diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/encoding/gob/decode.go | |
parent | Initial commit. (diff) | |
download | golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/encoding/gob/decode.go')
-rw-r--r-- | src/encoding/gob/decode.go | 1308 |
1 files changed, 1308 insertions, 0 deletions
diff --git a/src/encoding/gob/decode.go b/src/encoding/gob/decode.go new file mode 100644 index 0000000..f46a391 --- /dev/null +++ b/src/encoding/gob/decode.go @@ -0,0 +1,1308 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:generate go run decgen.go -output dec_helpers.go + +package gob + +import ( + "encoding" + "errors" + "internal/saferio" + "io" + "math" + "math/bits" + "reflect" +) + +var ( + errBadUint = errors.New("gob: encoded unsigned integer out of range") + errBadType = errors.New("gob: unknown type id or corrupted data") + errRange = errors.New("gob: bad data: field numbers out of bounds") +) + +type decHelper func(state *decoderState, v reflect.Value, length int, ovfl error) bool + +// decoderState is the execution state of an instance of the decoder. A new state +// is created for nested objects. +type decoderState struct { + dec *Decoder + // The buffer is stored with an extra indirection because it may be replaced + // if we load a type during decode (when reading an interface value). + b *decBuffer + fieldnum int // the last field number read. + next *decoderState // for free list +} + +// decBuffer is an extremely simple, fast implementation of a read-only byte buffer. +// It is initialized by calling Size and then copying the data into the slice returned by Bytes(). +type decBuffer struct { + data []byte + offset int // Read offset. +} + +func (d *decBuffer) Read(p []byte) (int, error) { + n := copy(p, d.data[d.offset:]) + if n == 0 && len(p) != 0 { + return 0, io.EOF + } + d.offset += n + return n, nil +} + +func (d *decBuffer) Drop(n int) { + if n > d.Len() { + panic("drop") + } + d.offset += n +} + +func (d *decBuffer) ReadByte() (byte, error) { + if d.offset >= len(d.data) { + return 0, io.EOF + } + c := d.data[d.offset] + d.offset++ + return c, nil +} + +func (d *decBuffer) Len() int { + return len(d.data) - d.offset +} + +func (d *decBuffer) Bytes() []byte { + return d.data[d.offset:] +} + +// SetBytes sets the buffer to the bytes, discarding any existing data. +func (d *decBuffer) SetBytes(data []byte) { + d.data = data + d.offset = 0 +} + +func (d *decBuffer) Reset() { + d.data = d.data[0:0] + d.offset = 0 +} + +// We pass the bytes.Buffer separately for easier testing of the infrastructure +// without requiring a full Decoder. +func (dec *Decoder) newDecoderState(buf *decBuffer) *decoderState { + d := dec.freeList + if d == nil { + d = new(decoderState) + d.dec = dec + } else { + dec.freeList = d.next + } + d.b = buf + return d +} + +func (dec *Decoder) freeDecoderState(d *decoderState) { + d.next = dec.freeList + dec.freeList = d +} + +func overflow(name string) error { + return errors.New(`value for "` + name + `" out of range`) +} + +// decodeUintReader reads an encoded unsigned integer from an io.Reader. +// Used only by the Decoder to read the message length. +func decodeUintReader(r io.Reader, buf []byte) (x uint64, width int, err error) { + width = 1 + n, err := io.ReadFull(r, buf[0:width]) + if n == 0 { + return + } + b := buf[0] + if b <= 0x7f { + return uint64(b), width, nil + } + n = -int(int8(b)) + if n > uint64Size { + err = errBadUint + return + } + width, err = io.ReadFull(r, buf[0:n]) + if err != nil { + if err == io.EOF { + err = io.ErrUnexpectedEOF + } + return + } + // Could check that the high byte is zero but it's not worth it. + for _, b := range buf[0:width] { + x = x<<8 | uint64(b) + } + width++ // +1 for length byte + return +} + +// decodeUint reads an encoded unsigned integer from state.r. +// Does not check for overflow. +func (state *decoderState) decodeUint() (x uint64) { + b, err := state.b.ReadByte() + if err != nil { + error_(err) + } + if b <= 0x7f { + return uint64(b) + } + n := -int(int8(b)) + if n > uint64Size { + error_(errBadUint) + } + buf := state.b.Bytes() + if len(buf) < n { + errorf("invalid uint data length %d: exceeds input size %d", n, len(buf)) + } + // Don't need to check error; it's safe to loop regardless. + // Could check that the high byte is zero but it's not worth it. + for _, b := range buf[0:n] { + x = x<<8 | uint64(b) + } + state.b.Drop(n) + return x +} + +// decodeInt reads an encoded signed integer from state.r. +// Does not check for overflow. +func (state *decoderState) decodeInt() int64 { + x := state.decodeUint() + if x&1 != 0 { + return ^int64(x >> 1) + } + return int64(x >> 1) +} + +// getLength decodes the next uint and makes sure it is a possible +// size for a data item that follows, which means it must fit in a +// non-negative int and fit in the buffer. +func (state *decoderState) getLength() (int, bool) { + n := int(state.decodeUint()) + if n < 0 || state.b.Len() < n || tooBig <= n { + return 0, false + } + return n, true +} + +// decOp is the signature of a decoding operator for a given type. +type decOp func(i *decInstr, state *decoderState, v reflect.Value) + +// The 'instructions' of the decoding machine +type decInstr struct { + op decOp + field int // field number of the wire type + index []int // field access indices for destination type + ovfl error // error message for overflow/underflow (for arrays, of the elements) +} + +// ignoreUint discards a uint value with no destination. +func ignoreUint(i *decInstr, state *decoderState, v reflect.Value) { + state.decodeUint() +} + +// ignoreTwoUints discards a uint value with no destination. It's used to skip +// complex values. +func ignoreTwoUints(i *decInstr, state *decoderState, v reflect.Value) { + state.decodeUint() + state.decodeUint() +} + +// Since the encoder writes no zeros, if we arrive at a decoder we have +// a value to extract and store. The field number has already been read +// (it's how we knew to call this decoder). +// Each decoder is responsible for handling any indirections associated +// with the data structure. If any pointer so reached is nil, allocation must +// be done. + +// decAlloc takes a value and returns a settable value that can +// be assigned to. If the value is a pointer, decAlloc guarantees it points to storage. +// The callers to the individual decoders are expected to have used decAlloc. +// The individual decoders don't need to it. +func decAlloc(v reflect.Value) reflect.Value { + for v.Kind() == reflect.Pointer { + if v.IsNil() { + v.Set(reflect.New(v.Type().Elem())) + } + v = v.Elem() + } + return v +} + +// decBool decodes a uint and stores it as a boolean in value. +func decBool(i *decInstr, state *decoderState, value reflect.Value) { + value.SetBool(state.decodeUint() != 0) +} + +// decInt8 decodes an integer and stores it as an int8 in value. +func decInt8(i *decInstr, state *decoderState, value reflect.Value) { + v := state.decodeInt() + if v < math.MinInt8 || math.MaxInt8 < v { + error_(i.ovfl) + } + value.SetInt(v) +} + +// decUint8 decodes an unsigned integer and stores it as a uint8 in value. +func decUint8(i *decInstr, state *decoderState, value reflect.Value) { + v := state.decodeUint() + if math.MaxUint8 < v { + error_(i.ovfl) + } + value.SetUint(v) +} + +// decInt16 decodes an integer and stores it as an int16 in value. +func decInt16(i *decInstr, state *decoderState, value reflect.Value) { + v := state.decodeInt() + if v < math.MinInt16 || math.MaxInt16 < v { + error_(i.ovfl) + } + value.SetInt(v) +} + +// decUint16 decodes an unsigned integer and stores it as a uint16 in value. +func decUint16(i *decInstr, state *decoderState, value reflect.Value) { + v := state.decodeUint() + if math.MaxUint16 < v { + error_(i.ovfl) + } + value.SetUint(v) +} + +// decInt32 decodes an integer and stores it as an int32 in value. +func decInt32(i *decInstr, state *decoderState, value reflect.Value) { + v := state.decodeInt() + if v < math.MinInt32 || math.MaxInt32 < v { + error_(i.ovfl) + } + value.SetInt(v) +} + +// decUint32 decodes an unsigned integer and stores it as a uint32 in value. +func decUint32(i *decInstr, state *decoderState, value reflect.Value) { + v := state.decodeUint() + if math.MaxUint32 < v { + error_(i.ovfl) + } + value.SetUint(v) +} + +// decInt64 decodes an integer and stores it as an int64 in value. +func decInt64(i *decInstr, state *decoderState, value reflect.Value) { + v := state.decodeInt() + value.SetInt(v) +} + +// decUint64 decodes an unsigned integer and stores it as a uint64 in value. +func decUint64(i *decInstr, state *decoderState, value reflect.Value) { + v := state.decodeUint() + value.SetUint(v) +} + +// Floating-point numbers are transmitted as uint64s holding the bits +// of the underlying representation. They are sent byte-reversed, with +// the exponent end coming out first, so integer floating point numbers +// (for example) transmit more compactly. This routine does the +// unswizzling. +func float64FromBits(u uint64) float64 { + v := bits.ReverseBytes64(u) + return math.Float64frombits(v) +} + +// float32FromBits decodes an unsigned integer, treats it as a 32-bit floating-point +// number, and returns it. It's a helper function for float32 and complex64. +// It returns a float64 because that's what reflection needs, but its return +// value is known to be accurately representable in a float32. +func float32FromBits(u uint64, ovfl error) float64 { + v := float64FromBits(u) + av := v + if av < 0 { + av = -av + } + // +Inf is OK in both 32- and 64-bit floats. Underflow is always OK. + if math.MaxFloat32 < av && av <= math.MaxFloat64 { + error_(ovfl) + } + return v +} + +// decFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point +// number, and stores it in value. +func decFloat32(i *decInstr, state *decoderState, value reflect.Value) { + value.SetFloat(float32FromBits(state.decodeUint(), i.ovfl)) +} + +// decFloat64 decodes an unsigned integer, treats it as a 64-bit floating-point +// number, and stores it in value. +func decFloat64(i *decInstr, state *decoderState, value reflect.Value) { + value.SetFloat(float64FromBits(state.decodeUint())) +} + +// decComplex64 decodes a pair of unsigned integers, treats them as a +// pair of floating point numbers, and stores them as a complex64 in value. +// The real part comes first. +func decComplex64(i *decInstr, state *decoderState, value reflect.Value) { + real := float32FromBits(state.decodeUint(), i.ovfl) + imag := float32FromBits(state.decodeUint(), i.ovfl) + value.SetComplex(complex(real, imag)) +} + +// decComplex128 decodes a pair of unsigned integers, treats them as a +// pair of floating point numbers, and stores them as a complex128 in value. +// The real part comes first. +func decComplex128(i *decInstr, state *decoderState, value reflect.Value) { + real := float64FromBits(state.decodeUint()) + imag := float64FromBits(state.decodeUint()) + value.SetComplex(complex(real, imag)) +} + +// decUint8Slice decodes a byte slice and stores in value a slice header +// describing the data. +// uint8 slices are encoded as an unsigned count followed by the raw bytes. +func decUint8Slice(i *decInstr, state *decoderState, value reflect.Value) { + n, ok := state.getLength() + if !ok { + errorf("bad %s slice length: %d", value.Type(), n) + } + if value.Cap() < n { + safe := saferio.SliceCap((*byte)(nil), uint64(n)) + if safe < 0 { + errorf("%s slice too big: %d elements", value.Type(), n) + } + value.Set(reflect.MakeSlice(value.Type(), safe, safe)) + ln := safe + i := 0 + for i < n { + if i >= ln { + // We didn't allocate the entire slice, + // due to using saferio.SliceCap. + // Append a value to grow the slice. + // The slice is full, so this should + // bump up the capacity. + value.Set(reflect.Append(value, reflect.Zero(value.Type().Elem()))) + } + // Copy into s up to the capacity or n, + // whichever is less. + ln = value.Cap() + if ln > n { + ln = n + } + value.SetLen(ln) + sub := value.Slice(i, ln) + if _, err := state.b.Read(sub.Bytes()); err != nil { + errorf("error decoding []byte at %d: %s", err, i) + } + i = ln + } + } else { + value.SetLen(n) + if _, err := state.b.Read(value.Bytes()); err != nil { + errorf("error decoding []byte: %s", err) + } + } +} + +// decString decodes byte array and stores in value a string header +// describing the data. +// Strings are encoded as an unsigned count followed by the raw bytes. +func decString(i *decInstr, state *decoderState, value reflect.Value) { + n, ok := state.getLength() + if !ok { + errorf("bad %s slice length: %d", value.Type(), n) + } + // Read the data. + data := state.b.Bytes() + if len(data) < n { + errorf("invalid string length %d: exceeds input size %d", n, len(data)) + } + s := string(data[:n]) + state.b.Drop(n) + value.SetString(s) +} + +// ignoreUint8Array skips over the data for a byte slice value with no destination. +func ignoreUint8Array(i *decInstr, state *decoderState, value reflect.Value) { + n, ok := state.getLength() + if !ok { + errorf("slice length too large") + } + bn := state.b.Len() + if bn < n { + errorf("invalid slice length %d: exceeds input size %d", n, bn) + } + state.b.Drop(n) +} + +// Execution engine + +// The encoder engine is an array of instructions indexed by field number of the incoming +// decoder. It is executed with random access according to field number. +type decEngine struct { + instr []decInstr + numInstr int // the number of active instructions +} + +// decodeSingle decodes a top-level value that is not a struct and stores it in value. +// Such values are preceded by a zero, making them have the memory layout of a +// struct field (although with an illegal field number). +func (dec *Decoder) decodeSingle(engine *decEngine, value reflect.Value) { + state := dec.newDecoderState(&dec.buf) + defer dec.freeDecoderState(state) + state.fieldnum = singletonField + if state.decodeUint() != 0 { + errorf("decode: corrupted data: non-zero delta for singleton") + } + instr := &engine.instr[singletonField] + instr.op(instr, state, value) +} + +// decodeStruct decodes a top-level struct and stores it in value. +// Indir is for the value, not the type. At the time of the call it may +// differ from ut.indir, which was computed when the engine was built. +// This state cannot arise for decodeSingle, which is called directly +// from the user's value, not from the innards of an engine. +func (dec *Decoder) decodeStruct(engine *decEngine, value reflect.Value) { + state := dec.newDecoderState(&dec.buf) + defer dec.freeDecoderState(state) + state.fieldnum = -1 + for state.b.Len() > 0 { + delta := int(state.decodeUint()) + if delta < 0 { + errorf("decode: corrupted data: negative delta") + } + if delta == 0 { // struct terminator is zero delta fieldnum + break + } + if state.fieldnum >= len(engine.instr)-delta { // subtract to compare without overflow + error_(errRange) + } + fieldnum := state.fieldnum + delta + instr := &engine.instr[fieldnum] + var field reflect.Value + if instr.index != nil { + // Otherwise the field is unknown to us and instr.op is an ignore op. + field = value.FieldByIndex(instr.index) + if field.Kind() == reflect.Pointer { + field = decAlloc(field) + } + } + instr.op(instr, state, field) + state.fieldnum = fieldnum + } +} + +var noValue reflect.Value + +// ignoreStruct discards the data for a struct with no destination. +func (dec *Decoder) ignoreStruct(engine *decEngine) { + state := dec.newDecoderState(&dec.buf) + defer dec.freeDecoderState(state) + state.fieldnum = -1 + for state.b.Len() > 0 { + delta := int(state.decodeUint()) + if delta < 0 { + errorf("ignore decode: corrupted data: negative delta") + } + if delta == 0 { // struct terminator is zero delta fieldnum + break + } + fieldnum := state.fieldnum + delta + if fieldnum >= len(engine.instr) { + error_(errRange) + } + instr := &engine.instr[fieldnum] + instr.op(instr, state, noValue) + state.fieldnum = fieldnum + } +} + +// ignoreSingle discards the data for a top-level non-struct value with no +// destination. It's used when calling Decode with a nil value. +func (dec *Decoder) ignoreSingle(engine *decEngine) { + state := dec.newDecoderState(&dec.buf) + defer dec.freeDecoderState(state) + state.fieldnum = singletonField + delta := int(state.decodeUint()) + if delta != 0 { + errorf("decode: corrupted data: non-zero delta for singleton") + } + instr := &engine.instr[singletonField] + instr.op(instr, state, noValue) +} + +// decodeArrayHelper does the work for decoding arrays and slices. +func (dec *Decoder) decodeArrayHelper(state *decoderState, value reflect.Value, elemOp decOp, length int, ovfl error, helper decHelper) { + if helper != nil && helper(state, value, length, ovfl) { + return + } + instr := &decInstr{elemOp, 0, nil, ovfl} + isPtr := value.Type().Elem().Kind() == reflect.Pointer + ln := value.Len() + for i := 0; i < length; i++ { + if state.b.Len() == 0 { + errorf("decoding array or slice: length exceeds input size (%d elements)", length) + } + if i >= ln { + // This is a slice that we only partially allocated. + // Grow it using append, up to length. + value.Set(reflect.Append(value, reflect.Zero(value.Type().Elem()))) + cp := value.Cap() + if cp > length { + cp = length + } + value.SetLen(cp) + ln = cp + } + v := value.Index(i) + if isPtr { + v = decAlloc(v) + } + elemOp(instr, state, v) + } +} + +// decodeArray decodes an array and stores it in value. +// The length is an unsigned integer preceding the elements. Even though the length is redundant +// (it's part of the type), it's a useful check and is included in the encoding. +func (dec *Decoder) decodeArray(state *decoderState, value reflect.Value, elemOp decOp, length int, ovfl error, helper decHelper) { + if n := state.decodeUint(); n != uint64(length) { + errorf("length mismatch in decodeArray") + } + dec.decodeArrayHelper(state, value, elemOp, length, ovfl, helper) +} + +// decodeIntoValue is a helper for map decoding. +func decodeIntoValue(state *decoderState, op decOp, isPtr bool, value reflect.Value, instr *decInstr) reflect.Value { + v := value + if isPtr { + v = decAlloc(value) + } + + op(instr, state, v) + return value +} + +// decodeMap decodes a map and stores it in value. +// Maps are encoded as a length followed by key:value pairs. +// Because the internals of maps are not visible to us, we must +// use reflection rather than pointer magic. +func (dec *Decoder) decodeMap(mtyp reflect.Type, state *decoderState, value reflect.Value, keyOp, elemOp decOp, ovfl error) { + n := int(state.decodeUint()) + if value.IsNil() { + value.Set(reflect.MakeMapWithSize(mtyp, n)) + } + keyIsPtr := mtyp.Key().Kind() == reflect.Pointer + elemIsPtr := mtyp.Elem().Kind() == reflect.Pointer + keyInstr := &decInstr{keyOp, 0, nil, ovfl} + elemInstr := &decInstr{elemOp, 0, nil, ovfl} + keyP := reflect.New(mtyp.Key()) + keyZ := reflect.Zero(mtyp.Key()) + elemP := reflect.New(mtyp.Elem()) + elemZ := reflect.Zero(mtyp.Elem()) + for i := 0; i < n; i++ { + key := decodeIntoValue(state, keyOp, keyIsPtr, keyP.Elem(), keyInstr) + elem := decodeIntoValue(state, elemOp, elemIsPtr, elemP.Elem(), elemInstr) + value.SetMapIndex(key, elem) + keyP.Elem().Set(keyZ) + elemP.Elem().Set(elemZ) + } +} + +// ignoreArrayHelper does the work for discarding arrays and slices. +func (dec *Decoder) ignoreArrayHelper(state *decoderState, elemOp decOp, length int) { + instr := &decInstr{elemOp, 0, nil, errors.New("no error")} + for i := 0; i < length; i++ { + if state.b.Len() == 0 { + errorf("decoding array or slice: length exceeds input size (%d elements)", length) + } + elemOp(instr, state, noValue) + } +} + +// ignoreArray discards the data for an array value with no destination. +func (dec *Decoder) ignoreArray(state *decoderState, elemOp decOp, length int) { + if n := state.decodeUint(); n != uint64(length) { + errorf("length mismatch in ignoreArray") + } + dec.ignoreArrayHelper(state, elemOp, length) +} + +// ignoreMap discards the data for a map value with no destination. +func (dec *Decoder) ignoreMap(state *decoderState, keyOp, elemOp decOp) { + n := int(state.decodeUint()) + keyInstr := &decInstr{keyOp, 0, nil, errors.New("no error")} + elemInstr := &decInstr{elemOp, 0, nil, errors.New("no error")} + for i := 0; i < n; i++ { + keyOp(keyInstr, state, noValue) + elemOp(elemInstr, state, noValue) + } +} + +// decodeSlice decodes a slice and stores it in value. +// Slices are encoded as an unsigned length followed by the elements. +func (dec *Decoder) decodeSlice(state *decoderState, value reflect.Value, elemOp decOp, ovfl error, helper decHelper) { + u := state.decodeUint() + typ := value.Type() + size := uint64(typ.Elem().Size()) + nBytes := u * size + n := int(u) + // Take care with overflow in this calculation. + if n < 0 || uint64(n) != u || nBytes > tooBig || (size > 0 && nBytes/size != u) { + // We don't check n against buffer length here because if it's a slice + // of interfaces, there will be buffer reloads. + errorf("%s slice too big: %d elements of %d bytes", typ.Elem(), u, size) + } + if value.Cap() < n { + safe := saferio.SliceCap(reflect.Zero(reflect.PtrTo(typ.Elem())).Interface(), uint64(n)) + if safe < 0 { + errorf("%s slice too big: %d elements of %d bytes", typ.Elem(), u, size) + } + value.Set(reflect.MakeSlice(typ, safe, safe)) + } else { + value.SetLen(n) + } + dec.decodeArrayHelper(state, value, elemOp, n, ovfl, helper) +} + +// ignoreSlice skips over the data for a slice value with no destination. +func (dec *Decoder) ignoreSlice(state *decoderState, elemOp decOp) { + dec.ignoreArrayHelper(state, elemOp, int(state.decodeUint())) +} + +// decodeInterface decodes an interface value and stores it in value. +// Interfaces are encoded as the name of a concrete type followed by a value. +// If the name is empty, the value is nil and no value is sent. +func (dec *Decoder) decodeInterface(ityp reflect.Type, state *decoderState, value reflect.Value) { + // Read the name of the concrete type. + nr := state.decodeUint() + if nr > 1<<31 { // zero is permissible for anonymous types + errorf("invalid type name length %d", nr) + } + if nr > uint64(state.b.Len()) { + errorf("invalid type name length %d: exceeds input size", nr) + } + n := int(nr) + name := state.b.Bytes()[:n] + state.b.Drop(n) + // Allocate the destination interface value. + if len(name) == 0 { + // Copy the nil interface value to the target. + value.Set(reflect.Zero(value.Type())) + return + } + if len(name) > 1024 { + errorf("name too long (%d bytes): %.20q...", len(name), name) + } + // The concrete type must be registered. + typi, ok := nameToConcreteType.Load(string(name)) + if !ok { + errorf("name not registered for interface: %q", name) + } + typ := typi.(reflect.Type) + + // Read the type id of the concrete value. + concreteId := dec.decodeTypeSequence(true) + if concreteId < 0 { + error_(dec.err) + } + // Byte count of value is next; we don't care what it is (it's there + // in case we want to ignore the value by skipping it completely). + state.decodeUint() + // Read the concrete value. + v := allocValue(typ) + dec.decodeValue(concreteId, v) + if dec.err != nil { + error_(dec.err) + } + // Assign the concrete value to the interface. + // Tread carefully; it might not satisfy the interface. + if !typ.AssignableTo(ityp) { + errorf("%s is not assignable to type %s", typ, ityp) + } + // Copy the interface value to the target. + value.Set(v) +} + +// ignoreInterface discards the data for an interface value with no destination. +func (dec *Decoder) ignoreInterface(state *decoderState) { + // Read the name of the concrete type. + n, ok := state.getLength() + if !ok { + errorf("bad interface encoding: name too large for buffer") + } + bn := state.b.Len() + if bn < n { + errorf("invalid interface value length %d: exceeds input size %d", n, bn) + } + state.b.Drop(n) + id := dec.decodeTypeSequence(true) + if id < 0 { + error_(dec.err) + } + // At this point, the decoder buffer contains a delimited value. Just toss it. + n, ok = state.getLength() + if !ok { + errorf("bad interface encoding: data length too large for buffer") + } + state.b.Drop(n) +} + +// decodeGobDecoder decodes something implementing the GobDecoder interface. +// The data is encoded as a byte slice. +func (dec *Decoder) decodeGobDecoder(ut *userTypeInfo, state *decoderState, value reflect.Value) { + // Read the bytes for the value. + n, ok := state.getLength() + if !ok { + errorf("GobDecoder: length too large for buffer") + } + b := state.b.Bytes() + if len(b) < n { + errorf("GobDecoder: invalid data length %d: exceeds input size %d", n, len(b)) + } + b = b[:n] + state.b.Drop(n) + var err error + // We know it's one of these. + switch ut.externalDec { + case xGob: + err = value.Interface().(GobDecoder).GobDecode(b) + case xBinary: + err = value.Interface().(encoding.BinaryUnmarshaler).UnmarshalBinary(b) + case xText: + err = value.Interface().(encoding.TextUnmarshaler).UnmarshalText(b) + } + if err != nil { + error_(err) + } +} + +// ignoreGobDecoder discards the data for a GobDecoder value with no destination. +func (dec *Decoder) ignoreGobDecoder(state *decoderState) { + // Read the bytes for the value. + n, ok := state.getLength() + if !ok { + errorf("GobDecoder: length too large for buffer") + } + bn := state.b.Len() + if bn < n { + errorf("GobDecoder: invalid data length %d: exceeds input size %d", n, bn) + } + state.b.Drop(n) +} + +// Index by Go types. +var decOpTable = [...]decOp{ + reflect.Bool: decBool, + reflect.Int8: decInt8, + reflect.Int16: decInt16, + reflect.Int32: decInt32, + reflect.Int64: decInt64, + reflect.Uint8: decUint8, + reflect.Uint16: decUint16, + reflect.Uint32: decUint32, + reflect.Uint64: decUint64, + reflect.Float32: decFloat32, + reflect.Float64: decFloat64, + reflect.Complex64: decComplex64, + reflect.Complex128: decComplex128, + reflect.String: decString, +} + +// Indexed by gob types. tComplex will be added during type.init(). +var decIgnoreOpMap = map[typeId]decOp{ + tBool: ignoreUint, + tInt: ignoreUint, + tUint: ignoreUint, + tFloat: ignoreUint, + tBytes: ignoreUint8Array, + tString: ignoreUint8Array, + tComplex: ignoreTwoUints, +} + +// decOpFor returns the decoding op for the base type under rt and +// the indirection count to reach it. +func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string, inProgress map[reflect.Type]*decOp) *decOp { + ut := userType(rt) + // If the type implements GobEncoder, we handle it without further processing. + if ut.externalDec != 0 { + return dec.gobDecodeOpFor(ut) + } + + // If this type is already in progress, it's a recursive type (e.g. map[string]*T). + // Return the pointer to the op we're already building. + if opPtr := inProgress[rt]; opPtr != nil { + return opPtr + } + typ := ut.base + var op decOp + k := typ.Kind() + if int(k) < len(decOpTable) { + op = decOpTable[k] + } + if op == nil { + inProgress[rt] = &op + // Special cases + switch t := typ; t.Kind() { + case reflect.Array: + name = "element of " + name + elemId := dec.wireType[wireId].ArrayT.Elem + elemOp := dec.decOpFor(elemId, t.Elem(), name, inProgress) + ovfl := overflow(name) + helper := decArrayHelper[t.Elem().Kind()] + op = func(i *decInstr, state *decoderState, value reflect.Value) { + state.dec.decodeArray(state, value, *elemOp, t.Len(), ovfl, helper) + } + + case reflect.Map: + keyId := dec.wireType[wireId].MapT.Key + elemId := dec.wireType[wireId].MapT.Elem + keyOp := dec.decOpFor(keyId, t.Key(), "key of "+name, inProgress) + elemOp := dec.decOpFor(elemId, t.Elem(), "element of "+name, inProgress) + ovfl := overflow(name) + op = func(i *decInstr, state *decoderState, value reflect.Value) { + state.dec.decodeMap(t, state, value, *keyOp, *elemOp, ovfl) + } + + case reflect.Slice: + name = "element of " + name + if t.Elem().Kind() == reflect.Uint8 { + op = decUint8Slice + break + } + var elemId typeId + if tt, ok := builtinIdToType[wireId]; ok { + elemId = tt.(*sliceType).Elem + } else { + elemId = dec.wireType[wireId].SliceT.Elem + } + elemOp := dec.decOpFor(elemId, t.Elem(), name, inProgress) + ovfl := overflow(name) + helper := decSliceHelper[t.Elem().Kind()] + op = func(i *decInstr, state *decoderState, value reflect.Value) { + state.dec.decodeSlice(state, value, *elemOp, ovfl, helper) + } + + case reflect.Struct: + // Generate a closure that calls out to the engine for the nested type. + ut := userType(typ) + enginePtr, err := dec.getDecEnginePtr(wireId, ut) + if err != nil { + error_(err) + } + op = func(i *decInstr, state *decoderState, value reflect.Value) { + // indirect through enginePtr to delay evaluation for recursive structs. + dec.decodeStruct(*enginePtr, value) + } + case reflect.Interface: + op = func(i *decInstr, state *decoderState, value reflect.Value) { + state.dec.decodeInterface(t, state, value) + } + } + } + if op == nil { + errorf("decode can't handle type %s", rt) + } + return &op +} + +var maxIgnoreNestingDepth = 10000 + +// decIgnoreOpFor returns the decoding op for a field that has no destination. +func (dec *Decoder) decIgnoreOpFor(wireId typeId, inProgress map[typeId]*decOp, depth int) *decOp { + if depth > maxIgnoreNestingDepth { + error_(errors.New("invalid nesting depth")) + } + // If this type is already in progress, it's a recursive type (e.g. map[string]*T). + // Return the pointer to the op we're already building. + if opPtr := inProgress[wireId]; opPtr != nil { + return opPtr + } + op, ok := decIgnoreOpMap[wireId] + if !ok { + inProgress[wireId] = &op + if wireId == tInterface { + // Special case because it's a method: the ignored item might + // define types and we need to record their state in the decoder. + op = func(i *decInstr, state *decoderState, value reflect.Value) { + state.dec.ignoreInterface(state) + } + return &op + } + // Special cases + wire := dec.wireType[wireId] + switch { + case wire == nil: + errorf("bad data: undefined type %s", wireId.string()) + case wire.ArrayT != nil: + elemId := wire.ArrayT.Elem + elemOp := dec.decIgnoreOpFor(elemId, inProgress, depth+1) + op = func(i *decInstr, state *decoderState, value reflect.Value) { + state.dec.ignoreArray(state, *elemOp, wire.ArrayT.Len) + } + + case wire.MapT != nil: + keyId := dec.wireType[wireId].MapT.Key + elemId := dec.wireType[wireId].MapT.Elem + keyOp := dec.decIgnoreOpFor(keyId, inProgress, depth+1) + elemOp := dec.decIgnoreOpFor(elemId, inProgress, depth+1) + op = func(i *decInstr, state *decoderState, value reflect.Value) { + state.dec.ignoreMap(state, *keyOp, *elemOp) + } + + case wire.SliceT != nil: + elemId := wire.SliceT.Elem + elemOp := dec.decIgnoreOpFor(elemId, inProgress, depth+1) + op = func(i *decInstr, state *decoderState, value reflect.Value) { + state.dec.ignoreSlice(state, *elemOp) + } + + case wire.StructT != nil: + // Generate a closure that calls out to the engine for the nested type. + enginePtr, err := dec.getIgnoreEnginePtr(wireId) + if err != nil { + error_(err) + } + op = func(i *decInstr, state *decoderState, value reflect.Value) { + // indirect through enginePtr to delay evaluation for recursive structs + state.dec.ignoreStruct(*enginePtr) + } + + case wire.GobEncoderT != nil, wire.BinaryMarshalerT != nil, wire.TextMarshalerT != nil: + op = func(i *decInstr, state *decoderState, value reflect.Value) { + state.dec.ignoreGobDecoder(state) + } + } + } + if op == nil { + errorf("bad data: ignore can't handle type %s", wireId.string()) + } + return &op +} + +// gobDecodeOpFor returns the op for a type that is known to implement +// GobDecoder. +func (dec *Decoder) gobDecodeOpFor(ut *userTypeInfo) *decOp { + rcvrType := ut.user + if ut.decIndir == -1 { + rcvrType = reflect.PointerTo(rcvrType) + } else if ut.decIndir > 0 { + for i := int8(0); i < ut.decIndir; i++ { + rcvrType = rcvrType.Elem() + } + } + var op decOp + op = func(i *decInstr, state *decoderState, value reflect.Value) { + // We now have the base type. We need its address if the receiver is a pointer. + if value.Kind() != reflect.Pointer && rcvrType.Kind() == reflect.Pointer { + value = value.Addr() + } + state.dec.decodeGobDecoder(ut, state, value) + } + return &op +} + +// compatibleType asks: Are these two gob Types compatible? +// Answers the question for basic types, arrays, maps and slices, plus +// GobEncoder/Decoder pairs. +// Structs are considered ok; fields will be checked later. +func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId, inProgress map[reflect.Type]typeId) bool { + if rhs, ok := inProgress[fr]; ok { + return rhs == fw + } + inProgress[fr] = fw + ut := userType(fr) + wire, ok := dec.wireType[fw] + // If wire was encoded with an encoding method, fr must have that method. + // And if not, it must not. + // At most one of the booleans in ut is set. + // We could possibly relax this constraint in the future in order to + // choose the decoding method using the data in the wireType. + // The parentheses look odd but are correct. + if (ut.externalDec == xGob) != (ok && wire.GobEncoderT != nil) || + (ut.externalDec == xBinary) != (ok && wire.BinaryMarshalerT != nil) || + (ut.externalDec == xText) != (ok && wire.TextMarshalerT != nil) { + return false + } + if ut.externalDec != 0 { // This test trumps all others. + return true + } + switch t := ut.base; t.Kind() { + default: + // chan, etc: cannot handle. + return false + case reflect.Bool: + return fw == tBool + case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: + return fw == tInt + case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: + return fw == tUint + case reflect.Float32, reflect.Float64: + return fw == tFloat + case reflect.Complex64, reflect.Complex128: + return fw == tComplex + case reflect.String: + return fw == tString + case reflect.Interface: + return fw == tInterface + case reflect.Array: + if !ok || wire.ArrayT == nil { + return false + } + array := wire.ArrayT + return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem, inProgress) + case reflect.Map: + if !ok || wire.MapT == nil { + return false + } + MapType := wire.MapT + return dec.compatibleType(t.Key(), MapType.Key, inProgress) && dec.compatibleType(t.Elem(), MapType.Elem, inProgress) + case reflect.Slice: + // Is it an array of bytes? + if t.Elem().Kind() == reflect.Uint8 { + return fw == tBytes + } + // Extract and compare element types. + var sw *sliceType + if tt, ok := builtinIdToType[fw]; ok { + sw, _ = tt.(*sliceType) + } else if wire != nil { + sw = wire.SliceT + } + elem := userType(t.Elem()).base + return sw != nil && dec.compatibleType(elem, sw.Elem, inProgress) + case reflect.Struct: + return true + } +} + +// typeString returns a human-readable description of the type identified by remoteId. +func (dec *Decoder) typeString(remoteId typeId) string { + typeLock.Lock() + defer typeLock.Unlock() + if t := idToType[remoteId]; t != nil { + // globally known type. + return t.string() + } + return dec.wireType[remoteId].string() +} + +// compileSingle compiles the decoder engine for a non-struct top-level value, including +// GobDecoders. +func (dec *Decoder) compileSingle(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) { + rt := ut.user + engine = new(decEngine) + engine.instr = make([]decInstr, 1) // one item + name := rt.String() // best we can do + if !dec.compatibleType(rt, remoteId, make(map[reflect.Type]typeId)) { + remoteType := dec.typeString(remoteId) + // Common confusing case: local interface type, remote concrete type. + if ut.base.Kind() == reflect.Interface && remoteId != tInterface { + return nil, errors.New("gob: local interface type " + name + " can only be decoded from remote interface type; received concrete type " + remoteType) + } + return nil, errors.New("gob: decoding into local type " + name + ", received remote type " + remoteType) + } + op := dec.decOpFor(remoteId, rt, name, make(map[reflect.Type]*decOp)) + ovfl := errors.New(`value for "` + name + `" out of range`) + engine.instr[singletonField] = decInstr{*op, singletonField, nil, ovfl} + engine.numInstr = 1 + return +} + +// compileIgnoreSingle compiles the decoder engine for a non-struct top-level value that will be discarded. +func (dec *Decoder) compileIgnoreSingle(remoteId typeId) *decEngine { + engine := new(decEngine) + engine.instr = make([]decInstr, 1) // one item + op := dec.decIgnoreOpFor(remoteId, make(map[typeId]*decOp), 0) + ovfl := overflow(dec.typeString(remoteId)) + engine.instr[0] = decInstr{*op, 0, nil, ovfl} + engine.numInstr = 1 + return engine +} + +// compileDec compiles the decoder engine for a value. If the value is not a struct, +// it calls out to compileSingle. +func (dec *Decoder) compileDec(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) { + defer catchError(&err) + rt := ut.base + srt := rt + if srt.Kind() != reflect.Struct || ut.externalDec != 0 { + return dec.compileSingle(remoteId, ut) + } + var wireStruct *structType + // Builtin types can come from global pool; the rest must be defined by the decoder. + // Also we know we're decoding a struct now, so the client must have sent one. + if t, ok := builtinIdToType[remoteId]; ok { + wireStruct, _ = t.(*structType) + } else { + wire := dec.wireType[remoteId] + if wire == nil { + error_(errBadType) + } + wireStruct = wire.StructT + } + if wireStruct == nil { + errorf("type mismatch in decoder: want struct type %s; got non-struct", rt) + } + engine = new(decEngine) + engine.instr = make([]decInstr, len(wireStruct.Field)) + seen := make(map[reflect.Type]*decOp) + // Loop over the fields of the wire type. + for fieldnum := 0; fieldnum < len(wireStruct.Field); fieldnum++ { + wireField := wireStruct.Field[fieldnum] + if wireField.Name == "" { + errorf("empty name for remote field of type %s", wireStruct.Name) + } + ovfl := overflow(wireField.Name) + // Find the field of the local type with the same name. + localField, present := srt.FieldByName(wireField.Name) + // TODO(r): anonymous names + if !present || !isExported(wireField.Name) { + op := dec.decIgnoreOpFor(wireField.Id, make(map[typeId]*decOp), 0) + engine.instr[fieldnum] = decInstr{*op, fieldnum, nil, ovfl} + continue + } + if !dec.compatibleType(localField.Type, wireField.Id, make(map[reflect.Type]typeId)) { + errorf("wrong type (%s) for received field %s.%s", localField.Type, wireStruct.Name, wireField.Name) + } + op := dec.decOpFor(wireField.Id, localField.Type, localField.Name, seen) + engine.instr[fieldnum] = decInstr{*op, fieldnum, localField.Index, ovfl} + engine.numInstr++ + } + return +} + +// getDecEnginePtr returns the engine for the specified type. +func (dec *Decoder) getDecEnginePtr(remoteId typeId, ut *userTypeInfo) (enginePtr **decEngine, err error) { + rt := ut.user + decoderMap, ok := dec.decoderCache[rt] + if !ok { + decoderMap = make(map[typeId]**decEngine) + dec.decoderCache[rt] = decoderMap + } + if enginePtr, ok = decoderMap[remoteId]; !ok { + // To handle recursive types, mark this engine as underway before compiling. + enginePtr = new(*decEngine) + decoderMap[remoteId] = enginePtr + *enginePtr, err = dec.compileDec(remoteId, ut) + if err != nil { + delete(decoderMap, remoteId) + } + } + return +} + +// emptyStruct is the type we compile into when ignoring a struct value. +type emptyStruct struct{} + +var emptyStructType = reflect.TypeOf(emptyStruct{}) + +// getIgnoreEnginePtr returns the engine for the specified type when the value is to be discarded. +func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err error) { + var ok bool + if enginePtr, ok = dec.ignorerCache[wireId]; !ok { + // To handle recursive types, mark this engine as underway before compiling. + enginePtr = new(*decEngine) + dec.ignorerCache[wireId] = enginePtr + wire := dec.wireType[wireId] + if wire != nil && wire.StructT != nil { + *enginePtr, err = dec.compileDec(wireId, userType(emptyStructType)) + } else { + *enginePtr = dec.compileIgnoreSingle(wireId) + } + if err != nil { + delete(dec.ignorerCache, wireId) + } + } + return +} + +// decodeValue decodes the data stream representing a value and stores it in value. +func (dec *Decoder) decodeValue(wireId typeId, value reflect.Value) { + defer catchError(&dec.err) + // If the value is nil, it means we should just ignore this item. + if !value.IsValid() { + dec.decodeIgnoredValue(wireId) + return + } + // Dereference down to the underlying type. + ut := userType(value.Type()) + base := ut.base + var enginePtr **decEngine + enginePtr, dec.err = dec.getDecEnginePtr(wireId, ut) + if dec.err != nil { + return + } + value = decAlloc(value) + engine := *enginePtr + if st := base; st.Kind() == reflect.Struct && ut.externalDec == 0 { + wt := dec.wireType[wireId] + if engine.numInstr == 0 && st.NumField() > 0 && + wt != nil && len(wt.StructT.Field) > 0 { + name := base.Name() + errorf("type mismatch: no fields matched compiling decoder for %s", name) + } + dec.decodeStruct(engine, value) + } else { + dec.decodeSingle(engine, value) + } +} + +// decodeIgnoredValue decodes the data stream representing a value of the specified type and discards it. +func (dec *Decoder) decodeIgnoredValue(wireId typeId) { + var enginePtr **decEngine + enginePtr, dec.err = dec.getIgnoreEnginePtr(wireId) + if dec.err != nil { + return + } + wire := dec.wireType[wireId] + if wire != nil && wire.StructT != nil { + dec.ignoreStruct(*enginePtr) + } else { + dec.ignoreSingle(*enginePtr) + } +} + +const ( + intBits = 32 << (^uint(0) >> 63) + uintptrBits = 32 << (^uintptr(0) >> 63) +) + +func init() { + var iop, uop decOp + switch intBits { + case 32: + iop = decInt32 + uop = decUint32 + case 64: + iop = decInt64 + uop = decUint64 + default: + panic("gob: unknown size of int/uint") + } + decOpTable[reflect.Int] = iop + decOpTable[reflect.Uint] = uop + + // Finally uintptr + switch uintptrBits { + case 32: + uop = decUint32 + case 64: + uop = decUint64 + default: + panic("gob: unknown size of uintptr") + } + decOpTable[reflect.Uintptr] = uop +} + +// Gob depends on being able to take the address +// of zeroed Values it creates, so use this wrapper instead +// of the standard reflect.Zero. +// Each call allocates once. +func allocValue(t reflect.Type) reflect.Value { + return reflect.New(t).Elem() +} |