privCache.Register() +} + +func boringPublicKey(pub *PublicKey) (*boring.PublicKeyRSA, error) { + b := pubCache.Get(pub) + if b != nil && publicKeyEqual(&b.orig, pub) { + return b.key, nil + } + + b = new(boringPub) + b.orig = copyPublicKey(pub) + key, err := boring.NewPublicKeyRSA(bbig.Enc(b.orig.N), bbig.Enc(big.NewInt(int64(b.orig.E)))) + if err != nil { + return nil, err + } + b.key = key + pubCache.Put(pub, b) + return key, nil +} + +type boringPriv struct { + key *boring.PrivateKeyRSA + orig PrivateKey +} + +func boringPrivateKey(priv *PrivateKey) (*boring.PrivateKeyRSA, error) { + b := privCache.Get(priv) + if b != nil && privateKeyEqual(&b.orig, priv) { + return b.key, nil + } + + b = new(boringPriv) + b.orig = copyPrivateKey(priv) + + var N, E, D, P, Q, Dp, Dq, Qinv *big.Int + N = b.orig.N + E = big.NewInt(int64(b.orig.E)) + D = b.orig.D + if len(b.orig.Primes) == 2 { + P = b.orig.Primes[0] + Q = b.orig.Primes[1] + Dp = b.orig.Precomputed.Dp + Dq = b.orig.Precomputed.Dq + Qinv = b.orig.Precomputed.Qinv + } + key, err := boring.NewPrivateKeyRSA(bbig.Enc(N), bbig.Enc(E), bbig.Enc(D), bbig.Enc(P), bbig.Enc(Q), bbig.Enc(Dp), bbig.Enc(Dq), bbig.Enc(Qinv)) + if err != nil { + return nil, err + } + b.key = key + privCache.Put(priv, b) + return key, nil +} + +func publicKeyEqual(k1, k2 *PublicKey) bool { + return k1.N != nil && + k1.N.Cmp(k2.N) == 0 && + k1.E == k2.E +} + +func copyPublicKey(k *PublicKey) PublicKey { + return PublicKey{ + N: new(big.Int).Set(k.N), + E: k.E, + } +} + +func privateKeyEqual(k1, k2 *PrivateKey) bool { + return publicKeyEqual(&k1.PublicKey, &k2.PublicKey) && + k1.D.Cmp(k2.D) == 0 +} + +func copyPrivateKey(k *PrivateKey) PrivateKey { + dst := PrivateKey{ + PublicKey: copyPublicKey(&k.PublicKey), + D: new(big.Int).Set(k.D), + } + dst.Primes = make([]*big.Int, len(k.Primes)) + for i, p := range k.Primes { + dst.Primes[i] = new(big.Int).Set(p) + } + if x := k.Precomputed.Dp; x != nil { + dst.Precomputed.Dp = new(big.Int).Set(x) + } + if x := k.Precomputed.Dq; x != nil { + dst.Precomputed.Dq = new(big.Int).Set(x) + } + if x := k.Precomputed.Qinv; x != nil { + dst.Precomputed.Qinv = new(big.Int).Set(x) + } + return dst +} diff --git a/src/crypto/rsa/boring_test.go b/src/crypto/rsa/boring_test.go new file mode 100644 index 0000000..2234d07 --- /dev/null +++ b/src/crypto/rsa/boring_test.go @@ -0,0 +1,148 @@ +// Copyright 2017 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build boringcrypto + +// Note: Can run these tests against the non-BoringCrypto +// version of the code by using "CGO_ENABLED=0 go test". + +package rsa + +import ( + "crypto" + "crypto/rand" + "encoding/asn1" + "encoding/hex" + "math/big" + "runtime" + "runtime/debug" + "sync" + "testing" +) + +func TestBoringASN1Marshal(t *testing.T) { + k, err := GenerateKey(rand.Reader, 128) + if err != nil { + t.Fatal(err) + } + _, err = asn1.Marshal(k.PublicKey) + if err != nil { + t.Fatal(err) + } +} + +func TestBoringVerify(t *testing.T) { + // Check that signatures that lack leading zeroes don't verify. + key := &PublicKey{ + N: bigFromHex("c4fdf7b40a5477f206e6ee278eaef888ca73bf9128a9eef9f2f1ddb8b7b71a4c07cfa241f028a04edb405e4d916c61d6beabc333813dc7b484d2b3c52ee233c6a79b1eea4e9cc51596ba9cd5ac5aeb9df62d86ea051055b79d03f8a4fa9f38386f5bd17529138f3325d46801514ea9047977e0829ed728e68636802796801be1"), + E: 65537, + } + + hash := fromHex("019c5571724fb5d0e47a4260c940e9803ba05a44") + paddedHash := fromHex("3021300906052b0e03021a05000414019c5571724fb5d0e47a4260c940e9803ba05a44") + + // signature is one byte shorter than key.N. + sig := fromHex("5edfbeb6a73e7225ad3cc52724e2872e04260d7daf0d693c170d8c4b243b8767bc7785763533febc62ec2600c30603c433c095453ede59ff2fcabeb84ce32e0ed9d5cf15ffcbc816202b64370d4d77c1e9077d74e94a16fb4fa2e5bec23a56d7a73cf275f91691ae1801a976fcde09e981a2f6327ac27ea1fecf3185df0d56") + + err := VerifyPKCS1v15(key, 0, paddedHash, sig) + if err == nil { + t.Errorf("raw: expected verification error") + } + + err = VerifyPKCS1v15(key, crypto.SHA1, hash, sig) + if err == nil { + t.Errorf("sha1: expected verification error") + } +} + +func BenchmarkBoringVerify(b *testing.B) { + // Check that signatures that lack leading zeroes don't verify. + key := &PublicKey{ + N: bigFromHex("c4fdf7b40a5477f206e6ee278eaef888ca73bf9128a9eef9f2f1ddb8b7b71a4c07cfa241f028a04edb405e4d916c61d6beabc333813dc7b484d2b3c52ee233c6a79b1eea4e9cc51596ba9cd5ac5aeb9df62d86ea051055b79d03f8a4fa9f38386f5bd17529138f3325d46801514ea9047977e0829ed728e68636802796801be1"), + E: 65537, + } + + hash := fromHex("019c5571724fb5d0e47a4260c940e9803ba05a44") + + // signature is one byte shorter than key.N. + sig := fromHex("5edfbeb6a73e7225ad3cc52724e2872e04260d7daf0d693c170d8c4b243b8767bc7785763533febc62ec2600c30603c433c095453ede59ff2fcabeb84ce32e0ed9d5cf15ffcbc816202b64370d4d77c1e9077d74e94a16fb4fa2e5bec23a56d7a73cf275f91691ae1801a976fcde09e981a2f6327ac27ea1fecf3185df0d56") + + b.ReportAllocs() + + for i := 0; i < b.N; i++ { + err := VerifyPKCS1v15(key, crypto.SHA1, hash, sig) + if err == nil { + b.Fatalf("sha1: expected verification error") + } + } +} + +func TestBoringGenerateKey(t *testing.T) { + k, err := GenerateKey(rand.Reader, 2048) // 2048 is smallest size BoringCrypto might kick in for + if err != nil { + t.Fatal(err) + } + + // Non-Boring GenerateKey always sets CRTValues to a non-nil (possibly empty) slice. + if k.Precomputed.CRTValues == nil { + t.Fatalf("GenerateKey: Precomputed.CRTValues = nil") + } +} + +func TestBoringFinalizers(t *testing.T) { + if runtime.GOOS == "nacl" || runtime.GOOS == "js" { + // Times out on nacl and js/wasm (without BoringCrypto) + // but not clear why - probably consuming rand.Reader too quickly + // and being throttled. Also doesn't really matter. + t.Skipf("skipping on %s/%s", runtime.GOOS, runtime.GOARCH) + } + + k, err := GenerateKey(rand.Reader, 2048) + if err != nil { + t.Fatal(err) + } + + // Run test with GOGC=10, to make bug more likely. + // Without the KeepAlives, the loop usually dies after + // about 30 iterations. + defer debug.SetGCPercent(debug.SetGCPercent(10)) + for n := 0; n < 200; n++ { + // Clear the underlying BoringCrypto object cache. + privCache.Clear() + + // Race to create the underlying BoringCrypto object. + // The ones that lose the race are prime candidates for + // being GC'ed too early if the finalizers are not being + // used correctly. + var wg sync.WaitGroup + for i := 0; i < 10; i++ { + wg.Add(1) + go func() { + defer wg.Done() + sum := make([]byte, 32) + _, err := SignPKCS1v15(rand.Reader, k, crypto.SHA256, sum) + if err != nil { + panic(err) // usually caused by memory corruption, so hard stop + } + }() + } + wg.Wait() + } +} + +func bigFromHex(hex string) *big.Int { + n, ok := new(big.Int).SetString(hex, 16) + if !ok { + panic("bad hex: " + hex) + } + return n +} + +func fromHex(hexStr string) []byte { + s, err := hex.DecodeString(hexStr) + if err != nil { + panic(err) + } + return s +} diff --git a/src/crypto/rsa/equal_test.go b/src/crypto/rsa/equal_test.go new file mode 100644 index 0000000..90f4bf9 --- /dev/null +++ b/src/crypto/rsa/equal_test.go @@ -0,0 +1,51 @@ +// Copyright 2020 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa_test + +import ( + "crypto" + "crypto/rand" + "crypto/rsa" + "crypto/x509" + "testing" +) + +func TestEqual(t *testing.T) { + private, _ := rsa.GenerateKey(rand.Reader, 512) + public := &private.PublicKey + + if !public.Equal(public) { + t.Errorf("public key is not equal to itself: %v", public) + } + if !public.Equal(crypto.Signer(private).Public().(*rsa.PublicKey)) { + t.Errorf("private.Public() is not Equal to public: %q", public) + } + if !private.Equal(private) { + t.Errorf("private key is not equal to itself: %v", private) + } + + enc, err := x509.MarshalPKCS8PrivateKey(private) + if err != nil { + t.Fatal(err) + } + decoded, err := x509.ParsePKCS8PrivateKey(enc) + if err != nil { + t.Fatal(err) + } + if !public.Equal(decoded.(crypto.Signer).Public()) { + t.Errorf("public key is not equal to itself after decoding: %v", public) + } + if !private.Equal(decoded) { + t.Errorf("private key is not equal to itself after decoding: %v", private) + } + + other, _ := rsa.GenerateKey(rand.Reader, 512) + if public.Equal(other.Public()) { + t.Errorf("different public keys are Equal") + } + if private.Equal(other) { + t.Errorf("different private keys are Equal") + } +} diff --git a/src/crypto/rsa/example_test.go b/src/crypto/rsa/example_test.go new file mode 100644 index 0000000..d07ee7d --- /dev/null +++ b/src/crypto/rsa/example_test.go @@ -0,0 +1,157 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa_test + +import ( + "crypto" + "crypto/aes" + "crypto/cipher" + "crypto/rand" + "crypto/rsa" + "crypto/sha256" + "encoding/hex" + "fmt" + "os" +) + +// RSA is able to encrypt only a very limited amount of data. In order +// to encrypt reasonable amounts of data a hybrid scheme is commonly +// used: RSA is used to encrypt a key for a symmetric primitive like +// AES-GCM. +// +// Before encrypting, data is “padded” by embedding it in a known +// structure. This is done for a number of reasons, but the most +// obvious is to ensure that the value is large enough that the +// exponentiation is larger than the modulus. (Otherwise it could be +// decrypted with a square-root.) +// +// In these designs, when using PKCS #1 v1.5, it's vitally important to +// avoid disclosing whether the received RSA message was well-formed +// (that is, whether the result of decrypting is a correctly padded +// message) because this leaks secret information. +// DecryptPKCS1v15SessionKey is designed for this situation and copies +// the decrypted, symmetric key (if well-formed) in constant-time over +// a buffer that contains a random key. Thus, if the RSA result isn't +// well-formed, the implementation uses a random key in constant time. +func ExampleDecryptPKCS1v15SessionKey() { + // The hybrid scheme should use at least a 16-byte symmetric key. Here + // we read the random key that will be used if the RSA decryption isn't + // well-formed. + key := make([]byte, 32) + if _, err := rand.Read(key); err != nil { + panic("RNG failure") + } + + rsaCiphertext, _ := hex.DecodeString("aabbccddeeff") + + if err := rsa.DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, rsaCiphertext, key); err != nil { + // Any errors that result will be “public” – meaning that they + // can be determined without any secret information. (For + // instance, if the length of key is impossible given the RSA + // public key.) + fmt.Fprintf(os.Stderr, "Error from RSA decryption: %s\n", err) + return + } + + // Given the resulting key, a symmetric scheme can be used to decrypt a + // larger ciphertext. + block, err := aes.NewCipher(key) + if err != nil { + panic("aes.NewCipher failed: " + err.Error()) + } + + // Since the key is random, using a fixed nonce is acceptable as the + // (key, nonce) pair will still be unique, as required. + var zeroNonce [12]byte + aead, err := cipher.NewGCM(block) + if err != nil { + panic("cipher.NewGCM failed: " + err.Error()) + } + ciphertext, _ := hex.DecodeString("00112233445566") + plaintext, err := aead.Open(nil, zeroNonce[:], ciphertext, nil) + if err != nil { + // The RSA ciphertext was badly formed; the decryption will + // fail here because the AES-GCM key will be incorrect. + fmt.Fprintf(os.Stderr, "Error decrypting: %s\n", err) + return + } + + fmt.Printf("Plaintext: %s\n", string(plaintext)) +} + +func ExampleSignPKCS1v15() { + message := []byte("message to be signed") + + // Only small messages can be signed directly; thus the hash of a + // message, rather than the message itself, is signed. This requires + // that the hash function be collision resistant. SHA-256 is the + // least-strong hash function that should be used for this at the time + // of writing (2016). + hashed := sha256.Sum256(message) + + signature, err := rsa.SignPKCS1v15(nil, rsaPrivateKey, crypto.SHA256, hashed[:]) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err) + return + } + + fmt.Printf("Signature: %x\n", signature) +} + +func ExampleVerifyPKCS1v15() { + message := []byte("message to be signed") + signature, _ := hex.DecodeString("ad2766728615cc7a746cc553916380ca7bfa4f8983b990913bc69eb0556539a350ff0f8fe65ddfd3ebe91fe1c299c2fac135bc8c61e26be44ee259f2f80c1530") + + // Only small messages can be signed directly; thus the hash of a + // message, rather than the message itself, is signed. This requires + // that the hash function be collision resistant. SHA-256 is the + // least-strong hash function that should be used for this at the time + // of writing (2016). + hashed := sha256.Sum256(message) + + err := rsa.VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err) + return + } + + // signature is a valid signature of message from the public key. +} + +func ExampleEncryptOAEP() { + secretMessage := []byte("send reinforcements, we're going to advance") + label := []byte("orders") + + // crypto/rand.Reader is a good source of entropy for randomizing the + // encryption function. + rng := rand.Reader + + ciphertext, err := rsa.EncryptOAEP(sha256.New(), rng, &test2048Key.PublicKey, secretMessage, label) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from encryption: %s\n", err) + return + } + + // Since encryption is a randomized function, ciphertext will be + // different each time. + fmt.Printf("Ciphertext: %x\n", ciphertext) +} + +func ExampleDecryptOAEP() { + ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460") + label := []byte("orders") + + plaintext, err := rsa.DecryptOAEP(sha256.New(), nil, test2048Key, ciphertext, label) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err) + return + } + + fmt.Printf("Plaintext: %s\n", string(plaintext)) + + // Remember that encryption only provides confidentiality. The + // ciphertext should be signed before authenticity is assumed and, even + // then, consider that messages might be reordered. +} diff --git a/src/crypto/rsa/notboring.go b/src/crypto/rsa/notboring.go new file mode 100644 index 0000000..2abc043 --- /dev/null +++ b/src/crypto/rsa/notboring.go @@ -0,0 +1,16 @@ +// Copyright 2022 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build !boringcrypto + +package rsa + +import "crypto/internal/boring" + +func boringPublicKey(*PublicKey) (*boring.PublicKeyRSA, error) { + panic("boringcrypto: not available") +} +func boringPrivateKey(*PrivateKey) (*boring.PrivateKeyRSA, error) { + panic("boringcrypto: not available") +} diff --git a/src/crypto/rsa/pkcs1v15.go b/src/crypto/rsa/pkcs1v15.go new file mode 100644 index 0000000..e51b9d2 --- /dev/null +++ b/src/crypto/rsa/pkcs1v15.go @@ -0,0 +1,375 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "crypto" + "crypto/internal/boring" + "crypto/internal/randutil" + "crypto/subtle" + "errors" + "io" +) + +// This file implements encryption and decryption using PKCS #1 v1.5 padding. + +// PKCS1v15DecryptOptions is for passing options to PKCS #1 v1.5 decryption using +// the crypto.Decrypter interface. +type PKCS1v15DecryptOptions struct { + // SessionKeyLen is the length of the session key that is being + // decrypted. If not zero, then a padding error during decryption will + // cause a random plaintext of this length to be returned rather than + // an error. These alternatives happen in constant time. + SessionKeyLen int +} + +// EncryptPKCS1v15 encrypts the given message with RSA and the padding +// scheme from PKCS #1 v1.5. The message must be no longer than the +// length of the public modulus minus 11 bytes. +// +// The random parameter is used as a source of entropy to ensure that +// encrypting the same message twice doesn't result in the same +// ciphertext. +// +// WARNING: use of this function to encrypt plaintexts other than +// session keys is dangerous. Use RSA OAEP in new protocols. +func EncryptPKCS1v15(random io.Reader, pub *PublicKey, msg []byte) ([]byte, error) { + randutil.MaybeReadByte(random) + + if err := checkPub(pub); err != nil { + return nil, err + } + k := pub.Size() + if len(msg) > k-11 { + return nil, ErrMessageTooLong + } + + if boring.Enabled && random == boring.RandReader { + bkey, err := boringPublicKey(pub) + if err != nil { + return nil, err + } + return boring.EncryptRSAPKCS1(bkey, msg) + } + boring.UnreachableExceptTests() + + // EM = 0x00 || 0x02 || PS || 0x00 || M + em := make([]byte, k) + em[1] = 2 + ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):] + err := nonZeroRandomBytes(ps, random) + if err != nil { + return nil, err + } + em[len(em)-len(msg)-1] = 0 + copy(mm, msg) + + if boring.Enabled { + var bkey *boring.PublicKeyRSA + bkey, err = boringPublicKey(pub) + if err != nil { + return nil, err + } + return boring.EncryptRSANoPadding(bkey, em) + } + + return encrypt(pub, em) +} + +// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5. +// The random parameter is legacy and ignored, and it can be as nil. +// +// Note that whether this function returns an error or not discloses secret +// information. If an attacker can cause this function to run repeatedly and +// learn whether each instance returned an error then they can decrypt and +// forge signatures as if they had the private key. See +// DecryptPKCS1v15SessionKey for a way of solving this problem. +func DecryptPKCS1v15(random io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) { + if err := checkPub(&priv.PublicKey); err != nil { + return nil, err + } + + if boring.Enabled { + bkey, err := boringPrivateKey(priv) + if err != nil { + return nil, err + } + out, err := boring.DecryptRSAPKCS1(bkey, ciphertext) + if err != nil { + return nil, ErrDecryption + } + return out, nil + } + + valid, out, index, err := decryptPKCS1v15(priv, ciphertext) + if err != nil { + return nil, err + } + if valid == 0 { + return nil, ErrDecryption + } + return out[index:], nil +} + +// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS #1 v1.5. +// The random parameter is legacy and ignored, and it can be as nil. +// It returns an error if the ciphertext is the wrong length or if the +// ciphertext is greater than the public modulus. Otherwise, no error is +// returned. If the padding is valid, the resulting plaintext message is copied +// into key. Otherwise, key is unchanged. These alternatives occur in constant +// time. It is intended that the user of this function generate a random +// session key beforehand and continue the protocol with the resulting value. +// This will remove any possibility that an attacker can learn any information +// about the plaintext. +// See “Chosen Ciphertext Attacks Against Protocols Based on the RSA +// Encryption Standard PKCS #1”, Daniel Bleichenbacher, Advances in Cryptology +// (Crypto '98). +// +// Note that if the session key is too small then it may be possible for an +// attacker to brute-force it. If they can do that then they can learn whether +// a random value was used (because it'll be different for the same ciphertext) +// and thus whether the padding was correct. This defeats the point of this +// function. Using at least a 16-byte key will protect against this attack. +func DecryptPKCS1v15SessionKey(random io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error { + if err := checkPub(&priv.PublicKey); err != nil { + return err + } + k := priv.Size() + if k-(len(key)+3+8) < 0 { + return ErrDecryption + } + + valid, em, index, err := decryptPKCS1v15(priv, ciphertext) + if err != nil { + return err + } + + if len(em) != k { + // This should be impossible because decryptPKCS1v15 always + // returns the full slice. + return ErrDecryption + } + + valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key))) + subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):]) + return nil +} + +// decryptPKCS1v15 decrypts ciphertext using priv. It returns one or zero in +// valid that indicates whether the plaintext was correctly structured. +// In either case, the plaintext is returned in em so that it may be read +// independently of whether it was valid in order to maintain constant memory +// access patterns. If the plaintext was valid then index contains the index of +// the original message in em, to allow constant time padding removal. +func decryptPKCS1v15(priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) { + k := priv.Size() + if k < 11 { + err = ErrDecryption + return + } + + if boring.Enabled { + var bkey *boring.PrivateKeyRSA + bkey, err = boringPrivateKey(priv) + if err != nil { + return + } + em, err = boring.DecryptRSANoPadding(bkey, ciphertext) + if err != nil { + return + } + } else { + em, err = decrypt(priv, ciphertext, noCheck) + if err != nil { + return + } + } + + firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) + secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2) + + // The remainder of the plaintext must be a string of non-zero random + // octets, followed by a 0, followed by the message. + // lookingForIndex: 1 iff we are still looking for the zero. + // index: the offset of the first zero byte. + lookingForIndex := 1 + + for i := 2; i < len(em); i++ { + equals0 := subtle.ConstantTimeByteEq(em[i], 0) + index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) + lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) + } + + // The PS padding must be at least 8 bytes long, and it starts two + // bytes into em. + validPS := subtle.ConstantTimeLessOrEq(2+8, index) + + valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS + index = subtle.ConstantTimeSelect(valid, index+1, 0) + return valid, em, index, nil +} + +// nonZeroRandomBytes fills the given slice with non-zero random octets. +func nonZeroRandomBytes(s []byte, random io.Reader) (err error) { + _, err = io.ReadFull(random, s) + if err != nil { + return + } + + for i := 0; i < len(s); i++ { + for s[i] == 0 { + _, err = io.ReadFull(random, s[i:i+1]) + if err != nil { + return + } + // In tests, the PRNG may return all zeros so we do + // this to break the loop. + s[i] ^= 0x42 + } + } + + return +} + +// These are ASN1 DER structures: +// +// DigestInfo ::= SEQUENCE { +// digestAlgorithm AlgorithmIdentifier, +// digest OCTET STRING +// } +// +// For performance, we don't use the generic ASN1 encoder. Rather, we +// precompute a prefix of the digest value that makes a valid ASN1 DER string +// with the correct contents. +var hashPrefixes = map[crypto.Hash][]byte{ + crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, + crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, + crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, + crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, + crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, + crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, + crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix. + crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14}, +} + +// SignPKCS1v15 calculates the signature of hashed using +// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5. Note that hashed must +// be the result of hashing the input message using the given hash +// function. If hash is zero, hashed is signed directly. This isn't +// advisable except for interoperability. +// +// The random parameter is legacy and ignored, and it can be as nil. +// +// This function is deterministic. Thus, if the set of possible +// messages is small, an attacker may be able to build a map from +// messages to signatures and identify the signed messages. As ever, +// signatures provide authenticity, not confidentiality. +func SignPKCS1v15(random io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) { + hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) + if err != nil { + return nil, err + } + + tLen := len(prefix) + hashLen + k := priv.Size() + if k < tLen+11 { + return nil, ErrMessageTooLong + } + + if boring.Enabled { + bkey, err := boringPrivateKey(priv) + if err != nil { + return nil, err + } + return boring.SignRSAPKCS1v15(bkey, hash, hashed) + } + + // EM = 0x00 || 0x01 || PS || 0x00 || T + em := make([]byte, k) + em[1] = 1 + for i := 2; i < k-tLen-1; i++ { + em[i] = 0xff + } + copy(em[k-tLen:k-hashLen], prefix) + copy(em[k-hashLen:k], hashed) + + return decrypt(priv, em, withCheck) +} + +// VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature. +// hashed is the result of hashing the input message using the given hash +// function and sig is the signature. A valid signature is indicated by +// returning a nil error. If hash is zero then hashed is used directly. This +// isn't advisable except for interoperability. +func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error { + if boring.Enabled { + bkey, err := boringPublicKey(pub) + if err != nil { + return err + } + if err := boring.VerifyRSAPKCS1v15(bkey, hash, hashed, sig); err != nil { + return ErrVerification + } + return nil + } + + hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) + if err != nil { + return err + } + + tLen := len(prefix) + hashLen + k := pub.Size() + if k < tLen+11 { + return ErrVerification + } + + // RFC 8017 Section 8.2.2: If the length of the signature S is not k + // octets (where k is the length in octets of the RSA modulus n), output + // "invalid signature" and stop. + if k != len(sig) { + return ErrVerification + } + + em, err := encrypt(pub, sig) + if err != nil { + return ErrVerification + } + // EM = 0x00 || 0x01 || PS || 0x00 || T + + ok := subtle.ConstantTimeByteEq(em[0], 0) + ok &= subtle.ConstantTimeByteEq(em[1], 1) + ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed) + ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix) + ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0) + + for i := 2; i < k-tLen-1; i++ { + ok &= subtle.ConstantTimeByteEq(em[i], 0xff) + } + + if ok != 1 { + return ErrVerification + } + + return nil +} + +func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) { + // Special case: crypto.Hash(0) is used to indicate that the data is + // signed directly. + if hash == 0 { + return inLen, nil, nil + } + + hashLen = hash.Size() + if inLen != hashLen { + return 0, nil, errors.New("crypto/rsa: input must be hashed message") + } + prefix, ok := hashPrefixes[hash] + if !ok { + return 0, nil, errors.New("crypto/rsa: unsupported hash function") + } + return +} diff --git a/src/crypto/rsa/pkcs1v15_test.go b/src/crypto/rsa/pkcs1v15_test.go new file mode 100644 index 0000000..dfa1edd --- /dev/null +++ b/src/crypto/rsa/pkcs1v15_test.go @@ -0,0 +1,315 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa_test + +import ( + "bytes" + "crypto" + "crypto/rand" + . "crypto/rsa" + "crypto/sha1" + "crypto/sha256" + "crypto/x509" + "encoding/base64" + "encoding/hex" + "encoding/pem" + "io" + "testing" + "testing/quick" +) + +func decodeBase64(in string) []byte { + out := make([]byte, base64.StdEncoding.DecodedLen(len(in))) + n, err := base64.StdEncoding.Decode(out, []byte(in)) + if err != nil { + return nil + } + return out[0:n] +} + +type DecryptPKCS1v15Test struct { + in, out string +} + +// These test vectors were generated with `openssl rsautl -pkcs -encrypt` +var decryptPKCS1v15Tests = []DecryptPKCS1v15Test{ + { + "gIcUIoVkD6ATMBk/u/nlCZCCWRKdkfjCgFdo35VpRXLduiKXhNz1XupLLzTXAybEq15juc+EgY5o0DHv/nt3yg==", + "x", + }, + { + "Y7TOCSqofGhkRb+jaVRLzK8xw2cSo1IVES19utzv6hwvx+M8kFsoWQm5DzBeJCZTCVDPkTpavUuEbgp8hnUGDw==", + "testing.", + }, + { + "arReP9DJtEVyV2Dg3dDp4c/PSk1O6lxkoJ8HcFupoRorBZG+7+1fDAwT1olNddFnQMjmkb8vxwmNMoTAT/BFjQ==", + "testing.\n", + }, + { + "WtaBXIoGC54+vH0NH0CHHE+dRDOsMc/6BrfFu2lEqcKL9+uDuWaf+Xj9mrbQCjjZcpQuX733zyok/jsnqe/Ftw==", + "01234567890123456789012345678901234567890123456789012", + }, +} + +func TestDecryptPKCS1v15(t *testing.T) { + decryptionFuncs := []func([]byte) ([]byte, error){ + func(ciphertext []byte) (plaintext []byte, err error) { + return DecryptPKCS1v15(nil, rsaPrivateKey, ciphertext) + }, + func(ciphertext []byte) (plaintext []byte, err error) { + return rsaPrivateKey.Decrypt(nil, ciphertext, nil) + }, + } + + for _, decryptFunc := range decryptionFuncs { + for i, test := range decryptPKCS1v15Tests { + out, err := decryptFunc(decodeBase64(test.in)) + if err != nil { + t.Errorf("#%d error decrypting: %v", i, err) + } + want := []byte(test.out) + if !bytes.Equal(out, want) { + t.Errorf("#%d got:%#v want:%#v", i, out, want) + } + } + } +} + +func TestEncryptPKCS1v15(t *testing.T) { + random := rand.Reader + k := (rsaPrivateKey.N.BitLen() + 7) / 8 + + tryEncryptDecrypt := func(in []byte, blind bool) bool { + if len(in) > k-11 { + in = in[0 : k-11] + } + + ciphertext, err := EncryptPKCS1v15(random, &rsaPrivateKey.PublicKey, in) + if err != nil { + t.Errorf("error encrypting: %s", err) + return false + } + + var rand io.Reader + if !blind { + rand = nil + } else { + rand = random + } + plaintext, err := DecryptPKCS1v15(rand, rsaPrivateKey, ciphertext) + if err != nil { + t.Errorf("error decrypting: %s", err) + return false + } + + if !bytes.Equal(plaintext, in) { + t.Errorf("output mismatch: %#v %#v", plaintext, in) + return false + } + return true + } + + config := new(quick.Config) + if testing.Short() { + config.MaxCount = 10 + } + quick.Check(tryEncryptDecrypt, config) +} + +// These test vectors were generated with `openssl rsautl -pkcs -encrypt` +var decryptPKCS1v15SessionKeyTests = []DecryptPKCS1v15Test{ + { + "e6ukkae6Gykq0fKzYwULpZehX+UPXYzMoB5mHQUDEiclRbOTqas4Y0E6nwns1BBpdvEJcilhl5zsox/6DtGsYg==", + "1234", + }, + { + "Dtis4uk/q/LQGGqGk97P59K03hkCIVFMEFZRgVWOAAhxgYpCRG0MX2adptt92l67IqMki6iVQyyt0TtX3IdtEw==", + "FAIL", + }, + { + "LIyFyCYCptPxrvTxpol8F3M7ZivlMsf53zs0vHRAv+rDIh2YsHS69ePMoPMe3TkOMZ3NupiL3takPxIs1sK+dw==", + "abcd", + }, + { + "bafnobel46bKy76JzqU/RIVOH0uAYvzUtauKmIidKgM0sMlvobYVAVQPeUQ/oTGjbIZ1v/6Gyi5AO4DtHruGdw==", + "FAIL", + }, +} + +func TestEncryptPKCS1v15SessionKey(t *testing.T) { + for i, test := range decryptPKCS1v15SessionKeyTests { + key := []byte("FAIL") + err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, decodeBase64(test.in), key) + if err != nil { + t.Errorf("#%d error decrypting", i) + } + want := []byte(test.out) + if !bytes.Equal(key, want) { + t.Errorf("#%d got:%#v want:%#v", i, key, want) + } + } +} + +func TestEncryptPKCS1v15DecrypterSessionKey(t *testing.T) { + for i, test := range decryptPKCS1v15SessionKeyTests { + plaintext, err := rsaPrivateKey.Decrypt(rand.Reader, decodeBase64(test.in), &PKCS1v15DecryptOptions{SessionKeyLen: 4}) + if err != nil { + t.Fatalf("#%d: error decrypting: %s", i, err) + } + if len(plaintext) != 4 { + t.Fatalf("#%d: incorrect length plaintext: got %d, want 4", i, len(plaintext)) + } + + if test.out != "FAIL" && !bytes.Equal(plaintext, []byte(test.out)) { + t.Errorf("#%d: incorrect plaintext: got %x, want %x", i, plaintext, test.out) + } + } +} + +func TestNonZeroRandomBytes(t *testing.T) { + random := rand.Reader + + b := make([]byte, 512) + err := NonZeroRandomBytes(b, random) + if err != nil { + t.Errorf("returned error: %s", err) + } + for _, b := range b { + if b == 0 { + t.Errorf("Zero octet found") + return + } + } +} + +type signPKCS1v15Test struct { + in, out string +} + +// These vectors have been tested with +// +// `openssl rsautl -verify -inkey pk -in signature | hexdump -C` +var signPKCS1v15Tests = []signPKCS1v15Test{ + {"Test.\n", "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e336ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae"}, +} + +func TestSignPKCS1v15(t *testing.T) { + for i, test := range signPKCS1v15Tests { + h := sha1.New() + h.Write([]byte(test.in)) + digest := h.Sum(nil) + + s, err := SignPKCS1v15(nil, rsaPrivateKey, crypto.SHA1, digest) + if err != nil { + t.Errorf("#%d %s", i, err) + } + + expected, _ := hex.DecodeString(test.out) + if !bytes.Equal(s, expected) { + t.Errorf("#%d got: %x want: %x", i, s, expected) + } + } +} + +func TestVerifyPKCS1v15(t *testing.T) { + for i, test := range signPKCS1v15Tests { + h := sha1.New() + h.Write([]byte(test.in)) + digest := h.Sum(nil) + + sig, _ := hex.DecodeString(test.out) + + err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA1, digest, sig) + if err != nil { + t.Errorf("#%d %s", i, err) + } + } +} + +func TestOverlongMessagePKCS1v15(t *testing.T) { + ciphertext := decodeBase64("fjOVdirUzFoLlukv80dBllMLjXythIf22feqPrNo0YoIjzyzyoMFiLjAc/Y4krkeZ11XFThIrEvw\nkRiZcCq5ng==") + _, err := DecryptPKCS1v15(nil, rsaPrivateKey, ciphertext) + if err == nil { + t.Error("RSA decrypted a message that was too long.") + } +} + +func TestUnpaddedSignature(t *testing.T) { + msg := []byte("Thu Dec 19 18:06:16 EST 2013\n") + // This base64 value was generated with: + // % echo Thu Dec 19 18:06:16 EST 2013 > /tmp/msg + // % openssl rsautl -sign -inkey key -out /tmp/sig -in /tmp/msg + // + // Where "key" contains the RSA private key given at the bottom of this + // file. + expectedSig := decodeBase64("pX4DR8azytjdQ1rtUiC040FjkepuQut5q2ZFX1pTjBrOVKNjgsCDyiJDGZTCNoh9qpXYbhl7iEym30BWWwuiZg==") + + sig, err := SignPKCS1v15(nil, rsaPrivateKey, crypto.Hash(0), msg) + if err != nil { + t.Fatalf("SignPKCS1v15 failed: %s", err) + } + if !bytes.Equal(sig, expectedSig) { + t.Fatalf("signature is not expected value: got %x, want %x", sig, expectedSig) + } + if err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.Hash(0), msg, sig); err != nil { + t.Fatalf("signature failed to verify: %s", err) + } +} + +func TestShortSessionKey(t *testing.T) { + // This tests that attempting to decrypt a session key where the + // ciphertext is too small doesn't run outside the array bounds. + ciphertext, err := EncryptPKCS1v15(rand.Reader, &rsaPrivateKey.PublicKey, []byte{1}) + if err != nil { + t.Fatalf("Failed to encrypt short message: %s", err) + } + + var key [32]byte + if err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, ciphertext, key[:]); err != nil { + t.Fatalf("Failed to decrypt short message: %s", err) + } + + for _, v := range key { + if v != 0 { + t.Fatal("key was modified when ciphertext was invalid") + } + } +} + +var rsaPrivateKey = parseKey(testingKey(`-----BEGIN RSA TESTING KEY----- +MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0 +fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu +/ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu +RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/ +EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A +IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS +tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V +-----END RSA TESTING KEY-----`)) + +func parsePublicKey(s string) *PublicKey { + p, _ := pem.Decode([]byte(s)) + k, err := x509.ParsePKCS1PublicKey(p.Bytes) + if err != nil { + panic(err) + } + return k +} + +func TestShortPKCS1v15Signature(t *testing.T) { + pub := parsePublicKey(`-----BEGIN RSA PUBLIC KEY----- +MEgCQQCd9BVzo775lkohasxjnefF1nCMcNoibqIWEVDe/K7M2GSoO4zlSQB+gkix +O3AnTcdHB51iaZpWfxPSnew8yfulAgMBAAE= +-----END RSA PUBLIC KEY-----`) + sig, err := hex.DecodeString("193a310d0dcf64094c6e3a00c8219b80ded70535473acff72c08e1222974bb24a93a535b1dc4c59fc0e65775df7ba2007dd20e9193f4c4025a18a7070aee93") + if err != nil { + t.Fatalf("failed to decode signature: %s", err) + } + + h := sha256.Sum256([]byte("hello")) + err = VerifyPKCS1v15(pub, crypto.SHA256, h[:], sig) + if err == nil { + t.Fatal("VerifyPKCS1v15 accepted a truncated signature") + } +} diff --git a/src/crypto/rsa/pss.go b/src/crypto/rsa/pss.go new file mode 100644 index 0000000..f7d23b5 --- /dev/null +++ b/src/crypto/rsa/pss.go @@ -0,0 +1,372 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +// This file implements the RSASSA-PSS signature scheme according to RFC 8017. + +import ( + "bytes" + "crypto" + "crypto/internal/boring" + "errors" + "hash" + "io" +) + +// Per RFC 8017, Section 9.1 +// +// EM = MGF1 xor DB || H( 8*0x00 || mHash || salt ) || 0xbc +// +// where +// +// DB = PS || 0x01 || salt +// +// and PS can be empty so +// +// emLen = dbLen + hLen + 1 = psLen + sLen + hLen + 2 +// + +func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) { + // See RFC 8017, Section 9.1.1. + + hLen := hash.Size() + sLen := len(salt) + emLen := (emBits + 7) / 8 + + // 1. If the length of M is greater than the input limitation for the + // hash function (2^61 - 1 octets for SHA-1), output "message too + // long" and stop. + // + // 2. Let mHash = Hash(M), an octet string of length hLen. + + if len(mHash) != hLen { + return nil, errors.New("crypto/rsa: input must be hashed with given hash") + } + + // 3. If emLen < hLen + sLen + 2, output "encoding error" and stop. + + if emLen < hLen+sLen+2 { + return nil, ErrMessageTooLong + } + + em := make([]byte, emLen) + psLen := emLen - sLen - hLen - 2 + db := em[:psLen+1+sLen] + h := em[psLen+1+sLen : emLen-1] + + // 4. Generate a random octet string salt of length sLen; if sLen = 0, + // then salt is the empty string. + // + // 5. Let + // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt; + // + // M' is an octet string of length 8 + hLen + sLen with eight + // initial zero octets. + // + // 6. Let H = Hash(M'), an octet string of length hLen. + + var prefix [8]byte + + hash.Write(prefix[:]) + hash.Write(mHash) + hash.Write(salt) + + h = hash.Sum(h[:0]) + hash.Reset() + + // 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2 + // zero octets. The length of PS may be 0. + // + // 8. Let DB = PS || 0x01 || salt; DB is an octet string of length + // emLen - hLen - 1. + + db[psLen] = 0x01 + copy(db[psLen+1:], salt) + + // 9. Let dbMask = MGF(H, emLen - hLen - 1). + // + // 10. Let maskedDB = DB \xor dbMask. + + mgf1XOR(db, hash, h) + + // 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in + // maskedDB to zero. + + db[0] &= 0xff >> (8*emLen - emBits) + + // 12. Let EM = maskedDB || H || 0xbc. + em[emLen-1] = 0xbc + + // 13. Output EM. + return em, nil +} + +func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error { + // See RFC 8017, Section 9.1.2. + + hLen := hash.Size() + if sLen == PSSSaltLengthEqualsHash { + sLen = hLen + } + emLen := (emBits + 7) / 8 + if emLen != len(em) { + return errors.New("rsa: internal error: inconsistent length") + } + + // 1. If the length of M is greater than the input limitation for the + // hash function (2^61 - 1 octets for SHA-1), output "inconsistent" + // and stop. + // + // 2. Let mHash = Hash(M), an octet string of length hLen. + if hLen != len(mHash) { + return ErrVerification + } + + // 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop. + if emLen < hLen+sLen+2 { + return ErrVerification + } + + // 4. If the rightmost octet of EM does not have hexadecimal value + // 0xbc, output "inconsistent" and stop. + if em[emLen-1] != 0xbc { + return ErrVerification + } + + // 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and + // let H be the next hLen octets. + db := em[:emLen-hLen-1] + h := em[emLen-hLen-1 : emLen-1] + + // 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in + // maskedDB are not all equal to zero, output "inconsistent" and + // stop. + var bitMask byte = 0xff >> (8*emLen - emBits) + if em[0] & ^bitMask != 0 { + return ErrVerification + } + + // 7. Let dbMask = MGF(H, emLen - hLen - 1). + // + // 8. Let DB = maskedDB \xor dbMask. + mgf1XOR(db, hash, h) + + // 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB + // to zero. + db[0] &= bitMask + + // If we don't know the salt length, look for the 0x01 delimiter. + if sLen == PSSSaltLengthAuto { + psLen := bytes.IndexByte(db, 0x01) + if psLen < 0 { + return ErrVerification + } + sLen = len(db) - psLen - 1 + } + + // 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero + // or if the octet at position emLen - hLen - sLen - 1 (the leftmost + // position is "position 1") does not have hexadecimal value 0x01, + // output "inconsistent" and stop. + psLen := emLen - hLen - sLen - 2 + for _, e := range db[:psLen] { + if e != 0x00 { + return ErrVerification + } + } + if db[psLen] != 0x01 { + return ErrVerification + } + + // 11. Let salt be the last sLen octets of DB. + salt := db[len(db)-sLen:] + + // 12. Let + // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ; + // M' is an octet string of length 8 + hLen + sLen with eight + // initial zero octets. + // + // 13. Let H' = Hash(M'), an octet string of length hLen. + var prefix [8]byte + hash.Write(prefix[:]) + hash.Write(mHash) + hash.Write(salt) + + h0 := hash.Sum(nil) + + // 14. If H = H', output "consistent." Otherwise, output "inconsistent." + if !bytes.Equal(h0, h) { // TODO: constant time? + return ErrVerification + } + return nil +} + +// signPSSWithSalt calculates the signature of hashed using PSS with specified salt. +// Note that hashed must be the result of hashing the input message using the +// given hash function. salt is a random sequence of bytes whose length will be +// later used to verify the signature. +func signPSSWithSalt(priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) ([]byte, error) { + emBits := priv.N.BitLen() - 1 + em, err := emsaPSSEncode(hashed, emBits, salt, hash.New()) + if err != nil { + return nil, err + } + + if boring.Enabled { + bkey, err := boringPrivateKey(priv) + if err != nil { + return nil, err + } + // Note: BoringCrypto always does decrypt "withCheck". + // (It's not just decrypt.) + s, err := boring.DecryptRSANoPadding(bkey, em) + if err != nil { + return nil, err + } + return s, nil + } + + // RFC 8017: "Note that the octet length of EM will be one less than k if + // modBits - 1 is divisible by 8 and equal to k otherwise, where k is the + // length in octets of the RSA modulus n." 🙄 + // + // This is extremely annoying, as all other encrypt and decrypt inputs are + // always the exact same size as the modulus. Since it only happens for + // weird modulus sizes, fix it by padding inefficiently. + if emLen, k := len(em), priv.Size(); emLen < k { + emNew := make([]byte, k) + copy(emNew[k-emLen:], em) + em = emNew + } + + return decrypt(priv, em, withCheck) +} + +const ( + // PSSSaltLengthAuto causes the salt in a PSS signature to be as large + // as possible when signing, and to be auto-detected when verifying. + PSSSaltLengthAuto = 0 + // PSSSaltLengthEqualsHash causes the salt length to equal the length + // of the hash used in the signature. + PSSSaltLengthEqualsHash = -1 +) + +// PSSOptions contains options for creating and verifying PSS signatures. +type PSSOptions struct { + // SaltLength controls the length of the salt used in the PSS signature. It + // can either be a positive number of bytes, or one of the special + // PSSSaltLength constants. + SaltLength int + + // Hash is the hash function used to generate the message digest. If not + // zero, it overrides the hash function passed to SignPSS. It's required + // when using PrivateKey.Sign. + Hash crypto.Hash +} + +// HashFunc returns opts.Hash so that PSSOptions implements crypto.SignerOpts. +func (opts *PSSOptions) HashFunc() crypto.Hash { + return opts.Hash +} + +func (opts *PSSOptions) saltLength() int { + if opts == nil { + return PSSSaltLengthAuto + } + return opts.SaltLength +} + +var invalidSaltLenErr = errors.New("crypto/rsa: PSSOptions.SaltLength cannot be negative") + +// SignPSS calculates the signature of digest using PSS. +// +// digest must be the result of hashing the input message using the given hash +// function. The opts argument may be nil, in which case sensible defaults are +// used. If opts.Hash is set, it overrides hash. +func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte, opts *PSSOptions) ([]byte, error) { + if boring.Enabled && rand == boring.RandReader { + bkey, err := boringPrivateKey(priv) + if err != nil { + return nil, err + } + return boring.SignRSAPSS(bkey, hash, digest, opts.saltLength()) + } + boring.UnreachableExceptTests() + + if opts != nil && opts.Hash != 0 { + hash = opts.Hash + } + + saltLength := opts.saltLength() + switch saltLength { + case PSSSaltLengthAuto: + saltLength = (priv.N.BitLen()-1+7)/8 - 2 - hash.Size() + if saltLength < 0 { + return nil, ErrMessageTooLong + } + case PSSSaltLengthEqualsHash: + saltLength = hash.Size() + default: + // If we get here saltLength is either > 0 or < -1, in the + // latter case we fail out. + if saltLength <= 0 { + return nil, invalidSaltLenErr + } + } + salt := make([]byte, saltLength) + if _, err := io.ReadFull(rand, salt); err != nil { + return nil, err + } + return signPSSWithSalt(priv, hash, digest, salt) +} + +// VerifyPSS verifies a PSS signature. +// +// A valid signature is indicated by returning a nil error. digest must be the +// result of hashing the input message using the given hash function. The opts +// argument may be nil, in which case sensible defaults are used. opts.Hash is +// ignored. +func VerifyPSS(pub *PublicKey, hash crypto.Hash, digest []byte, sig []byte, opts *PSSOptions) error { + if boring.Enabled { + bkey, err := boringPublicKey(pub) + if err != nil { + return err + } + if err := boring.VerifyRSAPSS(bkey, hash, digest, sig, opts.saltLength()); err != nil { + return ErrVerification + } + return nil + } + if len(sig) != pub.Size() { + return ErrVerification + } + // Salt length must be either one of the special constants (-1 or 0) + // or otherwise positive. If it is < PSSSaltLengthEqualsHash (-1) + // we return an error. + if opts.saltLength() < PSSSaltLengthEqualsHash { + return invalidSaltLenErr + } + + emBits := pub.N.BitLen() - 1 + emLen := (emBits + 7) / 8 + em, err := encrypt(pub, sig) + if err != nil { + return ErrVerification + } + + // Like in signPSSWithSalt, deal with mismatches between emLen and the size + // of the modulus. The spec would have us wire emLen into the encoding + // function, but we'd rather always encode to the size of the modulus and + // then strip leading zeroes if necessary. This only happens for weird + // modulus sizes anyway. + for len(em) > emLen && len(em) > 0 { + if em[0] != 0 { + return ErrVerification + } + em = em[1:] + } + + return emsaPSSVerify(digest, em, emBits, opts.saltLength(), hash.New()) +} diff --git a/src/crypto/rsa/pss_test.go b/src/crypto/rsa/pss_test.go new file mode 100644 index 0000000..cf03e3c --- /dev/null +++ b/src/crypto/rsa/pss_test.go @@ -0,0 +1,308 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa_test + +import ( + "bufio" + "bytes" + "compress/bzip2" + "crypto" + "crypto/rand" + . "crypto/rsa" + "crypto/sha1" + "crypto/sha256" + "encoding/hex" + "math/big" + "os" + "strconv" + "strings" + "testing" +) + +func TestEMSAPSS(t *testing.T) { + // Test vector in file pss-int.txt from: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip + msg := []byte{ + 0x85, 0x9e, 0xef, 0x2f, 0xd7, 0x8a, 0xca, 0x00, 0x30, 0x8b, + 0xdc, 0x47, 0x11, 0x93, 0xbf, 0x55, 0xbf, 0x9d, 0x78, 0xdb, + 0x8f, 0x8a, 0x67, 0x2b, 0x48, 0x46, 0x34, 0xf3, 0xc9, 0xc2, + 0x6e, 0x64, 0x78, 0xae, 0x10, 0x26, 0x0f, 0xe0, 0xdd, 0x8c, + 0x08, 0x2e, 0x53, 0xa5, 0x29, 0x3a, 0xf2, 0x17, 0x3c, 0xd5, + 0x0c, 0x6d, 0x5d, 0x35, 0x4f, 0xeb, 0xf7, 0x8b, 0x26, 0x02, + 0x1c, 0x25, 0xc0, 0x27, 0x12, 0xe7, 0x8c, 0xd4, 0x69, 0x4c, + 0x9f, 0x46, 0x97, 0x77, 0xe4, 0x51, 0xe7, 0xf8, 0xe9, 0xe0, + 0x4c, 0xd3, 0x73, 0x9c, 0x6b, 0xbf, 0xed, 0xae, 0x48, 0x7f, + 0xb5, 0x56, 0x44, 0xe9, 0xca, 0x74, 0xff, 0x77, 0xa5, 0x3c, + 0xb7, 0x29, 0x80, 0x2f, 0x6e, 0xd4, 0xa5, 0xff, 0xa8, 0xba, + 0x15, 0x98, 0x90, 0xfc, + } + salt := []byte{ + 0xe3, 0xb5, 0xd5, 0xd0, 0x02, 0xc1, 0xbc, 0xe5, 0x0c, 0x2b, + 0x65, 0xef, 0x88, 0xa1, 0x88, 0xd8, 0x3b, 0xce, 0x7e, 0x61, + } + expected := []byte{ + 0x66, 0xe4, 0x67, 0x2e, 0x83, 0x6a, 0xd1, 0x21, 0xba, 0x24, + 0x4b, 0xed, 0x65, 0x76, 0xb8, 0x67, 0xd9, 0xa4, 0x47, 0xc2, + 0x8a, 0x6e, 0x66, 0xa5, 0xb8, 0x7d, 0xee, 0x7f, 0xbc, 0x7e, + 0x65, 0xaf, 0x50, 0x57, 0xf8, 0x6f, 0xae, 0x89, 0x84, 0xd9, + 0xba, 0x7f, 0x96, 0x9a, 0xd6, 0xfe, 0x02, 0xa4, 0xd7, 0x5f, + 0x74, 0x45, 0xfe, 0xfd, 0xd8, 0x5b, 0x6d, 0x3a, 0x47, 0x7c, + 0x28, 0xd2, 0x4b, 0xa1, 0xe3, 0x75, 0x6f, 0x79, 0x2d, 0xd1, + 0xdc, 0xe8, 0xca, 0x94, 0x44, 0x0e, 0xcb, 0x52, 0x79, 0xec, + 0xd3, 0x18, 0x3a, 0x31, 0x1f, 0xc8, 0x96, 0xda, 0x1c, 0xb3, + 0x93, 0x11, 0xaf, 0x37, 0xea, 0x4a, 0x75, 0xe2, 0x4b, 0xdb, + 0xfd, 0x5c, 0x1d, 0xa0, 0xde, 0x7c, 0xec, 0xdf, 0x1a, 0x89, + 0x6f, 0x9d, 0x8b, 0xc8, 0x16, 0xd9, 0x7c, 0xd7, 0xa2, 0xc4, + 0x3b, 0xad, 0x54, 0x6f, 0xbe, 0x8c, 0xfe, 0xbc, + } + + hash := sha1.New() + hash.Write(msg) + hashed := hash.Sum(nil) + + encoded, err := EMSAPSSEncode(hashed, 1023, salt, sha1.New()) + if err != nil { + t.Errorf("Error from emsaPSSEncode: %s\n", err) + } + if !bytes.Equal(encoded, expected) { + t.Errorf("Bad encoding. got %x, want %x", encoded, expected) + } + + if err = EMSAPSSVerify(hashed, encoded, 1023, len(salt), sha1.New()); err != nil { + t.Errorf("Bad verification: %s", err) + } +} + +// TestPSSGolden tests all the test vectors in pss-vect.txt from +// ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip +func TestPSSGolden(t *testing.T) { + inFile, err := os.Open("testdata/pss-vect.txt.bz2") + if err != nil { + t.Fatalf("Failed to open input file: %s", err) + } + defer inFile.Close() + + // The pss-vect.txt file contains RSA keys and then a series of + // signatures. A goroutine is used to preprocess the input by merging + // lines, removing spaces in hex values and identifying the start of + // new keys and signature blocks. + const newKeyMarker = "START NEW KEY" + const newSignatureMarker = "START NEW SIGNATURE" + + values := make(chan string) + + go func() { + defer close(values) + scanner := bufio.NewScanner(bzip2.NewReader(inFile)) + var partialValue string + lastWasValue := true + + for scanner.Scan() { + line := scanner.Text() + switch { + case len(line) == 0: + if len(partialValue) > 0 { + values <- strings.ReplaceAll(partialValue, " ", "") + partialValue = "" + lastWasValue = true + } + continue + case strings.HasPrefix(line, "# ======") && lastWasValue: + values <- newKeyMarker + lastWasValue = false + case strings.HasPrefix(line, "# ------") && lastWasValue: + values <- newSignatureMarker + lastWasValue = false + case strings.HasPrefix(line, "#"): + continue + default: + partialValue += line + } + } + if err := scanner.Err(); err != nil { + panic(err) + } + }() + + var key *PublicKey + var hashed []byte + hash := crypto.SHA1 + h := hash.New() + opts := &PSSOptions{ + SaltLength: PSSSaltLengthEqualsHash, + } + + for marker := range values { + switch marker { + case newKeyMarker: + key = new(PublicKey) + nHex, ok := <-values + if !ok { + continue + } + key.N = bigFromHex(nHex) + key.E = intFromHex(<-values) + // We don't care for d, p, q, dP, dQ or qInv. + for i := 0; i < 6; i++ { + <-values + } + case newSignatureMarker: + msg := fromHex(<-values) + <-values // skip salt + sig := fromHex(<-values) + + h.Reset() + h.Write(msg) + hashed = h.Sum(hashed[:0]) + + if err := VerifyPSS(key, hash, hashed, sig, opts); err != nil { + t.Error(err) + } + default: + t.Fatalf("unknown marker: " + marker) + } + } +} + +// TestPSSOpenSSL ensures that we can verify a PSS signature from OpenSSL with +// the default options. OpenSSL sets the salt length to be maximal. +func TestPSSOpenSSL(t *testing.T) { + hash := crypto.SHA256 + h := hash.New() + h.Write([]byte("testing")) + hashed := h.Sum(nil) + + // Generated with `echo -n testing | openssl dgst -sign key.pem -sigopt rsa_padding_mode:pss -sha256 > sig` + sig := []byte{ + 0x95, 0x59, 0x6f, 0xd3, 0x10, 0xa2, 0xe7, 0xa2, 0x92, 0x9d, + 0x4a, 0x07, 0x2e, 0x2b, 0x27, 0xcc, 0x06, 0xc2, 0x87, 0x2c, + 0x52, 0xf0, 0x4a, 0xcc, 0x05, 0x94, 0xf2, 0xc3, 0x2e, 0x20, + 0xd7, 0x3e, 0x66, 0x62, 0xb5, 0x95, 0x2b, 0xa3, 0x93, 0x9a, + 0x66, 0x64, 0x25, 0xe0, 0x74, 0x66, 0x8c, 0x3e, 0x92, 0xeb, + 0xc6, 0xe6, 0xc0, 0x44, 0xf3, 0xb4, 0xb4, 0x2e, 0x8c, 0x66, + 0x0a, 0x37, 0x9c, 0x69, + } + + if err := VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, nil); err != nil { + t.Error(err) + } +} + +func TestPSSNilOpts(t *testing.T) { + hash := crypto.SHA256 + h := hash.New() + h.Write([]byte("testing")) + hashed := h.Sum(nil) + + SignPSS(rand.Reader, rsaPrivateKey, hash, hashed, nil) +} + +func TestPSSSigning(t *testing.T) { + var saltLengthCombinations = []struct { + signSaltLength, verifySaltLength int + good bool + }{ + {PSSSaltLengthAuto, PSSSaltLengthAuto, true}, + {PSSSaltLengthEqualsHash, PSSSaltLengthAuto, true}, + {PSSSaltLengthEqualsHash, PSSSaltLengthEqualsHash, true}, + {PSSSaltLengthEqualsHash, 8, false}, + {PSSSaltLengthAuto, PSSSaltLengthEqualsHash, false}, + {8, 8, true}, + {PSSSaltLengthAuto, 42, true}, + {PSSSaltLengthAuto, 20, false}, + {PSSSaltLengthAuto, -2, false}, + } + + hash := crypto.SHA1 + h := hash.New() + h.Write([]byte("testing")) + hashed := h.Sum(nil) + var opts PSSOptions + + for i, test := range saltLengthCombinations { + opts.SaltLength = test.signSaltLength + sig, err := SignPSS(rand.Reader, rsaPrivateKey, hash, hashed, &opts) + if err != nil { + t.Errorf("#%d: error while signing: %s", i, err) + continue + } + + opts.SaltLength = test.verifySaltLength + err = VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, &opts) + if (err == nil) != test.good { + t.Errorf("#%d: bad result, wanted: %t, got: %s", i, test.good, err) + } + } +} + +func TestPSS513(t *testing.T) { + // See Issue 42741, and separately, RFC 8017: "Note that the octet length of + // EM will be one less than k if modBits - 1 is divisible by 8 and equal to + // k otherwise, where k is the length in octets of the RSA modulus n." + key, err := GenerateKey(rand.Reader, 513) + if err != nil { + t.Fatal(err) + } + digest := sha256.Sum256([]byte("message")) + signature, err := key.Sign(rand.Reader, digest[:], &PSSOptions{ + SaltLength: PSSSaltLengthAuto, + Hash: crypto.SHA256, + }) + if err != nil { + t.Fatal(err) + } + err = VerifyPSS(&key.PublicKey, crypto.SHA256, digest[:], signature, nil) + if err != nil { + t.Error(err) + } +} + +func bigFromHex(hex string) *big.Int { + n, ok := new(big.Int).SetString(hex, 16) + if !ok { + panic("bad hex: " + hex) + } + return n +} + +func intFromHex(hex string) int { + i, err := strconv.ParseInt(hex, 16, 32) + if err != nil { + panic(err) + } + return int(i) +} + +func fromHex(hexStr string) []byte { + s, err := hex.DecodeString(hexStr) + if err != nil { + panic(err) + } + return s +} + +func TestInvalidPSSSaltLength(t *testing.T) { + key, err := GenerateKey(rand.Reader, 245) + if err != nil { + t.Fatal(err) + } + + digest := sha256.Sum256([]byte("message")) + // We don't check the exact error matches, because crypto/rsa and crypto/internal/boring + // return two different error variables, which have the same content but are not equal. + if _, err := SignPSS(rand.Reader, key, crypto.SHA256, digest[:], &PSSOptions{ + SaltLength: -2, + Hash: crypto.SHA256, + }); err.Error() != InvalidSaltLenErr.Error() { + t.Fatalf("SignPSS unexpected error: got %v, want %v", err, InvalidSaltLenErr) + } + + // We don't check the specific error here, because crypto/rsa and crypto/internal/boring + // return different errors, so we just check that _an error_ was returned. + if err := VerifyPSS(&key.PublicKey, crypto.SHA256, []byte{1, 2, 3}, make([]byte, 31), &PSSOptions{ + SaltLength: -2, + }); err == nil { + t.Fatal("VerifyPSS unexpected success") + } +} diff --git a/src/crypto/rsa/rsa.go b/src/crypto/rsa/rsa.go new file mode 100644 index 0000000..63bc8da --- /dev/null +++ b/src/crypto/rsa/rsa.go @@ -0,0 +1,737 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017. +// +// RSA is a single, fundamental operation that is used in this package to +// implement either public-key encryption or public-key signatures. +// +// The original specification for encryption and signatures with RSA is PKCS #1 +// and the terms "RSA encryption" and "RSA signatures" by default refer to +// PKCS #1 version 1.5. However, that specification has flaws and new designs +// should use version 2, usually called by just OAEP and PSS, where +// possible. +// +// Two sets of interfaces are included in this package. When a more abstract +// interface isn't necessary, there are functions for encrypting/decrypting +// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract +// over the public key primitive, the PrivateKey type implements the +// Decrypter and Signer interfaces from the crypto package. +// +// Operations in this package are implemented using constant-time algorithms, +// except for [GenerateKey], [PrivateKey.Precompute], and [PrivateKey.Validate]. +// Every other operation only leaks the bit size of the involved values, which +// all depend on the selected key size. +package rsa + +import ( + "crypto" + "crypto/internal/bigmod" + "crypto/internal/boring" + "crypto/internal/boring/bbig" + "crypto/internal/randutil" + "crypto/rand" + "crypto/subtle" + "encoding/binary" + "errors" + "hash" + "io" + "math" + "math/big" +) + +var bigOne = big.NewInt(1) + +// A PublicKey represents the public part of an RSA key. +type PublicKey struct { + N *big.Int // modulus + E int // public exponent +} + +// Any methods implemented on PublicKey might need to also be implemented on +// PrivateKey, as the latter embeds the former and will expose its methods. + +// Size returns the modulus size in bytes. Raw signatures and ciphertexts +// for or by this public key will have the same size. +func (pub *PublicKey) Size() int { + return (pub.N.BitLen() + 7) / 8 +} + +// Equal reports whether pub and x have the same value. +func (pub *PublicKey) Equal(x crypto.PublicKey) bool { + xx, ok := x.(*PublicKey) + if !ok { + return false + } + return pub.N.Cmp(xx.N) == 0 && pub.E == xx.E +} + +// OAEPOptions is an interface for passing options to OAEP decryption using the +// crypto.Decrypter interface. +type OAEPOptions struct { + // Hash is the hash function that will be used when generating the mask. + Hash crypto.Hash + + // MGFHash is the hash function used for MGF1. + // If zero, Hash is used instead. + MGFHash crypto.Hash + + // Label is an arbitrary byte string that must be equal to the value + // used when encrypting. + Label []byte +} + +var ( + errPublicModulus = errors.New("crypto/rsa: missing public modulus") + errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") + errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") +) + +// checkPub sanity checks the public key before we use it. +// We require pub.E to fit into a 32-bit integer so that we +// do not have different behavior depending on whether +// int is 32 or 64 bits. See also +// https://www.imperialviolet.org/2012/03/16/rsae.html. +func checkPub(pub *PublicKey) error { + if pub.N == nil { + return errPublicModulus + } + if pub.E < 2 { + return errPublicExponentSmall + } + if pub.E > 1<<31-1 { + return errPublicExponentLarge + } + return nil +} + +// A PrivateKey represents an RSA key +type PrivateKey struct { + PublicKey // public part. + D *big.Int // private exponent + Primes []*big.Int // prime factors of N, has >= 2 elements. + + // Precomputed contains precomputed values that speed up RSA operations, + // if available. It must be generated by calling PrivateKey.Precompute and + // must not be modified. + Precomputed PrecomputedValues +} + +// Public returns the public key corresponding to priv. +func (priv *PrivateKey) Public() crypto.PublicKey { + return &priv.PublicKey +} + +// Equal reports whether priv and x have equivalent values. It ignores +// Precomputed values. +func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { + xx, ok := x.(*PrivateKey) + if !ok { + return false + } + if !priv.PublicKey.Equal(&xx.PublicKey) || priv.D.Cmp(xx.D) != 0 { + return false + } + if len(priv.Primes) != len(xx.Primes) { + return false + } + for i := range priv.Primes { + if priv.Primes[i].Cmp(xx.Primes[i]) != 0 { + return false + } + } + return true +} + +// Sign signs digest with priv, reading randomness from rand. If opts is a +// *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will +// be used. digest must be the result of hashing the input message using +// opts.HashFunc(). +// +// This method implements crypto.Signer, which is an interface to support keys +// where the private part is kept in, for example, a hardware module. Common +// uses should use the Sign* functions in this package directly. +func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { + if pssOpts, ok := opts.(*PSSOptions); ok { + return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts) + } + + return SignPKCS1v15(rand, priv, opts.HashFunc(), digest) +} + +// Decrypt decrypts ciphertext with priv. If opts is nil or of type +// *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise +// opts must have type *OAEPOptions and OAEP decryption is done. +func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { + if opts == nil { + return DecryptPKCS1v15(rand, priv, ciphertext) + } + + switch opts := opts.(type) { + case *OAEPOptions: + if opts.MGFHash == 0 { + return decryptOAEP(opts.Hash.New(), opts.Hash.New(), rand, priv, ciphertext, opts.Label) + } else { + return decryptOAEP(opts.Hash.New(), opts.MGFHash.New(), rand, priv, ciphertext, opts.Label) + } + + case *PKCS1v15DecryptOptions: + if l := opts.SessionKeyLen; l > 0 { + plaintext = make([]byte, l) + if _, err := io.ReadFull(rand, plaintext); err != nil { + return nil, err + } + if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { + return nil, err + } + return plaintext, nil + } else { + return DecryptPKCS1v15(rand, priv, ciphertext) + } + + default: + return nil, errors.New("crypto/rsa: invalid options for Decrypt") + } +} + +type PrecomputedValues struct { + Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) + Qinv *big.Int // Q^-1 mod P + + // CRTValues is used for the 3rd and subsequent primes. Due to a + // historical accident, the CRT for the first two primes is handled + // differently in PKCS #1 and interoperability is sufficiently + // important that we mirror this. + // + // Note: these values are still filled in by Precompute for + // backwards compatibility but are not used. Multi-prime RSA is very rare, + // and is implemented by this package without CRT optimizations to limit + // complexity. + CRTValues []CRTValue + + n, p, q *bigmod.Modulus // moduli for CRT with Montgomery precomputed constants +} + +// CRTValue contains the precomputed Chinese remainder theorem values. +type CRTValue struct { + Exp *big.Int // D mod (prime-1). + Coeff *big.Int // R·Coeff ≡ 1 mod Prime. + R *big.Int // product of primes prior to this (inc p and q). +} + +// Validate performs basic sanity checks on the key. +// It returns nil if the key is valid, or else an error describing a problem. +func (priv *PrivateKey) Validate() error { + if err := checkPub(&priv.PublicKey); err != nil { + return err + } + + // Check that Πprimes == n. + modulus := new(big.Int).Set(bigOne) + for _, prime := range priv.Primes { + // Any primes ≤ 1 will cause divide-by-zero panics later. + if prime.Cmp(bigOne) <= 0 { + return errors.New("crypto/rsa: invalid prime value") + } + modulus.Mul(modulus, prime) + } + if modulus.Cmp(priv.N) != 0 { + return errors.New("crypto/rsa: invalid modulus") + } + + // Check that de ≡ 1 mod p-1, for each prime. + // This implies that e is coprime to each p-1 as e has a multiplicative + // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = + // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 + // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. + congruence := new(big.Int) + de := new(big.Int).SetInt64(int64(priv.E)) + de.Mul(de, priv.D) + for _, prime := range priv.Primes { + pminus1 := new(big.Int).Sub(prime, bigOne) + congruence.Mod(de, pminus1) + if congruence.Cmp(bigOne) != 0 { + return errors.New("crypto/rsa: invalid exponents") + } + } + return nil +} + +// GenerateKey generates an RSA keypair of the given bit size using the +// random source random (for example, crypto/rand.Reader). +func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) { + return GenerateMultiPrimeKey(random, 2, bits) +} + +// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit +// size and the given random source. +// +// Table 1 in "[On the Security of Multi-prime RSA]" suggests maximum numbers of +// primes for a given bit size. +// +// Although the public keys are compatible (actually, indistinguishable) from +// the 2-prime case, the private keys are not. Thus it may not be possible to +// export multi-prime private keys in certain formats or to subsequently import +// them into other code. +// +// This package does not implement CRT optimizations for multi-prime RSA, so the +// keys with more than two primes will have worse performance. +// +// Note: The use of this function with a number of primes different from +// two is not recommended for the above security, compatibility, and performance +// reasons. Use GenerateKey instead. +// +// [On the Security of Multi-prime RSA]: http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf +func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) { + randutil.MaybeReadByte(random) + + if boring.Enabled && random == boring.RandReader && nprimes == 2 && + (bits == 2048 || bits == 3072 || bits == 4096) { + bN, bE, bD, bP, bQ, bDp, bDq, bQinv, err := boring.GenerateKeyRSA(bits) + if err != nil { + return nil, err + } + N := bbig.Dec(bN) + E := bbig.Dec(bE) + D := bbig.Dec(bD) + P := bbig.Dec(bP) + Q := bbig.Dec(bQ) + Dp := bbig.Dec(bDp) + Dq := bbig.Dec(bDq) + Qinv := bbig.Dec(bQinv) + e64 := E.Int64() + if !E.IsInt64() || int64(int(e64)) != e64 { + return nil, errors.New("crypto/rsa: generated key exponent too large") + } + key := &PrivateKey{ + PublicKey: PublicKey{ + N: N, + E: int(e64), + }, + D: D, + Primes: []*big.Int{P, Q}, + Precomputed: PrecomputedValues{ + Dp: Dp, + Dq: Dq, + Qinv: Qinv, + CRTValues: make([]CRTValue, 0), // non-nil, to match Precompute + n: bigmod.NewModulusFromBig(N), + p: bigmod.NewModulusFromBig(P), + q: bigmod.NewModulusFromBig(Q), + }, + } + return key, nil + } + + priv := new(PrivateKey) + priv.E = 65537 + + if nprimes < 2 { + return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") + } + + if bits < 64 { + primeLimit := float64(uint64(1) << uint(bits/nprimes)) + // pi approximates the number of primes less than primeLimit + pi := primeLimit / (math.Log(primeLimit) - 1) + // Generated primes start with 11 (in binary) so we can only + // use a quarter of them. + pi /= 4 + // Use a factor of two to ensure that key generation terminates + // in a reasonable amount of time. + pi /= 2 + if pi <= float64(nprimes) { + return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") + } + } + + primes := make([]*big.Int, nprimes) + +NextSetOfPrimes: + for { + todo := bits + // crypto/rand should set the top two bits in each prime. + // Thus each prime has the form + // p_i = 2^bitlen(p_i) × 0.11... (in base 2). + // And the product is: + // P = 2^todo × α + // where α is the product of nprimes numbers of the form 0.11... + // + // If α < 1/2 (which can happen for nprimes > 2), we need to + // shift todo to compensate for lost bits: the mean value of 0.11... + // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 + // will give good results. + if nprimes >= 7 { + todo += (nprimes - 2) / 5 + } + for i := 0; i < nprimes; i++ { + var err error + primes[i], err = rand.Prime(random, todo/(nprimes-i)) + if err != nil { + return nil, err + } + todo -= primes[i].BitLen() + } + + // Make sure that primes is pairwise unequal. + for i, prime := range primes { + for j := 0; j < i; j++ { + if prime.Cmp(primes[j]) == 0 { + continue NextSetOfPrimes + } + } + } + + n := new(big.Int).Set(bigOne) + totient := new(big.Int).Set(bigOne) + pminus1 := new(big.Int) + for _, prime := range primes { + n.Mul(n, prime) + pminus1.Sub(prime, bigOne) + totient.Mul(totient, pminus1) + } + if n.BitLen() != bits { + // This should never happen for nprimes == 2 because + // crypto/rand should set the top two bits in each prime. + // For nprimes > 2 we hope it does not happen often. + continue NextSetOfPrimes + } + + priv.D = new(big.Int) + e := big.NewInt(int64(priv.E)) + ok := priv.D.ModInverse(e, totient) + + if ok != nil { + priv.Primes = primes + priv.N = n + break + } + } + + priv.Precompute() + return priv, nil +} + +// incCounter increments a four byte, big-endian counter. +func incCounter(c *[4]byte) { + if c[3]++; c[3] != 0 { + return + } + if c[2]++; c[2] != 0 { + return + } + if c[1]++; c[1] != 0 { + return + } + c[0]++ +} + +// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function +// specified in PKCS #1 v2.1. +func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { + var counter [4]byte + var digest []byte + + done := 0 + for done < len(out) { + hash.Write(seed) + hash.Write(counter[0:4]) + digest = hash.Sum(digest[:0]) + hash.Reset() + + for i := 0; i < len(digest) && done < len(out); i++ { + out[done] ^= digest[i] + done++ + } + incCounter(&counter) + } +} + +// ErrMessageTooLong is returned when attempting to encrypt or sign a message +// which is too large for the size of the key. When using SignPSS, this can also +// be returned if the size of the salt is too large. +var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA key size") + +func encrypt(pub *PublicKey, plaintext []byte) ([]byte, error) { + boring.Unreachable() + + N := bigmod.NewModulusFromBig(pub.N) + m, err := bigmod.NewNat().SetBytes(plaintext, N) + if err != nil { + return nil, err + } + e := intToBytes(pub.E) + + return bigmod.NewNat().Exp(m, e, N).Bytes(N), nil +} + +// intToBytes returns i as a big-endian slice of bytes with no leading zeroes, +// leaking only the bit size of i through timing side-channels. +func intToBytes(i int) []byte { + b := make([]byte, 8) + binary.BigEndian.PutUint64(b, uint64(i)) + for len(b) > 1 && b[0] == 0 { + b = b[1:] + } + return b +} + +// EncryptOAEP encrypts the given message with RSA-OAEP. +// +// OAEP is parameterised by a hash function that is used as a random oracle. +// Encryption and decryption of a given message must use the same hash function +// and sha256.New() is a reasonable choice. +// +// The random parameter is used as a source of entropy to ensure that +// encrypting the same message twice doesn't result in the same ciphertext. +// +// The label parameter may contain arbitrary data that will not be encrypted, +// but which gives important context to the message. For example, if a given +// public key is used to encrypt two types of messages then distinct label +// values could be used to ensure that a ciphertext for one purpose cannot be +// used for another by an attacker. If not required it can be empty. +// +// The message must be no longer than the length of the public modulus minus +// twice the hash length, minus a further 2. +func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) { + if err := checkPub(pub); err != nil { + return nil, err + } + hash.Reset() + k := pub.Size() + if len(msg) > k-2*hash.Size()-2 { + return nil, ErrMessageTooLong + } + + if boring.Enabled && random == boring.RandReader { + bkey, err := boringPublicKey(pub) + if err != nil { + return nil, err + } + return boring.EncryptRSAOAEP(hash, hash, bkey, msg, label) + } + boring.UnreachableExceptTests() + + hash.Write(label) + lHash := hash.Sum(nil) + hash.Reset() + + em := make([]byte, k) + seed := em[1 : 1+hash.Size()] + db := em[1+hash.Size():] + + copy(db[0:hash.Size()], lHash) + db[len(db)-len(msg)-1] = 1 + copy(db[len(db)-len(msg):], msg) + + _, err := io.ReadFull(random, seed) + if err != nil { + return nil, err + } + + mgf1XOR(db, hash, seed) + mgf1XOR(seed, hash, db) + + if boring.Enabled { + var bkey *boring.PublicKeyRSA + bkey, err = boringPublicKey(pub) + if err != nil { + return nil, err + } + return boring.EncryptRSANoPadding(bkey, em) + } + + return encrypt(pub, em) +} + +// ErrDecryption represents a failure to decrypt a message. +// It is deliberately vague to avoid adaptive attacks. +var ErrDecryption = errors.New("crypto/rsa: decryption error") + +// ErrVerification represents a failure to verify a signature. +// It is deliberately vague to avoid adaptive attacks. +var ErrVerification = errors.New("crypto/rsa: verification error") + +// Precompute performs some calculations that speed up private key operations +// in the future. +func (priv *PrivateKey) Precompute() { + if priv.Precomputed.n == nil && len(priv.Primes) == 2 { + priv.Precomputed.n = bigmod.NewModulusFromBig(priv.N) + priv.Precomputed.p = bigmod.NewModulusFromBig(priv.Primes[0]) + priv.Precomputed.q = bigmod.NewModulusFromBig(priv.Primes[1]) + } + + // Fill in the backwards-compatibility *big.Int values. + if priv.Precomputed.Dp != nil { + return + } + + priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) + priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) + + priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) + priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) + + priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) + + r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) + priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) + for i := 2; i < len(priv.Primes); i++ { + prime := priv.Primes[i] + values := &priv.Precomputed.CRTValues[i-2] + + values.Exp = new(big.Int).Sub(prime, bigOne) + values.Exp.Mod(priv.D, values.Exp) + + values.R = new(big.Int).Set(r) + values.Coeff = new(big.Int).ModInverse(r, prime) + + r.Mul(r, prime) + } +} + +const withCheck = true +const noCheck = false + +// decrypt performs an RSA decryption of ciphertext into out. If check is true, +// m^e is calculated and compared with ciphertext, in order to defend against +// errors in the CRT computation. +func decrypt(priv *PrivateKey, ciphertext []byte, check bool) ([]byte, error) { + if len(priv.Primes) <= 2 { + boring.Unreachable() + } + + var ( + err error + m, c *bigmod.Nat + N *bigmod.Modulus + t0 = bigmod.NewNat() + ) + if priv.Precomputed.n == nil { + N = bigmod.NewModulusFromBig(priv.N) + c, err = bigmod.NewNat().SetBytes(ciphertext, N) + if err != nil { + return nil, ErrDecryption + } + m = bigmod.NewNat().Exp(c, priv.D.Bytes(), N) + } else { + N = priv.Precomputed.n + P, Q := priv.Precomputed.p, priv.Precomputed.q + Qinv, err := bigmod.NewNat().SetBytes(priv.Precomputed.Qinv.Bytes(), P) + if err != nil { + return nil, ErrDecryption + } + c, err = bigmod.NewNat().SetBytes(ciphertext, N) + if err != nil { + return nil, ErrDecryption + } + + // m = c ^ Dp mod p + m = bigmod.NewNat().Exp(t0.Mod(c, P), priv.Precomputed.Dp.Bytes(), P) + // m2 = c ^ Dq mod q + m2 := bigmod.NewNat().Exp(t0.Mod(c, Q), priv.Precomputed.Dq.Bytes(), Q) + // m = m - m2 mod p + m.Sub(t0.Mod(m2, P), P) + // m = m * Qinv mod p + m.Mul(Qinv, P) + // m = m * q mod N + m.ExpandFor(N).Mul(t0.Mod(Q.Nat(), N), N) + // m = m + m2 mod N + m.Add(m2.ExpandFor(N), N) + } + + if check { + c1 := bigmod.NewNat().Exp(m, intToBytes(priv.E), N) + if c1.Equal(c) != 1 { + return nil, ErrDecryption + } + } + + return m.Bytes(N), nil +} + +// DecryptOAEP decrypts ciphertext using RSA-OAEP. +// +// OAEP is parameterised by a hash function that is used as a random oracle. +// Encryption and decryption of a given message must use the same hash function +// and sha256.New() is a reasonable choice. +// +// The random parameter is legacy and ignored, and it can be as nil. +// +// The label parameter must match the value given when encrypting. See +// EncryptOAEP for details. +func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { + return decryptOAEP(hash, hash, random, priv, ciphertext, label) +} + +func decryptOAEP(hash, mgfHash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { + if err := checkPub(&priv.PublicKey); err != nil { + return nil, err + } + k := priv.Size() + if len(ciphertext) > k || + k < hash.Size()*2+2 { + return nil, ErrDecryption + } + + if boring.Enabled { + bkey, err := boringPrivateKey(priv) + if err != nil { + return nil, err + } + out, err := boring.DecryptRSAOAEP(hash, mgfHash, bkey, ciphertext, label) + if err != nil { + return nil, ErrDecryption + } + return out, nil + } + + em, err := decrypt(priv, ciphertext, noCheck) + if err != nil { + return nil, err + } + + hash.Write(label) + lHash := hash.Sum(nil) + hash.Reset() + + firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) + + seed := em[1 : hash.Size()+1] + db := em[hash.Size()+1:] + + mgf1XOR(seed, mgfHash, db) + mgf1XOR(db, mgfHash, seed) + + lHash2 := db[0:hash.Size()] + + // We have to validate the plaintext in constant time in order to avoid + // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal + // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 + // v2.0. In J. Kilian, editor, Advances in Cryptology. + lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) + + // The remainder of the plaintext must be zero or more 0x00, followed + // by 0x01, followed by the message. + // lookingForIndex: 1 iff we are still looking for the 0x01 + // index: the offset of the first 0x01 byte + // invalid: 1 iff we saw a non-zero byte before the 0x01. + var lookingForIndex, index, invalid int + lookingForIndex = 1 + rest := db[hash.Size():] + + for i := 0; i < len(rest); i++ { + equals0 := subtle.ConstantTimeByteEq(rest[i], 0) + equals1 := subtle.ConstantTimeByteEq(rest[i], 1) + index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) + lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) + invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) + } + + if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { + return nil, ErrDecryption + } + + return rest[index+1:], nil +} diff --git a/src/crypto/rsa/rsa_export_test.go b/src/crypto/rsa/rsa_export_test.go new file mode 100644 index 0000000..70406de --- /dev/null +++ b/src/crypto/rsa/rsa_export_test.go @@ -0,0 +1,10 @@ +// Copyright 2022 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +var NonZeroRandomBytes = nonZeroRandomBytes +var EMSAPSSEncode = emsaPSSEncode +var EMSAPSSVerify = emsaPSSVerify +var InvalidSaltLenErr = invalidSaltLenErr diff --git a/src/crypto/rsa/rsa_test.go b/src/crypto/rsa/rsa_test.go new file mode 100644 index 0000000..3278a7f --- /dev/null +++ b/src/crypto/rsa/rsa_test.go @@ -0,0 +1,882 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa_test + +import ( + "bufio" + "bytes" + "crypto" + "crypto/internal/boring" + "crypto/rand" + . "crypto/rsa" + "crypto/sha1" + "crypto/sha256" + "crypto/x509" + "encoding/pem" + "flag" + "fmt" + "internal/testenv" + "math/big" + "strings" + "testing" +) + +func TestKeyGeneration(t *testing.T) { + for _, size := range []int{128, 1024, 2048, 3072} { + priv, err := GenerateKey(rand.Reader, size) + if err != nil { + t.Errorf("GenerateKey(%d): %v", size, err) + } + if bits := priv.N.BitLen(); bits != size { + t.Errorf("key too short (%d vs %d)", bits, size) + } + testKeyBasics(t, priv) + if testing.Short() { + break + } + } +} + +func Test3PrimeKeyGeneration(t *testing.T) { + size := 768 + if testing.Short() { + size = 256 + } + + priv, err := GenerateMultiPrimeKey(rand.Reader, 3, size) + if err != nil { + t.Errorf("failed to generate key") + } + testKeyBasics(t, priv) +} + +func Test4PrimeKeyGeneration(t *testing.T) { + size := 768 + if testing.Short() { + size = 256 + } + + priv, err := GenerateMultiPrimeKey(rand.Reader, 4, size) + if err != nil { + t.Errorf("failed to generate key") + } + testKeyBasics(t, priv) +} + +func TestNPrimeKeyGeneration(t *testing.T) { + primeSize := 64 + maxN := 24 + if testing.Short() { + primeSize = 16 + maxN = 16 + } + // Test that generation of N-prime keys works for N > 4. + for n := 5; n < maxN; n++ { + priv, err := GenerateMultiPrimeKey(rand.Reader, n, 64+n*primeSize) + if err == nil { + testKeyBasics(t, priv) + } else { + t.Errorf("failed to generate %d-prime key", n) + } + } +} + +func TestImpossibleKeyGeneration(t *testing.T) { + // This test ensures that trying to generate toy RSA keys doesn't enter + // an infinite loop. + for i := 0; i < 32; i++ { + GenerateKey(rand.Reader, i) + GenerateMultiPrimeKey(rand.Reader, 3, i) + GenerateMultiPrimeKey(rand.Reader, 4, i) + GenerateMultiPrimeKey(rand.Reader, 5, i) + } +} + +func TestGnuTLSKey(t *testing.T) { + // This is a key generated by `certtool --generate-privkey --bits 128`. + // It's such that de ≢ 1 mod φ(n), but is congruent mod the order of + // the group. + priv := parseKey(testingKey(`-----BEGIN RSA TESTING KEY----- +MGECAQACEQDar8EuoZuSosYtE9SeXSyPAgMBAAECEBf7XDET8e6jjTcfO7y/sykC +CQDozXjCjkBzLQIJAPB6MqNbZaQrAghbZTdQoko5LQIIUp9ZiKDdYjMCCCCpqzmX +d8Y7 +-----END RSA TESTING KEY-----`)) + testKeyBasics(t, priv) +} + +func testKeyBasics(t *testing.T, priv *PrivateKey) { + if err := priv.Validate(); err != nil { + t.Errorf("Validate() failed: %s", err) + } + if priv.D.Cmp(priv.N) > 0 { + t.Errorf("private exponent too large") + } + + msg := []byte("hi!") + enc, err := EncryptPKCS1v15(rand.Reader, &priv.PublicKey, msg) + if err != nil { + t.Errorf("EncryptPKCS1v15: %v", err) + return + } + + dec, err := DecryptPKCS1v15(nil, priv, enc) + if err != nil { + t.Errorf("DecryptPKCS1v15: %v", err) + return + } + if !bytes.Equal(dec, msg) { + t.Errorf("got:%x want:%x (%+v)", dec, msg, priv) + } +} + +func TestAllocations(t *testing.T) { + if boring.Enabled { + t.Skip("skipping allocations test with BoringCrypto") + } + testenv.SkipIfOptimizationOff(t) + + m := []byte("Hello Gophers") + c, err := EncryptPKCS1v15(rand.Reader, &test2048Key.PublicKey, m) + if err != nil { + t.Fatal(err) + } + + if allocs := testing.AllocsPerRun(100, func() { + p, err := DecryptPKCS1v15(nil, test2048Key, c) + if err != nil { + t.Fatal(err) + } + if !bytes.Equal(p, m) { + t.Fatalf("unexpected output: %q", p) + } + }); allocs > 10 { + t.Errorf("expected less than 10 allocations, got %0.1f", allocs) + } +} + +var allFlag = flag.Bool("all", false, "test all key sizes up to 2048") + +func TestEverything(t *testing.T) { + min := 32 + max := 560 // any smaller than this and not all tests will run + if testing.Short() { + min = max + } + if *allFlag { + max = 2048 + } + for size := min; size <= max; size++ { + size := size + t.Run(fmt.Sprintf("%d", size), func(t *testing.T) { + t.Parallel() + priv, err := GenerateKey(rand.Reader, size) + if err != nil { + t.Errorf("GenerateKey(%d): %v", size, err) + } + if bits := priv.N.BitLen(); bits != size { + t.Errorf("key too short (%d vs %d)", bits, size) + } + testEverything(t, priv) + }) + } +} + +func testEverything(t *testing.T, priv *PrivateKey) { + if err := priv.Validate(); err != nil { + t.Errorf("Validate() failed: %s", err) + } + + msg := []byte("test") + enc, err := EncryptPKCS1v15(rand.Reader, &priv.PublicKey, msg) + if err == ErrMessageTooLong { + t.Log("key too small for EncryptPKCS1v15") + } else if err != nil { + t.Errorf("EncryptPKCS1v15: %v", err) + } + if err == nil { + dec, err := DecryptPKCS1v15(nil, priv, enc) + if err != nil { + t.Errorf("DecryptPKCS1v15: %v", err) + } + err = DecryptPKCS1v15SessionKey(nil, priv, enc, make([]byte, 4)) + if err != nil { + t.Errorf("DecryptPKCS1v15SessionKey: %v", err) + } + if !bytes.Equal(dec, msg) { + t.Errorf("got:%x want:%x (%+v)", dec, msg, priv) + } + } + + label := []byte("label") + enc, err = EncryptOAEP(sha256.New(), rand.Reader, &priv.PublicKey, msg, label) + if err == ErrMessageTooLong { + t.Log("key too small for EncryptOAEP") + } else if err != nil { + t.Errorf("EncryptOAEP: %v", err) + } + if err == nil { + dec, err := DecryptOAEP(sha256.New(), nil, priv, enc, label) + if err != nil { + t.Errorf("DecryptOAEP: %v", err) + } + if !bytes.Equal(dec, msg) { + t.Errorf("got:%x want:%x (%+v)", dec, msg, priv) + } + } + + hash := sha256.Sum256(msg) + sig, err := SignPKCS1v15(nil, priv, crypto.SHA256, hash[:]) + if err == ErrMessageTooLong { + t.Log("key too small for SignPKCS1v15") + } else if err != nil { + t.Errorf("SignPKCS1v15: %v", err) + } + if err == nil { + err = VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, hash[:], sig) + if err != nil { + t.Errorf("VerifyPKCS1v15: %v", err) + } + sig[1] ^= 0x80 + err = VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, hash[:], sig) + if err == nil { + t.Errorf("VerifyPKCS1v15 success for tampered signature") + } + sig[1] ^= 0x80 + hash[1] ^= 0x80 + err = VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, hash[:], sig) + if err == nil { + t.Errorf("VerifyPKCS1v15 success for tampered message") + } + hash[1] ^= 0x80 + } + + opts := &PSSOptions{SaltLength: PSSSaltLengthAuto} + sig, err = SignPSS(rand.Reader, priv, crypto.SHA256, hash[:], opts) + if err == ErrMessageTooLong { + t.Log("key too small for SignPSS with PSSSaltLengthAuto") + } else if err != nil { + t.Errorf("SignPSS: %v", err) + } + if err == nil { + err = VerifyPSS(&priv.PublicKey, crypto.SHA256, hash[:], sig, opts) + if err != nil { + t.Errorf("VerifyPSS: %v", err) + } + sig[1] ^= 0x80 + err = VerifyPSS(&priv.PublicKey, crypto.SHA256, hash[:], sig, opts) + if err == nil { + t.Errorf("VerifyPSS success for tampered signature") + } + sig[1] ^= 0x80 + hash[1] ^= 0x80 + err = VerifyPSS(&priv.PublicKey, crypto.SHA256, hash[:], sig, opts) + if err == nil { + t.Errorf("VerifyPSS success for tampered message") + } + hash[1] ^= 0x80 + } + + opts.SaltLength = PSSSaltLengthEqualsHash + sig, err = SignPSS(rand.Reader, priv, crypto.SHA256, hash[:], opts) + if err == ErrMessageTooLong { + t.Log("key too small for SignPSS with PSSSaltLengthEqualsHash") + } else if err != nil { + t.Errorf("SignPSS: %v", err) + } + if err == nil { + err = VerifyPSS(&priv.PublicKey, crypto.SHA256, hash[:], sig, opts) + if err != nil { + t.Errorf("VerifyPSS: %v", err) + } + sig[1] ^= 0x80 + err = VerifyPSS(&priv.PublicKey, crypto.SHA256, hash[:], sig, opts) + if err == nil { + t.Errorf("VerifyPSS success for tampered signature") + } + sig[1] ^= 0x80 + hash[1] ^= 0x80 + err = VerifyPSS(&priv.PublicKey, crypto.SHA256, hash[:], sig, opts) + if err == nil { + t.Errorf("VerifyPSS success for tampered message") + } + hash[1] ^= 0x80 + } + + // Check that an input bigger than the modulus is handled correctly, + // whether it is longer than the byte size of the modulus or not. + c := bytes.Repeat([]byte{0xff}, priv.Size()) + err = VerifyPSS(&priv.PublicKey, crypto.SHA256, hash[:], c, opts) + if err == nil { + t.Errorf("VerifyPSS accepted a large signature") + } + _, err = DecryptPKCS1v15(nil, priv, c) + if err == nil { + t.Errorf("DecryptPKCS1v15 accepted a large ciphertext") + } + c = append(c, 0xff) + err = VerifyPSS(&priv.PublicKey, crypto.SHA256, hash[:], c, opts) + if err == nil { + t.Errorf("VerifyPSS accepted a long signature") + } + _, err = DecryptPKCS1v15(nil, priv, c) + if err == nil { + t.Errorf("DecryptPKCS1v15 accepted a long ciphertext") + } +} + +func testingKey(s string) string { return strings.ReplaceAll(s, "TESTING KEY", "PRIVATE KEY") } + +func parseKey(s string) *PrivateKey { + p, _ := pem.Decode([]byte(s)) + k, err := x509.ParsePKCS1PrivateKey(p.Bytes) + if err != nil { + panic(err) + } + return k +} + +var test2048Key = parseKey(testingKey(`-----BEGIN RSA TESTING KEY----- +MIIEnwIBAAKCAQBxY8hCshkKiXCUKydkrtQtQSRke28w4JotocDiVqou4k55DEDJ +akvWbXXDcakV4HA8R2tOGgbxvTjFo8EK470w9O9ipapPUSrRRaBsSOlkaaIs6OYh +4FLwZpqMNBVVEtguVUR/C34Y2pS9kRrHs6q+cGhDZolkWT7nGy5eSEvPDHg0EBq1 +1hu6HmPmI3r0BInONqJg2rcK3U++wk1lnbD3ysCZsKOqRUms3n/IWKeTqXXmz2XK +J2t0NSXwiDmA9q0Gm+w0bXh3lzhtUP4MlzS+lnx9hK5bjzSbCUB5RXwMDG/uNMQq +C4MmA4BPceSfMyAIFjdRLGy/K7gbb2viOYRtAgEDAoIBAEuX2tchZgcGSw1yGkMf +OB4rbZhSSiCVvB5r1ew5xsnsNFCy1ducMo7zo9ehG2Pq9X2E8jQRWfZ+JdkX1gdC +fiCjSkHDxt+LceDZFZ2F8O2bwXNF7sFAN0rvEbLNY44MkB7jgv9c/rs8YykLZy/N +HH71mteZsO2Q1JoSHumFh99cwWHFhLxYh64qFeeH6Gqx6AM2YVBWHgs7OuKOvc8y +zUbf8xftPht1kMwwDR1XySiEYtBtn74JflK3DcT8oxOuCZBuX6sMJHKbVP41zDj+ +FJZBmpAvNfCEYJUr1Hg+DpMLqLUg+D6v5vpliburbk9LxcKFZyyZ9QVe7GoqMLBu +eGsCgYEAummUj4MMKWJC2mv5rj/dt2pj2/B2HtP2RLypai4et1/Ru9nNk8cjMLzC +qXz6/RLuJ7/eD7asFS3y7EqxKxEmW0G8tTHjnzR/3wnpVipuWnwCDGU032HJVd13 +LMe51GH97qLzuDZjMCz+VlbCNdSslMgWWK0XmRnN7Yqxvh6ao2kCgYEAm7fTRBhF +JtKcaJ7d8BQb9l8BNHfjayYOMq5CxoCyxa2pGBv/Mrnxv73Twp9Z/MP0ue5M5nZt +GMovpP5cGdJLQ2w5p4H3opcuWeYW9Yyru2EyCEAI/hD/Td3QVP0ukc19BDuPl5Wg +eIFs218uiVOU4pw3w+Et5B1PZ/F+ZLr5LGUCgYB8RmMKV11w7CyRnVEe1T56Ru09 +Svlp4qQt0xucHr8k6ovSkTO32hd10yxw/fyot0lv1T61JHK4yUydhyDHYMQ81n3O +IUJqIv/qBpuOxvQ8UqwIQ3iU69uOk6TIhSaNlqlJwffQJEIgHf7kOdbOjchjMA7l +yLpmETPzscvUFGcXmwKBgGfP4i1lg283EvBp6Uq4EqQ/ViL6l5zECXce1y8Ady5z +xhASqiHRS9UpN9cU5qiCoyae3e75nhCGym3+6BE23Nede8UBT8G6HuaZZKOzHSeW +IVrVW1QLVN6T4DioybaI/gLSX7pjwFBWSJI/dFuNDexoJS1AyUK+NO/2VEMnUMhD +AoGAOsdn3Prnh/mjC95vraHCLap0bRBSexMdx77ImHgtFUUcSaT8DJHs+NZw1RdM +SZA0J+zVQ8q7B11jIgz5hMz+chedwoRjTL7a8VRTKHFmmBH0zlEuV7L79w6HkRCQ +VRg10GUN6heGLv0aOHbPdobcuVDH4sgOqpT1QnOuce34sQs= +-----END RSA TESTING KEY-----`)) + +var test3072Key = parseKey(testingKey(`-----BEGIN RSA TESTING KEY----- +MIIG5AIBAAKCAYEAuvg7HHdVlr2kKZzRw9xs/uZqR6JK21izBdg8D52YPqEdMIhG +BSuOrejT6HiDaJcyCkeNxj7E2dKWacIV4UytlPvDnSL9dQduytl31YQ01J5i20r3 +Kp1etZDEDltly1eVKcbdQTsr26oSQCojYYiYOj+q8w/rzH3WSEuMs04TMwxCR0CC +nStVsNWw5zL45n26mxDgDdPK/i3OJTinTvPUDysB/V0c8tRaQ8U6YesmgSYGIMe0 +bx5l9k1RJbISGIipmS1IVdNAHSnxqJTUG+9k8SHzp5bvqPeiuVLMZeEdqPHwkNHW +37LNO28nN+B0xhc4wvEFvggrMf58oO3oy16AzBsWDKSOQnsagc4gQtrJ4N4WOibT +/LJB76RLoNyJ+Ov7Ue8ngqR3r3EM8I9AAkj2+3fo+DxcLuE9qOVnrHYFRqq+EYQe +lKSg3Z0EHb7XF35xXeAFbpEXSVuidBRm+emgLkZ2n313hz6jUg3FdE3vLMYHvxly +ROzgsz0cNOAH3jnXAgMBAAECggGBAILJqe/buk9cET3aqRGtW8FjRO0fJeYSQgjQ +nhL+VsVYxqZwbSqosYIN4E46HxJG0YZHT3Fh7ynAGd+ZGN0lWjdhdhCxrUL0FBhp +z13YwWwJ73UfF48DzoCL59lzLd30Qi+bIKLE1YUvjty7nUxY1MPKTbcBaBz/2alw +z9eNwfhvlt1ozvVKnwK4OKtCCMKTKLnYMCL8CH+NYyq+Wqrr/Wcu2pF1VQ64ZPwL +Ny/P4nttMdQ0Xo9sYD7PDvije+0VivsoT8ZatLt06fCwxEIue2uucIQjXCgO8Igm +pZwBEWDfy+NHtTKrFpyKf357S8veDwdU14GjviY8JFH8Bg8PBn3i38635m0o7xMG +pRlQi5x1zbHy4riOEjyjCIRVCKwKT5HEYNK5Uu3aQnlOV7CzxBLNp5lyioAIGOBC +RKJabN5vbUqJjxaQ39tA29DtfA3+r30aMO+QzOl5hrjJV7A7ueV3dbjp+fDV0LPq +QrJ68IvHPi3hfqVlP1UM2s4T69kcYQKBwQDoj+rZVb3Aq0JZ8LraR3nA1yFw4NfA +SZ/Ne36rIySiy5z+qY9p6WRNLGLrusSIfmbmvStswAliIdh1cZTAUsIF5+kQvBQg +VlxJW/nY5hTktIDOZPDaI77jid1iZLID3VXEm6dXY/Hv7DiUORudXAHoy6HZm2Jt +kSkIplSeSfASqidj9Bv7V27ttCcMLu0ImdX4JyWoXkVuzBuxKAgiemtLS5IPN8tw +m/o2lMaP8/sCMpXrlo2VS3TMsfJyRI/JGoMCgcEAzdAH1TKNeQ3ghzRdlw5NAs31 +VbcYzjz8HRkNhOsQCs++1ib7H2MZ3HPLpAa3mBJ+VfXO479G23yI7f2zpiUzRuVY +cTMHw5Ln7FXfBro5eu/ruyNzKiWPElP8VK814HI5u5XqUU05BsQbe6AjSGHoU6P6 +PfSDzaw8hGW78GcZu4/EkZp/0TXW+1HUGgU+ObgmG+PnyIMHIt99i7qrOVbNmG9n +uNwGwmfFzNqAtVLbLcVyBV5TR+Ze3ZAwjnVaH5MdAoHBAOg5ncd8KMjVuqHZEpyY +tulraQcwXgCzBBHJ+YimxRSSwahCZOTbm768TeMaUtoBbnuF9nDXqgcFyQItct5B +RWFkXITLakWINwtB/tEpnz9pRx3SCfeprhnENv7jkibtw5FZ5NYNBTAQ78aC6CJQ +F9AAVxPWZ4kFZLYwcVrGdiYNJtxWjAKFIk3WkQ9HZIYsJ09ut9nSmP60bgqO8OCM +4csEIUt06X7/IfGSylxAwytEnBPt+F9WQ8GLB5A3CmVERQKBwGmBR0Knk5aG4p7s +3T1ee2QAqM+z+Odgo+1WtnN4/NROAwpNGVbRuqQkSDRhrSQr9s+iHtjpaS2C/b7i +24FEeLDTSS9edZBwcqvYqWgNdwHqk/FvDs6ASoOewi+3UespIydihqf+6kjppx0M +zomAh1S5LsMr4ZVBwhQtAtcOQ0a/QIlTpkpdS0OygwSDw45bNE3/2wYTBUl/QCCt +JLFUKjkGgylkwaJPCDsnl+tb+jfQi87st8yX7/GsxPeCeRzOkQKBwGPcu2OgZfsl +dMHz0LwKOEattrkDujpIoNxyTrBN4fX0RdhTgfRrqsEkrH/4XG5VTtc7K7sBgx7f +IwP1uUAx5v16QDA1Z+oFBXwmI7atdKRM34kl1Q0i60z83ahgA/9bAsSpcA23LtM4 +u2PRX3YNXb9kUcSbod2tVfXyiu7wl6NlsYw5PeF8A8m7QicaeXR6t8NB02XqQ4k+ +BoyV2DVuoxSZKOMti0piQIIacSZWEbgyslwNxW99JRVfA2xKJGjUqA== +-----END RSA TESTING KEY-----`)) + +var test4096Key = parseKey(testingKey(`-----BEGIN RSA TESTING KEY----- +MIIJKQIBAAKCAgEAwTmi+2MLTSm6GbsKksOHCMdIRsPwLlPtJQiMEjnKq4YEPSaC +HXWQTza0KL/PySjhgw3Go5pC7epXlA9o1I+rbx4J3AwxC+xUUJqs3U0AETtzC1JD +r3+/aP5KJzXp7IQXe1twEyHbQDCy3XUFhB0tZpIuAx82VSzMv4c6h6KPaES24ljd +OxJJLPTYVECG2NbYBeKZPxyGNIkHn6/6rJDxnlICvLVBMrPaxsvN04ck55SRIglw +MWmxpPTRFkMFERY7b2C33BuVICB8tXccvNwgtrNOmaWd6yjESZOYMyJQLi0QHMan +ObuZw2PeUR+9gAE3R8/ji/i1VLYeVfC6TKzhziq5NKeBXzjSGOS7XyjvxrzypUco +HiAUyVGKtouRFyOe4gr4xxZpljIEoN4TsBWSbM8GH6n5uFmEKvFnBR5KDRCwFfvI +JudWm/oWptzQUyqRvzNtv4OgU9YVnx/fY3hyaD5ZnVZjUZzAjo3o8WSwmuTbZbJ1 +gX3pDRPw3g0naBm6rMEWPV4YR93be/mBERxWua6IrPPptRh9WYAJP4bkwk9V0F8U +Ydk1URLeETAyFScNgukcKzpNw+OeCze2Blvrenf9goHefIpMzv4/ulEr7/v80ESq +qd9CAwpz7cRe5+g18v5rFTEHESTCCq+rOFI5L59UX4VvE7CGOzcPLLZjlcMCAwEA +AQKCAgB3/09UR0IxfYRxjlMWqg8mSHx+VhjG7KANq60xdGqE8wmW4F9V5DjmuNZR +qC1mg9jpBpkh6R8/mZUiAh/cQgz5SPJekcOz3+TM2gIYvUUZbo4XrdMTHobEsYdj +qnvHwpDCrxp/BzueNaAfIBl43pXfaVDh53RamSPeniCfMzlUS7g4AXACy2xeWwAt +8pTL/UDTBtKc+x3talwts6A9oxYqeEvy3a3Lyx5G7zK39unYV896D9p5FWaZRuDC +roRrBB+NH8ePDiIifYp1N6/FKf+29swNZ2kXLY4ZE2wl9V1OD/Y9qLEZjYQEb/UU +9F0/LYIjOtvZhW83WJKmVIWeMI9Z4UooOztJJK0XOqSDsXVaEMgrF9D4E8BnKdWp +ddM5E0nNXpLEV/SsoUyAMjArjImf8HjmJA45Px+BBGxdIv5PCyvUUD2R/6WbHOdh +glH49I4SpVKGICV+qhLdSZkjWaItECwbsw5CeXrcOPjVCrNGOOKI8FdQN7S9JRiN +Th6pTL1ezDUOx2Sq1M/h++ucd7akzsxm6my3leNYHxxyX7/PnQgUDyoXwQ1azAtB +8PmMe7JAxuMjwFJJXn1Sgoq0ml0RkRkrj18+UMiz32qX8OtN+x44LkC7TnMNXqiA +ohmzYy4WJRc3LyyTMWGrH00Zckc8oBvjf/rWy5X1nWz+DcuQIQKCAQEA6x92d8A9 +WR4qeHRY6zfHaaza8Z9vFUUUwebPxDy82Q6znu6nXNB/Q+OuhGohqcODUC8dj2qv +7AyKdukzZzPTNSWNoSnr3c3nGpOzXxFntGOMFB83nmeoYGJEo3RertQO8QG2Dkis +Ix9uKU6u2m5ijnH5cqHs2OcRbl2b+6mkRvPY2YxI0EqSXnMa1jpjeCKpZDW89iLU +rm7x6vqyffqVaTt4PHj47p5QIUj8cRkVtAvUuIzM/R2g/epiytTo4iRM28rVLRnK +28BtTtXZBT6Xy4UWX0fLSOUm2Hr1jiUJIc+Adb2h+zh69MBtBG6JRBiK7zwx7HxE +c6sFzNvfMei99QKCAQEA0mHNpqmHuHb+wNdAEiKz4hCnYyuLDy+lZp/uQRkiODqV +eUxAHRK1OP8yt45ZBxyaLcuRvAgK/ETg/QlYWUuAXvUWVGq9Ycv3WrpjUL0DHvuo +rBfWTSiTNWH9sbDoCapiJMDe28ELBXVp1dCKuei/EReRHYg/vJn+GdPaZL60rlQg +qCMou3jOXw94/Y05QcJQNkoLmVEEEwkbwrfXWvjShRbKNsv5kJydgPRfnsu5JSue +Ydkx/Io4+4xz6vjfDDjgFFfvOJJjouFkYGWIDuT5JViIVBVK1F3XrkzOYUjoBzo7 +xDJkZrgNyNIpWXdzwfb8WTCJAOTHMk9DSB4lkk651wKCAQBKMTtovjidjm9IYy5L +yuYZ6nmMFQswYwQRy4t0GNZeh80WMaiOGRyPh6DiF7tXnmIpQzTItJmemrZ2n0+h +GTFka90tJdVPwFFUiZboQM3Alkj1cIRUb9Ep2Nhf27Ck6jVsx2VzTGtFCf3w+ush +8gMXf89+5KmgKAnQEanO19EGspuSyjmPwHg/ZYLqZrJMjmN1Q5/E62jBQjEEPOdl +6VSMSD/AlUu3wCz409cUuR2oGrOdKJDmrhrHBNb3ugdilKHMGUz7VlA015umbMR2 +azHq/qv4lOcIsYZ4eRRTLkybZqbagGREqaXi5XWBGIAoBLaSlyQJw4y2ExlZc2gS +j6ahAoIBAQCwzdsL1mumHfMI050X4Kw2L3LNCBoMwCkL7xpHAT1d7fYSg39aL4+3 +f9j6pBmzvVjhZbRrRoMc8TH31XO3T5lptCV4+l+AIe8WA5BVmRNXZX2ia0IBhDj6 +4whW3eqTvOpQIvrnyfteMgeo1mLPzIdOcPTW0dtmwC/pOr7Obergmvj69NlVfDhL +cXBn/diBqDDK/z1yMsDu0nfPE7tby8L4cGeu14s7+jLv3e/CP0mwsFChwOueZfdv +h+EfNtoUpnPDBQeZDoXHrA40aP+ILOwpc5bWuzIw+VC6PfgvkBrXgBwcTZFNNh73 +h4+Sja3t84it1/k7lAjIAg70O8mthJXvAoIBAQDUUqWxqQN76gY2CPuXrwIvWvfP +Z9U2Lv5ZTmY75L20CWRY0os0hAF68vCwxLpfeUMUTSokwa5L/l1gHwA2Zqm1977W +9wV2Iiyqmkz9u3fu5YNOlezSoffOvAf/GUvSQ9HJ/VGqFdy2bC6NE81HRxojxeeY +7ZmNlJrcsupyWmpUTpAd4cRVaCjcZQRoj+uIYCbgtV6/RD5VXHcPTd9wR7pjZPv7 +239qVdVU4ahkSZP6ikeN/wOEegWS0i/cKSgYmLBpWFGze3EKvHdEzurqPNCr5zo2 +jd7HGMtCpvqFx/7wUl09ac/kHeY+Ob2KduWinSPm5+jI6dPohnGx/wBEVCWh +-----END RSA TESTING KEY-----`)) + +func BenchmarkDecryptPKCS1v15(b *testing.B) { + b.Run("2048", func(b *testing.B) { benchmarkDecryptPKCS1v15(b, test2048Key) }) + b.Run("3072", func(b *testing.B) { benchmarkDecryptPKCS1v15(b, test3072Key) }) + b.Run("4096", func(b *testing.B) { benchmarkDecryptPKCS1v15(b, test4096Key) }) +} + +func benchmarkDecryptPKCS1v15(b *testing.B, k *PrivateKey) { + r := bufio.NewReaderSize(rand.Reader, 1<<15) + + m := []byte("Hello Gophers") + c, err := EncryptPKCS1v15(r, &k.PublicKey, m) + if err != nil { + b.Fatal(err) + } + + b.ResetTimer() + var sink byte + for i := 0; i < b.N; i++ { + p, err := DecryptPKCS1v15(r, k, c) + if err != nil { + b.Fatal(err) + } + if !bytes.Equal(p, m) { + b.Fatalf("unexpected output: %q", p) + } + sink ^= p[0] + } +} + +func BenchmarkEncryptPKCS1v15(b *testing.B) { + b.Run("2048", func(b *testing.B) { + r := bufio.NewReaderSize(rand.Reader, 1<<15) + m := []byte("Hello Gophers") + + var sink byte + for i := 0; i < b.N; i++ { + c, err := EncryptPKCS1v15(r, &test2048Key.PublicKey, m) + if err != nil { + b.Fatal(err) + } + sink ^= c[0] + } + }) +} + +func BenchmarkDecryptOAEP(b *testing.B) { + b.Run("2048", func(b *testing.B) { + r := bufio.NewReaderSize(rand.Reader, 1<<15) + + m := []byte("Hello Gophers") + c, err := EncryptOAEP(sha256.New(), r, &test2048Key.PublicKey, m, nil) + if err != nil { + b.Fatal(err) + } + + b.ResetTimer() + var sink byte + for i := 0; i < b.N; i++ { + p, err := DecryptOAEP(sha256.New(), r, test2048Key, c, nil) + if err != nil { + b.Fatal(err) + } + if !bytes.Equal(p, m) { + b.Fatalf("unexpected output: %q", p) + } + sink ^= p[0] + } + }) +} + +func BenchmarkEncryptOAEP(b *testing.B) { + b.Run("2048", func(b *testing.B) { + r := bufio.NewReaderSize(rand.Reader, 1<<15) + m := []byte("Hello Gophers") + + var sink byte + for i := 0; i < b.N; i++ { + c, err := EncryptOAEP(sha256.New(), r, &test2048Key.PublicKey, m, nil) + if err != nil { + b.Fatal(err) + } + sink ^= c[0] + } + }) +} + +func BenchmarkSignPKCS1v15(b *testing.B) { + b.Run("2048", func(b *testing.B) { + hashed := sha256.Sum256([]byte("testing")) + + var sink byte + b.ResetTimer() + for i := 0; i < b.N; i++ { + s, err := SignPKCS1v15(rand.Reader, test2048Key, crypto.SHA256, hashed[:]) + if err != nil { + b.Fatal(err) + } + sink ^= s[0] + } + }) +} + +func BenchmarkVerifyPKCS1v15(b *testing.B) { + b.Run("2048", func(b *testing.B) { + hashed := sha256.Sum256([]byte("testing")) + s, err := SignPKCS1v15(rand.Reader, test2048Key, crypto.SHA256, hashed[:]) + if err != nil { + b.Fatal(err) + } + + b.ResetTimer() + for i := 0; i < b.N; i++ { + err := VerifyPKCS1v15(&test2048Key.PublicKey, crypto.SHA256, hashed[:], s) + if err != nil { + b.Fatal(err) + } + } + }) +} + +func BenchmarkSignPSS(b *testing.B) { + b.Run("2048", func(b *testing.B) { + hashed := sha256.Sum256([]byte("testing")) + + var sink byte + b.ResetTimer() + for i := 0; i < b.N; i++ { + s, err := SignPSS(rand.Reader, test2048Key, crypto.SHA256, hashed[:], nil) + if err != nil { + b.Fatal(err) + } + sink ^= s[0] + } + }) +} + +func BenchmarkVerifyPSS(b *testing.B) { + b.Run("2048", func(b *testing.B) { + hashed := sha256.Sum256([]byte("testing")) + s, err := SignPSS(rand.Reader, test2048Key, crypto.SHA256, hashed[:], nil) + if err != nil { + b.Fatal(err) + } + + b.ResetTimer() + for i := 0; i < b.N; i++ { + err := VerifyPSS(&test2048Key.PublicKey, crypto.SHA256, hashed[:], s, nil) + if err != nil { + b.Fatal(err) + } + } + }) +} + +type testEncryptOAEPMessage struct { + in []byte + seed []byte + out []byte +} + +type testEncryptOAEPStruct struct { + modulus string + e int + d string + msgs []testEncryptOAEPMessage +} + +func TestEncryptOAEP(t *testing.T) { + sha1 := sha1.New() + n := new(big.Int) + for i, test := range testEncryptOAEPData { + n.SetString(test.modulus, 16) + public := PublicKey{N: n, E: test.e} + + for j, message := range test.msgs { + randomSource := bytes.NewReader(message.seed) + out, err := EncryptOAEP(sha1, randomSource, &public, message.in, nil) + if err != nil { + t.Errorf("#%d,%d error: %s", i, j, err) + } + if !bytes.Equal(out, message.out) { + t.Errorf("#%d,%d bad result: %x (want %x)", i, j, out, message.out) + } + } + } +} + +func TestDecryptOAEP(t *testing.T) { + random := rand.Reader + + sha1 := sha1.New() + n := new(big.Int) + d := new(big.Int) + for i, test := range testEncryptOAEPData { + n.SetString(test.modulus, 16) + d.SetString(test.d, 16) + private := new(PrivateKey) + private.PublicKey = PublicKey{N: n, E: test.e} + private.D = d + + for j, message := range test.msgs { + out, err := DecryptOAEP(sha1, nil, private, message.out, nil) + if err != nil { + t.Errorf("#%d,%d error: %s", i, j, err) + } else if !bytes.Equal(out, message.in) { + t.Errorf("#%d,%d bad result: %#v (want %#v)", i, j, out, message.in) + } + + // Decrypt with blinding. + out, err = DecryptOAEP(sha1, random, private, message.out, nil) + if err != nil { + t.Errorf("#%d,%d (blind) error: %s", i, j, err) + } else if !bytes.Equal(out, message.in) { + t.Errorf("#%d,%d (blind) bad result: %#v (want %#v)", i, j, out, message.in) + } + } + if testing.Short() { + break + } + } +} + +func Test2DecryptOAEP(t *testing.T) { + random := rand.Reader + + msg := []byte{0xed, 0x36, 0x90, 0x8d, 0xbe, 0xfc, 0x35, 0x40, 0x70, 0x4f, 0xf5, 0x9d, 0x6e, 0xc2, 0xeb, 0xf5, 0x27, 0xae, 0x65, 0xb0, 0x59, 0x29, 0x45, 0x25, 0x8c, 0xc1, 0x91, 0x22} + in := []byte{0x72, 0x26, 0x84, 0xc9, 0xcf, 0xd6, 0xa8, 0x96, 0x04, 0x3e, 0x34, 0x07, 0x2c, 0x4f, 0xe6, 0x52, 0xbe, 0x46, 0x3c, 0xcf, 0x79, 0x21, 0x09, 0x64, 0xe7, 0x33, 0x66, 0x9b, 0xf8, 0x14, 0x22, 0x43, 0xfe, 0x8e, 0x52, 0x8b, 0xe0, 0x5f, 0x98, 0xef, 0x54, 0xac, 0x6b, 0xc6, 0x26, 0xac, 0x5b, 0x1b, 0x4b, 0x7d, 0x2e, 0xd7, 0x69, 0x28, 0x5a, 0x2f, 0x4a, 0x95, 0x89, 0x6c, 0xc7, 0x53, 0x95, 0xc7, 0xd2, 0x89, 0x04, 0x6f, 0x94, 0x74, 0x9b, 0x09, 0x0d, 0xf4, 0x61, 0x2e, 0xab, 0x48, 0x57, 0x4a, 0xbf, 0x95, 0xcb, 0xff, 0x15, 0xe2, 0xa0, 0x66, 0x58, 0xf7, 0x46, 0xf8, 0xc7, 0x0b, 0xb5, 0x1e, 0xa7, 0xba, 0x36, 0xce, 0xdd, 0x36, 0x41, 0x98, 0x6e, 0x10, 0xf9, 0x3b, 0x70, 0xbb, 0xa1, 0xda, 0x00, 0x40, 0xd5, 0xa5, 0x3f, 0x87, 0x64, 0x32, 0x7c, 0xbc, 0x50, 0x52, 0x0e, 0x4f, 0x21, 0xbd} + + n := new(big.Int) + d := new(big.Int) + n.SetString(testEncryptOAEPData[0].modulus, 16) + d.SetString(testEncryptOAEPData[0].d, 16) + priv := new(PrivateKey) + priv.PublicKey = PublicKey{N: n, E: testEncryptOAEPData[0].e} + priv.D = d + sha1 := crypto.SHA1 + sha256 := crypto.SHA256 + + out, err := priv.Decrypt(random, in, &OAEPOptions{MGFHash: sha1, Hash: sha256}) + + if err != nil { + t.Errorf("error: %s", err) + } else if !bytes.Equal(out, msg) { + t.Errorf("bad result %#v (want %#v)", out, msg) + } +} + +func TestEncryptDecryptOAEP(t *testing.T) { + sha256 := sha256.New() + n := new(big.Int) + d := new(big.Int) + for i, test := range testEncryptOAEPData { + n.SetString(test.modulus, 16) + d.SetString(test.d, 16) + priv := new(PrivateKey) + priv.PublicKey = PublicKey{N: n, E: test.e} + priv.D = d + + for j, message := range test.msgs { + label := []byte(fmt.Sprintf("hi#%d", j)) + enc, err := EncryptOAEP(sha256, rand.Reader, &priv.PublicKey, message.in, label) + if err != nil { + t.Errorf("#%d,%d: EncryptOAEP: %v", i, j, err) + continue + } + dec, err := DecryptOAEP(sha256, rand.Reader, priv, enc, label) + if err != nil { + t.Errorf("#%d,%d: DecryptOAEP: %v", i, j, err) + continue + } + if !bytes.Equal(dec, message.in) { + t.Errorf("#%d,%d: round trip %q -> %q", i, j, message.in, dec) + } + } + } +} + +// testEncryptOAEPData contains a subset of the vectors from RSA's "Test vectors for RSA-OAEP". +var testEncryptOAEPData = []testEncryptOAEPStruct{ + // Key 1 + {"a8b3b284af8eb50b387034a860f146c4919f318763cd6c5598c8ae4811a1e0abc4c7e0b082d693a5e7fced675cf4668512772c0cbc64a742c6c630f533c8cc72f62ae833c40bf25842e984bb78bdbf97c0107d55bdb662f5c4e0fab9845cb5148ef7392dd3aaff93ae1e6b667bb3d4247616d4f5ba10d4cfd226de88d39f16fb", + 65537, + "53339cfdb79fc8466a655c7316aca85c55fd8f6dd898fdaf119517ef4f52e8fd8e258df93fee180fa0e4ab29693cd83b152a553d4ac4d1812b8b9fa5af0e7f55fe7304df41570926f3311f15c4d65a732c483116ee3d3d2d0af3549ad9bf7cbfb78ad884f84d5beb04724dc7369b31def37d0cf539e9cfcdd3de653729ead5d1", + []testEncryptOAEPMessage{ + // Example 1.1 + { + []byte{0x66, 0x28, 0x19, 0x4e, 0x12, 0x07, 0x3d, 0xb0, + 0x3b, 0xa9, 0x4c, 0xda, 0x9e, 0xf9, 0x53, 0x23, 0x97, + 0xd5, 0x0d, 0xba, 0x79, 0xb9, 0x87, 0x00, 0x4a, 0xfe, + 0xfe, 0x34, + }, + []byte{0x18, 0xb7, 0x76, 0xea, 0x21, 0x06, 0x9d, 0x69, + 0x77, 0x6a, 0x33, 0xe9, 0x6b, 0xad, 0x48, 0xe1, 0xdd, + 0xa0, 0xa5, 0xef, + }, + []byte{0x35, 0x4f, 0xe6, 0x7b, 0x4a, 0x12, 0x6d, 0x5d, + 0x35, 0xfe, 0x36, 0xc7, 0x77, 0x79, 0x1a, 0x3f, 0x7b, + 0xa1, 0x3d, 0xef, 0x48, 0x4e, 0x2d, 0x39, 0x08, 0xaf, + 0xf7, 0x22, 0xfa, 0xd4, 0x68, 0xfb, 0x21, 0x69, 0x6d, + 0xe9, 0x5d, 0x0b, 0xe9, 0x11, 0xc2, 0xd3, 0x17, 0x4f, + 0x8a, 0xfc, 0xc2, 0x01, 0x03, 0x5f, 0x7b, 0x6d, 0x8e, + 0x69, 0x40, 0x2d, 0xe5, 0x45, 0x16, 0x18, 0xc2, 0x1a, + 0x53, 0x5f, 0xa9, 0xd7, 0xbf, 0xc5, 0xb8, 0xdd, 0x9f, + 0xc2, 0x43, 0xf8, 0xcf, 0x92, 0x7d, 0xb3, 0x13, 0x22, + 0xd6, 0xe8, 0x81, 0xea, 0xa9, 0x1a, 0x99, 0x61, 0x70, + 0xe6, 0x57, 0xa0, 0x5a, 0x26, 0x64, 0x26, 0xd9, 0x8c, + 0x88, 0x00, 0x3f, 0x84, 0x77, 0xc1, 0x22, 0x70, 0x94, + 0xa0, 0xd9, 0xfa, 0x1e, 0x8c, 0x40, 0x24, 0x30, 0x9c, + 0xe1, 0xec, 0xcc, 0xb5, 0x21, 0x00, 0x35, 0xd4, 0x7a, + 0xc7, 0x2e, 0x8a, + }, + }, + // Example 1.2 + { + []byte{0x75, 0x0c, 0x40, 0x47, 0xf5, 0x47, 0xe8, 0xe4, + 0x14, 0x11, 0x85, 0x65, 0x23, 0x29, 0x8a, 0xc9, 0xba, + 0xe2, 0x45, 0xef, 0xaf, 0x13, 0x97, 0xfb, 0xe5, 0x6f, + 0x9d, 0xd5, + }, + []byte{0x0c, 0xc7, 0x42, 0xce, 0x4a, 0x9b, 0x7f, 0x32, + 0xf9, 0x51, 0xbc, 0xb2, 0x51, 0xef, 0xd9, 0x25, 0xfe, + 0x4f, 0xe3, 0x5f, + }, + []byte{0x64, 0x0d, 0xb1, 0xac, 0xc5, 0x8e, 0x05, 0x68, + 0xfe, 0x54, 0x07, 0xe5, 0xf9, 0xb7, 0x01, 0xdf, 0xf8, + 0xc3, 0xc9, 0x1e, 0x71, 0x6c, 0x53, 0x6f, 0xc7, 0xfc, + 0xec, 0x6c, 0xb5, 0xb7, 0x1c, 0x11, 0x65, 0x98, 0x8d, + 0x4a, 0x27, 0x9e, 0x15, 0x77, 0xd7, 0x30, 0xfc, 0x7a, + 0x29, 0x93, 0x2e, 0x3f, 0x00, 0xc8, 0x15, 0x15, 0x23, + 0x6d, 0x8d, 0x8e, 0x31, 0x01, 0x7a, 0x7a, 0x09, 0xdf, + 0x43, 0x52, 0xd9, 0x04, 0xcd, 0xeb, 0x79, 0xaa, 0x58, + 0x3a, 0xdc, 0xc3, 0x1e, 0xa6, 0x98, 0xa4, 0xc0, 0x52, + 0x83, 0xda, 0xba, 0x90, 0x89, 0xbe, 0x54, 0x91, 0xf6, + 0x7c, 0x1a, 0x4e, 0xe4, 0x8d, 0xc7, 0x4b, 0xbb, 0xe6, + 0x64, 0x3a, 0xef, 0x84, 0x66, 0x79, 0xb4, 0xcb, 0x39, + 0x5a, 0x35, 0x2d, 0x5e, 0xd1, 0x15, 0x91, 0x2d, 0xf6, + 0x96, 0xff, 0xe0, 0x70, 0x29, 0x32, 0x94, 0x6d, 0x71, + 0x49, 0x2b, 0x44, + }, + }, + // Example 1.3 + { + []byte{0xd9, 0x4a, 0xe0, 0x83, 0x2e, 0x64, 0x45, 0xce, + 0x42, 0x33, 0x1c, 0xb0, 0x6d, 0x53, 0x1a, 0x82, 0xb1, + 0xdb, 0x4b, 0xaa, 0xd3, 0x0f, 0x74, 0x6d, 0xc9, 0x16, + 0xdf, 0x24, 0xd4, 0xe3, 0xc2, 0x45, 0x1f, 0xff, 0x59, + 0xa6, 0x42, 0x3e, 0xb0, 0xe1, 0xd0, 0x2d, 0x4f, 0xe6, + 0x46, 0xcf, 0x69, 0x9d, 0xfd, 0x81, 0x8c, 0x6e, 0x97, + 0xb0, 0x51, + }, + []byte{0x25, 0x14, 0xdf, 0x46, 0x95, 0x75, 0x5a, 0x67, + 0xb2, 0x88, 0xea, 0xf4, 0x90, 0x5c, 0x36, 0xee, 0xc6, + 0x6f, 0xd2, 0xfd, + }, + []byte{0x42, 0x37, 0x36, 0xed, 0x03, 0x5f, 0x60, 0x26, + 0xaf, 0x27, 0x6c, 0x35, 0xc0, 0xb3, 0x74, 0x1b, 0x36, + 0x5e, 0x5f, 0x76, 0xca, 0x09, 0x1b, 0x4e, 0x8c, 0x29, + 0xe2, 0xf0, 0xbe, 0xfe, 0xe6, 0x03, 0x59, 0x5a, 0xa8, + 0x32, 0x2d, 0x60, 0x2d, 0x2e, 0x62, 0x5e, 0x95, 0xeb, + 0x81, 0xb2, 0xf1, 0xc9, 0x72, 0x4e, 0x82, 0x2e, 0xca, + 0x76, 0xdb, 0x86, 0x18, 0xcf, 0x09, 0xc5, 0x34, 0x35, + 0x03, 0xa4, 0x36, 0x08, 0x35, 0xb5, 0x90, 0x3b, 0xc6, + 0x37, 0xe3, 0x87, 0x9f, 0xb0, 0x5e, 0x0e, 0xf3, 0x26, + 0x85, 0xd5, 0xae, 0xc5, 0x06, 0x7c, 0xd7, 0xcc, 0x96, + 0xfe, 0x4b, 0x26, 0x70, 0xb6, 0xea, 0xc3, 0x06, 0x6b, + 0x1f, 0xcf, 0x56, 0x86, 0xb6, 0x85, 0x89, 0xaa, 0xfb, + 0x7d, 0x62, 0x9b, 0x02, 0xd8, 0xf8, 0x62, 0x5c, 0xa3, + 0x83, 0x36, 0x24, 0xd4, 0x80, 0x0f, 0xb0, 0x81, 0xb1, + 0xcf, 0x94, 0xeb, + }, + }, + }, + }, + // Key 10 + {"ae45ed5601cec6b8cc05f803935c674ddbe0d75c4c09fd7951fc6b0caec313a8df39970c518bffba5ed68f3f0d7f22a4029d413f1ae07e4ebe9e4177ce23e7f5404b569e4ee1bdcf3c1fb03ef113802d4f855eb9b5134b5a7c8085adcae6fa2fa1417ec3763be171b0c62b760ede23c12ad92b980884c641f5a8fac26bdad4a03381a22fe1b754885094c82506d4019a535a286afeb271bb9ba592de18dcf600c2aeeae56e02f7cf79fc14cf3bdc7cd84febbbf950ca90304b2219a7aa063aefa2c3c1980e560cd64afe779585b6107657b957857efde6010988ab7de417fc88d8f384c4e6e72c3f943e0c31c0c4a5cc36f879d8a3ac9d7d59860eaada6b83bb", + 65537, + "056b04216fe5f354ac77250a4b6b0c8525a85c59b0bd80c56450a22d5f438e596a333aa875e291dd43f48cb88b9d5fc0d499f9fcd1c397f9afc070cd9e398c8d19e61db7c7410a6b2675dfbf5d345b804d201add502d5ce2dfcb091ce9997bbebe57306f383e4d588103f036f7e85d1934d152a323e4a8db451d6f4a5b1b0f102cc150e02feee2b88dea4ad4c1baccb24d84072d14e1d24a6771f7408ee30564fb86d4393a34bcf0b788501d193303f13a2284b001f0f649eaf79328d4ac5c430ab4414920a9460ed1b7bc40ec653e876d09abc509ae45b525190116a0c26101848298509c1c3bf3a483e7274054e15e97075036e989f60932807b5257751e79", + []testEncryptOAEPMessage{ + // Example 10.1 + { + []byte{0x8b, 0xba, 0x6b, 0xf8, 0x2a, 0x6c, 0x0f, 0x86, + 0xd5, 0xf1, 0x75, 0x6e, 0x97, 0x95, 0x68, 0x70, 0xb0, + 0x89, 0x53, 0xb0, 0x6b, 0x4e, 0xb2, 0x05, 0xbc, 0x16, + 0x94, 0xee, + }, + []byte{0x47, 0xe1, 0xab, 0x71, 0x19, 0xfe, 0xe5, 0x6c, + 0x95, 0xee, 0x5e, 0xaa, 0xd8, 0x6f, 0x40, 0xd0, 0xaa, + 0x63, 0xbd, 0x33, + }, + []byte{0x53, 0xea, 0x5d, 0xc0, 0x8c, 0xd2, 0x60, 0xfb, + 0x3b, 0x85, 0x85, 0x67, 0x28, 0x7f, 0xa9, 0x15, 0x52, + 0xc3, 0x0b, 0x2f, 0xeb, 0xfb, 0xa2, 0x13, 0xf0, 0xae, + 0x87, 0x70, 0x2d, 0x06, 0x8d, 0x19, 0xba, 0xb0, 0x7f, + 0xe5, 0x74, 0x52, 0x3d, 0xfb, 0x42, 0x13, 0x9d, 0x68, + 0xc3, 0xc5, 0xaf, 0xee, 0xe0, 0xbf, 0xe4, 0xcb, 0x79, + 0x69, 0xcb, 0xf3, 0x82, 0xb8, 0x04, 0xd6, 0xe6, 0x13, + 0x96, 0x14, 0x4e, 0x2d, 0x0e, 0x60, 0x74, 0x1f, 0x89, + 0x93, 0xc3, 0x01, 0x4b, 0x58, 0xb9, 0xb1, 0x95, 0x7a, + 0x8b, 0xab, 0xcd, 0x23, 0xaf, 0x85, 0x4f, 0x4c, 0x35, + 0x6f, 0xb1, 0x66, 0x2a, 0xa7, 0x2b, 0xfc, 0xc7, 0xe5, + 0x86, 0x55, 0x9d, 0xc4, 0x28, 0x0d, 0x16, 0x0c, 0x12, + 0x67, 0x85, 0xa7, 0x23, 0xeb, 0xee, 0xbe, 0xff, 0x71, + 0xf1, 0x15, 0x94, 0x44, 0x0a, 0xae, 0xf8, 0x7d, 0x10, + 0x79, 0x3a, 0x87, 0x74, 0xa2, 0x39, 0xd4, 0xa0, 0x4c, + 0x87, 0xfe, 0x14, 0x67, 0xb9, 0xda, 0xf8, 0x52, 0x08, + 0xec, 0x6c, 0x72, 0x55, 0x79, 0x4a, 0x96, 0xcc, 0x29, + 0x14, 0x2f, 0x9a, 0x8b, 0xd4, 0x18, 0xe3, 0xc1, 0xfd, + 0x67, 0x34, 0x4b, 0x0c, 0xd0, 0x82, 0x9d, 0xf3, 0xb2, + 0xbe, 0xc6, 0x02, 0x53, 0x19, 0x62, 0x93, 0xc6, 0xb3, + 0x4d, 0x3f, 0x75, 0xd3, 0x2f, 0x21, 0x3d, 0xd4, 0x5c, + 0x62, 0x73, 0xd5, 0x05, 0xad, 0xf4, 0xcc, 0xed, 0x10, + 0x57, 0xcb, 0x75, 0x8f, 0xc2, 0x6a, 0xee, 0xfa, 0x44, + 0x12, 0x55, 0xed, 0x4e, 0x64, 0xc1, 0x99, 0xee, 0x07, + 0x5e, 0x7f, 0x16, 0x64, 0x61, 0x82, 0xfd, 0xb4, 0x64, + 0x73, 0x9b, 0x68, 0xab, 0x5d, 0xaf, 0xf0, 0xe6, 0x3e, + 0x95, 0x52, 0x01, 0x68, 0x24, 0xf0, 0x54, 0xbf, 0x4d, + 0x3c, 0x8c, 0x90, 0xa9, 0x7b, 0xb6, 0xb6, 0x55, 0x32, + 0x84, 0xeb, 0x42, 0x9f, 0xcc, + }, + }, + }, + }, +} diff --git a/src/crypto/rsa/testdata/pss-vect.txt.bz2 b/src/crypto/rsa/testdata/pss-vect.txt.bz2 Binary files differnew file mode 100644 index 0000000..ad3da1a --- /dev/null +++ b/src/crypto/rsa/testdata/pss-vect.txt.bz2 |