summaryrefslogtreecommitdiffstats
path: root/src/go/build/constraint/expr.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/go/build/constraint/expr.go
parentInitial commit. (diff)
downloadgolang-1.20-upstream.tar.xz
golang-1.20-upstream.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/go/build/constraint/expr.go')
-rw-r--r--src/go/build/constraint/expr.go574
1 files changed, 574 insertions, 0 deletions
diff --git a/src/go/build/constraint/expr.go b/src/go/build/constraint/expr.go
new file mode 100644
index 0000000..505cbff
--- /dev/null
+++ b/src/go/build/constraint/expr.go
@@ -0,0 +1,574 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package constraint implements parsing and evaluation of build constraint lines.
+// See https://golang.org/cmd/go/#hdr-Build_constraints for documentation about build constraints themselves.
+//
+// This package parses both the original “// +build” syntax and the “//go:build” syntax that was added in Go 1.17.
+// See https://golang.org/design/draft-gobuild for details about the “//go:build” syntax.
+package constraint
+
+import (
+ "errors"
+ "strings"
+ "unicode"
+ "unicode/utf8"
+)
+
+// An Expr is a build tag constraint expression.
+// The underlying concrete type is *AndExpr, *OrExpr, *NotExpr, or *TagExpr.
+type Expr interface {
+ // String returns the string form of the expression,
+ // using the boolean syntax used in //go:build lines.
+ String() string
+
+ // Eval reports whether the expression evaluates to true.
+ // It calls ok(tag) as needed to find out whether a given build tag
+ // is satisfied by the current build configuration.
+ Eval(ok func(tag string) bool) bool
+
+ // The presence of an isExpr method explicitly marks the type as an Expr.
+ // Only implementations in this package should be used as Exprs.
+ isExpr()
+}
+
+// A TagExpr is an Expr for the single tag Tag.
+type TagExpr struct {
+ Tag string // for example, “linux” or “cgo”
+}
+
+func (x *TagExpr) isExpr() {}
+
+func (x *TagExpr) Eval(ok func(tag string) bool) bool {
+ return ok(x.Tag)
+}
+
+func (x *TagExpr) String() string {
+ return x.Tag
+}
+
+func tag(tag string) Expr { return &TagExpr{tag} }
+
+// A NotExpr represents the expression !X (the negation of X).
+type NotExpr struct {
+ X Expr
+}
+
+func (x *NotExpr) isExpr() {}
+
+func (x *NotExpr) Eval(ok func(tag string) bool) bool {
+ return !x.X.Eval(ok)
+}
+
+func (x *NotExpr) String() string {
+ s := x.X.String()
+ switch x.X.(type) {
+ case *AndExpr, *OrExpr:
+ s = "(" + s + ")"
+ }
+ return "!" + s
+}
+
+func not(x Expr) Expr { return &NotExpr{x} }
+
+// An AndExpr represents the expression X && Y.
+type AndExpr struct {
+ X, Y Expr
+}
+
+func (x *AndExpr) isExpr() {}
+
+func (x *AndExpr) Eval(ok func(tag string) bool) bool {
+ // Note: Eval both, to make sure ok func observes all tags.
+ xok := x.X.Eval(ok)
+ yok := x.Y.Eval(ok)
+ return xok && yok
+}
+
+func (x *AndExpr) String() string {
+ return andArg(x.X) + " && " + andArg(x.Y)
+}
+
+func andArg(x Expr) string {
+ s := x.String()
+ if _, ok := x.(*OrExpr); ok {
+ s = "(" + s + ")"
+ }
+ return s
+}
+
+func and(x, y Expr) Expr {
+ return &AndExpr{x, y}
+}
+
+// An OrExpr represents the expression X || Y.
+type OrExpr struct {
+ X, Y Expr
+}
+
+func (x *OrExpr) isExpr() {}
+
+func (x *OrExpr) Eval(ok func(tag string) bool) bool {
+ // Note: Eval both, to make sure ok func observes all tags.
+ xok := x.X.Eval(ok)
+ yok := x.Y.Eval(ok)
+ return xok || yok
+}
+
+func (x *OrExpr) String() string {
+ return orArg(x.X) + " || " + orArg(x.Y)
+}
+
+func orArg(x Expr) string {
+ s := x.String()
+ if _, ok := x.(*AndExpr); ok {
+ s = "(" + s + ")"
+ }
+ return s
+}
+
+func or(x, y Expr) Expr {
+ return &OrExpr{x, y}
+}
+
+// A SyntaxError reports a syntax error in a parsed build expression.
+type SyntaxError struct {
+ Offset int // byte offset in input where error was detected
+ Err string // description of error
+}
+
+func (e *SyntaxError) Error() string {
+ return e.Err
+}
+
+var errNotConstraint = errors.New("not a build constraint")
+
+// Parse parses a single build constraint line of the form “//go:build ...” or “// +build ...”
+// and returns the corresponding boolean expression.
+func Parse(line string) (Expr, error) {
+ if text, ok := splitGoBuild(line); ok {
+ return parseExpr(text)
+ }
+ if text, ok := splitPlusBuild(line); ok {
+ return parsePlusBuildExpr(text), nil
+ }
+ return nil, errNotConstraint
+}
+
+// IsGoBuild reports whether the line of text is a “//go:build” constraint.
+// It only checks the prefix of the text, not that the expression itself parses.
+func IsGoBuild(line string) bool {
+ _, ok := splitGoBuild(line)
+ return ok
+}
+
+// splitGoBuild splits apart the leading //go:build prefix in line from the build expression itself.
+// It returns "", false if the input is not a //go:build line or if the input contains multiple lines.
+func splitGoBuild(line string) (expr string, ok bool) {
+ // A single trailing newline is OK; otherwise multiple lines are not.
+ if len(line) > 0 && line[len(line)-1] == '\n' {
+ line = line[:len(line)-1]
+ }
+ if strings.Contains(line, "\n") {
+ return "", false
+ }
+
+ if !strings.HasPrefix(line, "//go:build") {
+ return "", false
+ }
+
+ line = strings.TrimSpace(line)
+ line = line[len("//go:build"):]
+
+ // If strings.TrimSpace finds more to trim after removing the //go:build prefix,
+ // it means that the prefix was followed by a space, making this a //go:build line
+ // (as opposed to a //go:buildsomethingelse line).
+ // If line is empty, we had "//go:build" by itself, which also counts.
+ trim := strings.TrimSpace(line)
+ if len(line) == len(trim) && line != "" {
+ return "", false
+ }
+
+ return trim, true
+}
+
+// An exprParser holds state for parsing a build expression.
+type exprParser struct {
+ s string // input string
+ i int // next read location in s
+
+ tok string // last token read
+ isTag bool
+ pos int // position (start) of last token
+}
+
+// parseExpr parses a boolean build tag expression.
+func parseExpr(text string) (x Expr, err error) {
+ defer func() {
+ if e := recover(); e != nil {
+ if e, ok := e.(*SyntaxError); ok {
+ err = e
+ return
+ }
+ panic(e) // unreachable unless parser has a bug
+ }
+ }()
+
+ p := &exprParser{s: text}
+ x = p.or()
+ if p.tok != "" {
+ panic(&SyntaxError{Offset: p.pos, Err: "unexpected token " + p.tok})
+ }
+ return x, nil
+}
+
+// or parses a sequence of || expressions.
+// On entry, the next input token has not yet been lexed.
+// On exit, the next input token has been lexed and is in p.tok.
+func (p *exprParser) or() Expr {
+ x := p.and()
+ for p.tok == "||" {
+ x = or(x, p.and())
+ }
+ return x
+}
+
+// and parses a sequence of && expressions.
+// On entry, the next input token has not yet been lexed.
+// On exit, the next input token has been lexed and is in p.tok.
+func (p *exprParser) and() Expr {
+ x := p.not()
+ for p.tok == "&&" {
+ x = and(x, p.not())
+ }
+ return x
+}
+
+// not parses a ! expression.
+// On entry, the next input token has not yet been lexed.
+// On exit, the next input token has been lexed and is in p.tok.
+func (p *exprParser) not() Expr {
+ p.lex()
+ if p.tok == "!" {
+ p.lex()
+ if p.tok == "!" {
+ panic(&SyntaxError{Offset: p.pos, Err: "double negation not allowed"})
+ }
+ return not(p.atom())
+ }
+ return p.atom()
+}
+
+// atom parses a tag or a parenthesized expression.
+// On entry, the next input token HAS been lexed.
+// On exit, the next input token has been lexed and is in p.tok.
+func (p *exprParser) atom() Expr {
+ // first token already in p.tok
+ if p.tok == "(" {
+ pos := p.pos
+ defer func() {
+ if e := recover(); e != nil {
+ if e, ok := e.(*SyntaxError); ok && e.Err == "unexpected end of expression" {
+ e.Err = "missing close paren"
+ }
+ panic(e)
+ }
+ }()
+ x := p.or()
+ if p.tok != ")" {
+ panic(&SyntaxError{Offset: pos, Err: "missing close paren"})
+ }
+ p.lex()
+ return x
+ }
+
+ if !p.isTag {
+ if p.tok == "" {
+ panic(&SyntaxError{Offset: p.pos, Err: "unexpected end of expression"})
+ }
+ panic(&SyntaxError{Offset: p.pos, Err: "unexpected token " + p.tok})
+ }
+ tok := p.tok
+ p.lex()
+ return tag(tok)
+}
+
+// lex finds and consumes the next token in the input stream.
+// On return, p.tok is set to the token text,
+// p.isTag reports whether the token was a tag,
+// and p.pos records the byte offset of the start of the token in the input stream.
+// If lex reaches the end of the input, p.tok is set to the empty string.
+// For any other syntax error, lex panics with a SyntaxError.
+func (p *exprParser) lex() {
+ p.isTag = false
+ for p.i < len(p.s) && (p.s[p.i] == ' ' || p.s[p.i] == '\t') {
+ p.i++
+ }
+ if p.i >= len(p.s) {
+ p.tok = ""
+ p.pos = p.i
+ return
+ }
+ switch p.s[p.i] {
+ case '(', ')', '!':
+ p.pos = p.i
+ p.i++
+ p.tok = p.s[p.pos:p.i]
+ return
+
+ case '&', '|':
+ if p.i+1 >= len(p.s) || p.s[p.i+1] != p.s[p.i] {
+ panic(&SyntaxError{Offset: p.i, Err: "invalid syntax at " + string(rune(p.s[p.i]))})
+ }
+ p.pos = p.i
+ p.i += 2
+ p.tok = p.s[p.pos:p.i]
+ return
+ }
+
+ tag := p.s[p.i:]
+ for i, c := range tag {
+ if !unicode.IsLetter(c) && !unicode.IsDigit(c) && c != '_' && c != '.' {
+ tag = tag[:i]
+ break
+ }
+ }
+ if tag == "" {
+ c, _ := utf8.DecodeRuneInString(p.s[p.i:])
+ panic(&SyntaxError{Offset: p.i, Err: "invalid syntax at " + string(c)})
+ }
+
+ p.pos = p.i
+ p.i += len(tag)
+ p.tok = p.s[p.pos:p.i]
+ p.isTag = true
+}
+
+// IsPlusBuild reports whether the line of text is a “// +build” constraint.
+// It only checks the prefix of the text, not that the expression itself parses.
+func IsPlusBuild(line string) bool {
+ _, ok := splitPlusBuild(line)
+ return ok
+}
+
+// splitPlusBuild splits apart the leading // +build prefix in line from the build expression itself.
+// It returns "", false if the input is not a // +build line or if the input contains multiple lines.
+func splitPlusBuild(line string) (expr string, ok bool) {
+ // A single trailing newline is OK; otherwise multiple lines are not.
+ if len(line) > 0 && line[len(line)-1] == '\n' {
+ line = line[:len(line)-1]
+ }
+ if strings.Contains(line, "\n") {
+ return "", false
+ }
+
+ if !strings.HasPrefix(line, "//") {
+ return "", false
+ }
+ line = line[len("//"):]
+ // Note the space is optional; "//+build" is recognized too.
+ line = strings.TrimSpace(line)
+
+ if !strings.HasPrefix(line, "+build") {
+ return "", false
+ }
+ line = line[len("+build"):]
+
+ // If strings.TrimSpace finds more to trim after removing the +build prefix,
+ // it means that the prefix was followed by a space, making this a +build line
+ // (as opposed to a +buildsomethingelse line).
+ // If line is empty, we had "// +build" by itself, which also counts.
+ trim := strings.TrimSpace(line)
+ if len(line) == len(trim) && line != "" {
+ return "", false
+ }
+
+ return trim, true
+}
+
+// parsePlusBuildExpr parses a legacy build tag expression (as used with “// +build”).
+func parsePlusBuildExpr(text string) Expr {
+ var x Expr
+ for _, clause := range strings.Fields(text) {
+ var y Expr
+ for _, lit := range strings.Split(clause, ",") {
+ var z Expr
+ var neg bool
+ if strings.HasPrefix(lit, "!!") || lit == "!" {
+ z = tag("ignore")
+ } else {
+ if strings.HasPrefix(lit, "!") {
+ neg = true
+ lit = lit[len("!"):]
+ }
+ if isValidTag(lit) {
+ z = tag(lit)
+ } else {
+ z = tag("ignore")
+ }
+ if neg {
+ z = not(z)
+ }
+ }
+ if y == nil {
+ y = z
+ } else {
+ y = and(y, z)
+ }
+ }
+ if x == nil {
+ x = y
+ } else {
+ x = or(x, y)
+ }
+ }
+ if x == nil {
+ x = tag("ignore")
+ }
+ return x
+}
+
+// isValidTag reports whether the word is a valid build tag.
+// Tags must be letters, digits, underscores or dots.
+// Unlike in Go identifiers, all digits are fine (e.g., "386").
+func isValidTag(word string) bool {
+ if word == "" {
+ return false
+ }
+ for _, c := range word {
+ if !unicode.IsLetter(c) && !unicode.IsDigit(c) && c != '_' && c != '.' {
+ return false
+ }
+ }
+ return true
+}
+
+var errComplex = errors.New("expression too complex for // +build lines")
+
+// PlusBuildLines returns a sequence of “// +build” lines that evaluate to the build expression x.
+// If the expression is too complex to convert directly to “// +build” lines, PlusBuildLines returns an error.
+func PlusBuildLines(x Expr) ([]string, error) {
+ // Push all NOTs to the expression leaves, so that //go:build !(x && y) can be treated as !x || !y.
+ // This rewrite is both efficient and commonly needed, so it's worth doing.
+ // Essentially all other possible rewrites are too expensive and too rarely needed.
+ x = pushNot(x, false)
+
+ // Split into AND of ORs of ANDs of literals (tag or NOT tag).
+ var split [][][]Expr
+ for _, or := range appendSplitAnd(nil, x) {
+ var ands [][]Expr
+ for _, and := range appendSplitOr(nil, or) {
+ var lits []Expr
+ for _, lit := range appendSplitAnd(nil, and) {
+ switch lit.(type) {
+ case *TagExpr, *NotExpr:
+ lits = append(lits, lit)
+ default:
+ return nil, errComplex
+ }
+ }
+ ands = append(ands, lits)
+ }
+ split = append(split, ands)
+ }
+
+ // If all the ORs have length 1 (no actual OR'ing going on),
+ // push the top-level ANDs to the bottom level, so that we get
+ // one // +build line instead of many.
+ maxOr := 0
+ for _, or := range split {
+ if maxOr < len(or) {
+ maxOr = len(or)
+ }
+ }
+ if maxOr == 1 {
+ var lits []Expr
+ for _, or := range split {
+ lits = append(lits, or[0]...)
+ }
+ split = [][][]Expr{{lits}}
+ }
+
+ // Prepare the +build lines.
+ var lines []string
+ for _, or := range split {
+ line := "// +build"
+ for _, and := range or {
+ clause := ""
+ for i, lit := range and {
+ if i > 0 {
+ clause += ","
+ }
+ clause += lit.String()
+ }
+ line += " " + clause
+ }
+ lines = append(lines, line)
+ }
+
+ return lines, nil
+}
+
+// pushNot applies DeMorgan's law to push negations down the expression,
+// so that only tags are negated in the result.
+// (It applies the rewrites !(X && Y) => (!X || !Y) and !(X || Y) => (!X && !Y).)
+func pushNot(x Expr, not bool) Expr {
+ switch x := x.(type) {
+ default:
+ // unreachable
+ return x
+ case *NotExpr:
+ if _, ok := x.X.(*TagExpr); ok && !not {
+ return x
+ }
+ return pushNot(x.X, !not)
+ case *TagExpr:
+ if not {
+ return &NotExpr{X: x}
+ }
+ return x
+ case *AndExpr:
+ x1 := pushNot(x.X, not)
+ y1 := pushNot(x.Y, not)
+ if not {
+ return or(x1, y1)
+ }
+ if x1 == x.X && y1 == x.Y {
+ return x
+ }
+ return and(x1, y1)
+ case *OrExpr:
+ x1 := pushNot(x.X, not)
+ y1 := pushNot(x.Y, not)
+ if not {
+ return and(x1, y1)
+ }
+ if x1 == x.X && y1 == x.Y {
+ return x
+ }
+ return or(x1, y1)
+ }
+}
+
+// appendSplitAnd appends x to list while splitting apart any top-level && expressions.
+// For example, appendSplitAnd({W}, X && Y && Z) = {W, X, Y, Z}.
+func appendSplitAnd(list []Expr, x Expr) []Expr {
+ if x, ok := x.(*AndExpr); ok {
+ list = appendSplitAnd(list, x.X)
+ list = appendSplitAnd(list, x.Y)
+ return list
+ }
+ return append(list, x)
+}
+
+// appendSplitOr appends x to list while splitting apart any top-level || expressions.
+// For example, appendSplitOr({W}, X || Y || Z) = {W, X, Y, Z}.
+func appendSplitOr(list []Expr, x Expr) []Expr {
+ if x, ok := x.(*OrExpr); ok {
+ list = appendSplitOr(list, x.X)
+ list = appendSplitOr(list, x.Y)
+ return list
+ }
+ return append(list, x)
+}