summaryrefslogtreecommitdiffstats
path: root/src/math/big/nat.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/math/big/nat.go
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/big/nat.go')
-rw-r--r--src/math/big/nat.go1429
1 files changed, 1429 insertions, 0 deletions
diff --git a/src/math/big/nat.go b/src/math/big/nat.go
new file mode 100644
index 0000000..90ce6d1
--- /dev/null
+++ b/src/math/big/nat.go
@@ -0,0 +1,1429 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements unsigned multi-precision integers (natural
+// numbers). They are the building blocks for the implementation
+// of signed integers, rationals, and floating-point numbers.
+//
+// Caution: This implementation relies on the function "alias"
+// which assumes that (nat) slice capacities are never
+// changed (no 3-operand slice expressions). If that
+// changes, alias needs to be updated for correctness.
+
+package big
+
+import (
+ "encoding/binary"
+ "math/bits"
+ "math/rand"
+ "sync"
+)
+
+// An unsigned integer x of the form
+//
+// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
+//
+// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
+// with the digits x[i] as the slice elements.
+//
+// A number is normalized if the slice contains no leading 0 digits.
+// During arithmetic operations, denormalized values may occur but are
+// always normalized before returning the final result. The normalized
+// representation of 0 is the empty or nil slice (length = 0).
+type nat []Word
+
+var (
+ natOne = nat{1}
+ natTwo = nat{2}
+ natFive = nat{5}
+ natTen = nat{10}
+)
+
+func (z nat) String() string {
+ return "0x" + string(z.itoa(false, 16))
+}
+
+func (z nat) clear() {
+ for i := range z {
+ z[i] = 0
+ }
+}
+
+func (z nat) norm() nat {
+ i := len(z)
+ for i > 0 && z[i-1] == 0 {
+ i--
+ }
+ return z[0:i]
+}
+
+func (z nat) make(n int) nat {
+ if n <= cap(z) {
+ return z[:n] // reuse z
+ }
+ if n == 1 {
+ // Most nats start small and stay that way; don't over-allocate.
+ return make(nat, 1)
+ }
+ // Choosing a good value for e has significant performance impact
+ // because it increases the chance that a value can be reused.
+ const e = 4 // extra capacity
+ return make(nat, n, n+e)
+}
+
+func (z nat) setWord(x Word) nat {
+ if x == 0 {
+ return z[:0]
+ }
+ z = z.make(1)
+ z[0] = x
+ return z
+}
+
+func (z nat) setUint64(x uint64) nat {
+ // single-word value
+ if w := Word(x); uint64(w) == x {
+ return z.setWord(w)
+ }
+ // 2-word value
+ z = z.make(2)
+ z[1] = Word(x >> 32)
+ z[0] = Word(x)
+ return z
+}
+
+func (z nat) set(x nat) nat {
+ z = z.make(len(x))
+ copy(z, x)
+ return z
+}
+
+func (z nat) add(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+
+ switch {
+ case m < n:
+ return z.add(y, x)
+ case m == 0:
+ // n == 0 because m >= n; result is 0
+ return z[:0]
+ case n == 0:
+ // result is x
+ return z.set(x)
+ }
+ // m > 0
+
+ z = z.make(m + 1)
+ c := addVV(z[0:n], x, y)
+ if m > n {
+ c = addVW(z[n:m], x[n:], c)
+ }
+ z[m] = c
+
+ return z.norm()
+}
+
+func (z nat) sub(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+
+ switch {
+ case m < n:
+ panic("underflow")
+ case m == 0:
+ // n == 0 because m >= n; result is 0
+ return z[:0]
+ case n == 0:
+ // result is x
+ return z.set(x)
+ }
+ // m > 0
+
+ z = z.make(m)
+ c := subVV(z[0:n], x, y)
+ if m > n {
+ c = subVW(z[n:], x[n:], c)
+ }
+ if c != 0 {
+ panic("underflow")
+ }
+
+ return z.norm()
+}
+
+func (x nat) cmp(y nat) (r int) {
+ m := len(x)
+ n := len(y)
+ if m != n || m == 0 {
+ switch {
+ case m < n:
+ r = -1
+ case m > n:
+ r = 1
+ }
+ return
+ }
+
+ i := m - 1
+ for i > 0 && x[i] == y[i] {
+ i--
+ }
+
+ switch {
+ case x[i] < y[i]:
+ r = -1
+ case x[i] > y[i]:
+ r = 1
+ }
+ return
+}
+
+func (z nat) mulAddWW(x nat, y, r Word) nat {
+ m := len(x)
+ if m == 0 || y == 0 {
+ return z.setWord(r) // result is r
+ }
+ // m > 0
+
+ z = z.make(m + 1)
+ z[m] = mulAddVWW(z[0:m], x, y, r)
+
+ return z.norm()
+}
+
+// basicMul multiplies x and y and leaves the result in z.
+// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
+func basicMul(z, x, y nat) {
+ z[0 : len(x)+len(y)].clear() // initialize z
+ for i, d := range y {
+ if d != 0 {
+ z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
+ }
+ }
+}
+
+// montgomery computes z mod m = x*y*2**(-n*_W) mod m,
+// assuming k = -1/m mod 2**_W.
+// z is used for storing the result which is returned;
+// z must not alias x, y or m.
+// See Gueron, "Efficient Software Implementations of Modular Exponentiation".
+// https://eprint.iacr.org/2011/239.pdf
+// In the terminology of that paper, this is an "Almost Montgomery Multiplication":
+// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
+// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
+func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
+ // This code assumes x, y, m are all the same length, n.
+ // (required by addMulVVW and the for loop).
+ // It also assumes that x, y are already reduced mod m,
+ // or else the result will not be properly reduced.
+ if len(x) != n || len(y) != n || len(m) != n {
+ panic("math/big: mismatched montgomery number lengths")
+ }
+ z = z.make(n * 2)
+ z.clear()
+ var c Word
+ for i := 0; i < n; i++ {
+ d := y[i]
+ c2 := addMulVVW(z[i:n+i], x, d)
+ t := z[i] * k
+ c3 := addMulVVW(z[i:n+i], m, t)
+ cx := c + c2
+ cy := cx + c3
+ z[n+i] = cy
+ if cx < c2 || cy < c3 {
+ c = 1
+ } else {
+ c = 0
+ }
+ }
+ if c != 0 {
+ subVV(z[:n], z[n:], m)
+ } else {
+ copy(z[:n], z[n:])
+ }
+ return z[:n]
+}
+
+// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
+// Factored out for readability - do not use outside karatsuba.
+func karatsubaAdd(z, x nat, n int) {
+ if c := addVV(z[0:n], z, x); c != 0 {
+ addVW(z[n:n+n>>1], z[n:], c)
+ }
+}
+
+// Like karatsubaAdd, but does subtract.
+func karatsubaSub(z, x nat, n int) {
+ if c := subVV(z[0:n], z, x); c != 0 {
+ subVW(z[n:n+n>>1], z[n:], c)
+ }
+}
+
+// Operands that are shorter than karatsubaThreshold are multiplied using
+// "grade school" multiplication; for longer operands the Karatsuba algorithm
+// is used.
+var karatsubaThreshold = 40 // computed by calibrate_test.go
+
+// karatsuba multiplies x and y and leaves the result in z.
+// Both x and y must have the same length n and n must be a
+// power of 2. The result vector z must have len(z) >= 6*n.
+// The (non-normalized) result is placed in z[0 : 2*n].
+func karatsuba(z, x, y nat) {
+ n := len(y)
+
+ // Switch to basic multiplication if numbers are odd or small.
+ // (n is always even if karatsubaThreshold is even, but be
+ // conservative)
+ if n&1 != 0 || n < karatsubaThreshold || n < 2 {
+ basicMul(z, x, y)
+ return
+ }
+ // n&1 == 0 && n >= karatsubaThreshold && n >= 2
+
+ // Karatsuba multiplication is based on the observation that
+ // for two numbers x and y with:
+ //
+ // x = x1*b + x0
+ // y = y1*b + y0
+ //
+ // the product x*y can be obtained with 3 products z2, z1, z0
+ // instead of 4:
+ //
+ // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
+ // = z2*b*b + z1*b + z0
+ //
+ // with:
+ //
+ // xd = x1 - x0
+ // yd = y0 - y1
+ //
+ // z1 = xd*yd + z2 + z0
+ // = (x1-x0)*(y0 - y1) + z2 + z0
+ // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
+ // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0
+ // = x1*y0 + x0*y1
+
+ // split x, y into "digits"
+ n2 := n >> 1 // n2 >= 1
+ x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
+ y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
+
+ // z is used for the result and temporary storage:
+ //
+ // 6*n 5*n 4*n 3*n 2*n 1*n 0*n
+ // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
+ //
+ // For each recursive call of karatsuba, an unused slice of
+ // z is passed in that has (at least) half the length of the
+ // caller's z.
+
+ // compute z0 and z2 with the result "in place" in z
+ karatsuba(z, x0, y0) // z0 = x0*y0
+ karatsuba(z[n:], x1, y1) // z2 = x1*y1
+
+ // compute xd (or the negative value if underflow occurs)
+ s := 1 // sign of product xd*yd
+ xd := z[2*n : 2*n+n2]
+ if subVV(xd, x1, x0) != 0 { // x1-x0
+ s = -s
+ subVV(xd, x0, x1) // x0-x1
+ }
+
+ // compute yd (or the negative value if underflow occurs)
+ yd := z[2*n+n2 : 3*n]
+ if subVV(yd, y0, y1) != 0 { // y0-y1
+ s = -s
+ subVV(yd, y1, y0) // y1-y0
+ }
+
+ // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
+ // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
+ p := z[n*3:]
+ karatsuba(p, xd, yd)
+
+ // save original z2:z0
+ // (ok to use upper half of z since we're done recurring)
+ r := z[n*4:]
+ copy(r, z[:n*2])
+
+ // add up all partial products
+ //
+ // 2*n n 0
+ // z = [ z2 | z0 ]
+ // + [ z0 ]
+ // + [ z2 ]
+ // + [ p ]
+ //
+ karatsubaAdd(z[n2:], r, n)
+ karatsubaAdd(z[n2:], r[n:], n)
+ if s > 0 {
+ karatsubaAdd(z[n2:], p, n)
+ } else {
+ karatsubaSub(z[n2:], p, n)
+ }
+}
+
+// alias reports whether x and y share the same base array.
+//
+// Note: alias assumes that the capacity of underlying arrays
+// is never changed for nat values; i.e. that there are
+// no 3-operand slice expressions in this code (or worse,
+// reflect-based operations to the same effect).
+func alias(x, y nat) bool {
+ return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
+}
+
+// addAt implements z += x<<(_W*i); z must be long enough.
+// (we don't use nat.add because we need z to stay the same
+// slice, and we don't need to normalize z after each addition)
+func addAt(z, x nat, i int) {
+ if n := len(x); n > 0 {
+ if c := addVV(z[i:i+n], z[i:], x); c != 0 {
+ j := i + n
+ if j < len(z) {
+ addVW(z[j:], z[j:], c)
+ }
+ }
+ }
+}
+
+func max(x, y int) int {
+ if x > y {
+ return x
+ }
+ return y
+}
+
+// karatsubaLen computes an approximation to the maximum k <= n such that
+// k = p<<i for a number p <= threshold and an i >= 0. Thus, the
+// result is the largest number that can be divided repeatedly by 2 before
+// becoming about the value of threshold.
+func karatsubaLen(n, threshold int) int {
+ i := uint(0)
+ for n > threshold {
+ n >>= 1
+ i++
+ }
+ return n << i
+}
+
+func (z nat) mul(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+
+ switch {
+ case m < n:
+ return z.mul(y, x)
+ case m == 0 || n == 0:
+ return z[:0]
+ case n == 1:
+ return z.mulAddWW(x, y[0], 0)
+ }
+ // m >= n > 1
+
+ // determine if z can be reused
+ if alias(z, x) || alias(z, y) {
+ z = nil // z is an alias for x or y - cannot reuse
+ }
+
+ // use basic multiplication if the numbers are small
+ if n < karatsubaThreshold {
+ z = z.make(m + n)
+ basicMul(z, x, y)
+ return z.norm()
+ }
+ // m >= n && n >= karatsubaThreshold && n >= 2
+
+ // determine Karatsuba length k such that
+ //
+ // x = xh*b + x0 (0 <= x0 < b)
+ // y = yh*b + y0 (0 <= y0 < b)
+ // b = 1<<(_W*k) ("base" of digits xi, yi)
+ //
+ k := karatsubaLen(n, karatsubaThreshold)
+ // k <= n
+
+ // multiply x0 and y0 via Karatsuba
+ x0 := x[0:k] // x0 is not normalized
+ y0 := y[0:k] // y0 is not normalized
+ z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
+ karatsuba(z, x0, y0)
+ z = z[0 : m+n] // z has final length but may be incomplete
+ z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
+
+ // If xh != 0 or yh != 0, add the missing terms to z. For
+ //
+ // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
+ // yh = y1*b (0 <= y1 < b)
+ //
+ // the missing terms are
+ //
+ // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
+ //
+ // since all the yi for i > 1 are 0 by choice of k: If any of them
+ // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
+ // be a larger valid threshold contradicting the assumption about k.
+ //
+ if k < n || m != n {
+ tp := getNat(3 * k)
+ t := *tp
+
+ // add x0*y1*b
+ x0 := x0.norm()
+ y1 := y[k:] // y1 is normalized because y is
+ t = t.mul(x0, y1) // update t so we don't lose t's underlying array
+ addAt(z, t, k)
+
+ // add xi*y0<<i, xi*y1*b<<(i+k)
+ y0 := y0.norm()
+ for i := k; i < len(x); i += k {
+ xi := x[i:]
+ if len(xi) > k {
+ xi = xi[:k]
+ }
+ xi = xi.norm()
+ t = t.mul(xi, y0)
+ addAt(z, t, i)
+ t = t.mul(xi, y1)
+ addAt(z, t, i+k)
+ }
+
+ putNat(tp)
+ }
+
+ return z.norm()
+}
+
+// basicSqr sets z = x*x and is asymptotically faster than basicMul
+// by about a factor of 2, but slower for small arguments due to overhead.
+// Requirements: len(x) > 0, len(z) == 2*len(x)
+// The (non-normalized) result is placed in z.
+func basicSqr(z, x nat) {
+ n := len(x)
+ tp := getNat(2 * n)
+ t := *tp // temporary variable to hold the products
+ t.clear()
+ z[1], z[0] = mulWW(x[0], x[0]) // the initial square
+ for i := 1; i < n; i++ {
+ d := x[i]
+ // z collects the squares x[i] * x[i]
+ z[2*i+1], z[2*i] = mulWW(d, d)
+ // t collects the products x[i] * x[j] where j < i
+ t[2*i] = addMulVVW(t[i:2*i], x[0:i], d)
+ }
+ t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products
+ addVV(z, z, t) // combine the result
+ putNat(tp)
+}
+
+// karatsubaSqr squares x and leaves the result in z.
+// len(x) must be a power of 2 and len(z) >= 6*len(x).
+// The (non-normalized) result is placed in z[0 : 2*len(x)].
+//
+// The algorithm and the layout of z are the same as for karatsuba.
+func karatsubaSqr(z, x nat) {
+ n := len(x)
+
+ if n&1 != 0 || n < karatsubaSqrThreshold || n < 2 {
+ basicSqr(z[:2*n], x)
+ return
+ }
+
+ n2 := n >> 1
+ x1, x0 := x[n2:], x[0:n2]
+
+ karatsubaSqr(z, x0)
+ karatsubaSqr(z[n:], x1)
+
+ // s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0
+ xd := z[2*n : 2*n+n2]
+ if subVV(xd, x1, x0) != 0 {
+ subVV(xd, x0, x1)
+ }
+
+ p := z[n*3:]
+ karatsubaSqr(p, xd)
+
+ r := z[n*4:]
+ copy(r, z[:n*2])
+
+ karatsubaAdd(z[n2:], r, n)
+ karatsubaAdd(z[n2:], r[n:], n)
+ karatsubaSub(z[n2:], p, n) // s == -1 for p != 0; s == 1 for p == 0
+}
+
+// Operands that are shorter than basicSqrThreshold are squared using
+// "grade school" multiplication; for operands longer than karatsubaSqrThreshold
+// we use the Karatsuba algorithm optimized for x == y.
+var basicSqrThreshold = 20 // computed by calibrate_test.go
+var karatsubaSqrThreshold = 260 // computed by calibrate_test.go
+
+// z = x*x
+func (z nat) sqr(x nat) nat {
+ n := len(x)
+ switch {
+ case n == 0:
+ return z[:0]
+ case n == 1:
+ d := x[0]
+ z = z.make(2)
+ z[1], z[0] = mulWW(d, d)
+ return z.norm()
+ }
+
+ if alias(z, x) {
+ z = nil // z is an alias for x - cannot reuse
+ }
+
+ if n < basicSqrThreshold {
+ z = z.make(2 * n)
+ basicMul(z, x, x)
+ return z.norm()
+ }
+ if n < karatsubaSqrThreshold {
+ z = z.make(2 * n)
+ basicSqr(z, x)
+ return z.norm()
+ }
+
+ // Use Karatsuba multiplication optimized for x == y.
+ // The algorithm and layout of z are the same as for mul.
+
+ // z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2
+
+ k := karatsubaLen(n, karatsubaSqrThreshold)
+
+ x0 := x[0:k]
+ z = z.make(max(6*k, 2*n))
+ karatsubaSqr(z, x0) // z = x0^2
+ z = z[0 : 2*n]
+ z[2*k:].clear()
+
+ if k < n {
+ tp := getNat(2 * k)
+ t := *tp
+ x0 := x0.norm()
+ x1 := x[k:]
+ t = t.mul(x0, x1)
+ addAt(z, t, k)
+ addAt(z, t, k) // z = 2*x1*x0*b + x0^2
+ t = t.sqr(x1)
+ addAt(z, t, 2*k) // z = x1^2*b^2 + 2*x1*x0*b + x0^2
+ putNat(tp)
+ }
+
+ return z.norm()
+}
+
+// mulRange computes the product of all the unsigned integers in the
+// range [a, b] inclusively. If a > b (empty range), the result is 1.
+func (z nat) mulRange(a, b uint64) nat {
+ switch {
+ case a == 0:
+ // cut long ranges short (optimization)
+ return z.setUint64(0)
+ case a > b:
+ return z.setUint64(1)
+ case a == b:
+ return z.setUint64(a)
+ case a+1 == b:
+ return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
+ }
+ m := (a + b) / 2
+ return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
+}
+
+// getNat returns a *nat of len n. The contents may not be zero.
+// The pool holds *nat to avoid allocation when converting to interface{}.
+func getNat(n int) *nat {
+ var z *nat
+ if v := natPool.Get(); v != nil {
+ z = v.(*nat)
+ }
+ if z == nil {
+ z = new(nat)
+ }
+ *z = z.make(n)
+ if n > 0 {
+ (*z)[0] = 0xfedcb // break code expecting zero
+ }
+ return z
+}
+
+func putNat(x *nat) {
+ natPool.Put(x)
+}
+
+var natPool sync.Pool
+
+// bitLen returns the length of x in bits.
+// Unlike most methods, it works even if x is not normalized.
+func (x nat) bitLen() int {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ if i := len(x) - 1; i >= 0 {
+ // bits.Len uses a lookup table for the low-order bits on some
+ // architectures. Neutralize any input-dependent behavior by setting all
+ // bits after the first one bit.
+ top := uint(x[i])
+ top |= top >> 1
+ top |= top >> 2
+ top |= top >> 4
+ top |= top >> 8
+ top |= top >> 16
+ top |= top >> 16 >> 16 // ">> 32" doesn't compile on 32-bit architectures
+ return i*_W + bits.Len(top)
+ }
+ return 0
+}
+
+// trailingZeroBits returns the number of consecutive least significant zero
+// bits of x.
+func (x nat) trailingZeroBits() uint {
+ if len(x) == 0 {
+ return 0
+ }
+ var i uint
+ for x[i] == 0 {
+ i++
+ }
+ // x[i] != 0
+ return i*_W + uint(bits.TrailingZeros(uint(x[i])))
+}
+
+// isPow2 returns i, true when x == 2**i and 0, false otherwise.
+func (x nat) isPow2() (uint, bool) {
+ var i uint
+ for x[i] == 0 {
+ i++
+ }
+ if i == uint(len(x))-1 && x[i]&(x[i]-1) == 0 {
+ return i*_W + uint(bits.TrailingZeros(uint(x[i]))), true
+ }
+ return 0, false
+}
+
+func same(x, y nat) bool {
+ return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0]
+}
+
+// z = x << s
+func (z nat) shl(x nat, s uint) nat {
+ if s == 0 {
+ if same(z, x) {
+ return z
+ }
+ if !alias(z, x) {
+ return z.set(x)
+ }
+ }
+
+ m := len(x)
+ if m == 0 {
+ return z[:0]
+ }
+ // m > 0
+
+ n := m + int(s/_W)
+ z = z.make(n + 1)
+ z[n] = shlVU(z[n-m:n], x, s%_W)
+ z[0 : n-m].clear()
+
+ return z.norm()
+}
+
+// z = x >> s
+func (z nat) shr(x nat, s uint) nat {
+ if s == 0 {
+ if same(z, x) {
+ return z
+ }
+ if !alias(z, x) {
+ return z.set(x)
+ }
+ }
+
+ m := len(x)
+ n := m - int(s/_W)
+ if n <= 0 {
+ return z[:0]
+ }
+ // n > 0
+
+ z = z.make(n)
+ shrVU(z, x[m-n:], s%_W)
+
+ return z.norm()
+}
+
+func (z nat) setBit(x nat, i uint, b uint) nat {
+ j := int(i / _W)
+ m := Word(1) << (i % _W)
+ n := len(x)
+ switch b {
+ case 0:
+ z = z.make(n)
+ copy(z, x)
+ if j >= n {
+ // no need to grow
+ return z
+ }
+ z[j] &^= m
+ return z.norm()
+ case 1:
+ if j >= n {
+ z = z.make(j + 1)
+ z[n:].clear()
+ } else {
+ z = z.make(n)
+ }
+ copy(z, x)
+ z[j] |= m
+ // no need to normalize
+ return z
+ }
+ panic("set bit is not 0 or 1")
+}
+
+// bit returns the value of the i'th bit, with lsb == bit 0.
+func (x nat) bit(i uint) uint {
+ j := i / _W
+ if j >= uint(len(x)) {
+ return 0
+ }
+ // 0 <= j < len(x)
+ return uint(x[j] >> (i % _W) & 1)
+}
+
+// sticky returns 1 if there's a 1 bit within the
+// i least significant bits, otherwise it returns 0.
+func (x nat) sticky(i uint) uint {
+ j := i / _W
+ if j >= uint(len(x)) {
+ if len(x) == 0 {
+ return 0
+ }
+ return 1
+ }
+ // 0 <= j < len(x)
+ for _, x := range x[:j] {
+ if x != 0 {
+ return 1
+ }
+ }
+ if x[j]<<(_W-i%_W) != 0 {
+ return 1
+ }
+ return 0
+}
+
+func (z nat) and(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ if m > n {
+ m = n
+ }
+ // m <= n
+
+ z = z.make(m)
+ for i := 0; i < m; i++ {
+ z[i] = x[i] & y[i]
+ }
+
+ return z.norm()
+}
+
+// trunc returns z = x mod 2ⁿ.
+func (z nat) trunc(x nat, n uint) nat {
+ w := (n + _W - 1) / _W
+ if uint(len(x)) < w {
+ return z.set(x)
+ }
+ z = z.make(int(w))
+ copy(z, x)
+ if n%_W != 0 {
+ z[len(z)-1] &= 1<<(n%_W) - 1
+ }
+ return z.norm()
+}
+
+func (z nat) andNot(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ if n > m {
+ n = m
+ }
+ // m >= n
+
+ z = z.make(m)
+ for i := 0; i < n; i++ {
+ z[i] = x[i] &^ y[i]
+ }
+ copy(z[n:m], x[n:m])
+
+ return z.norm()
+}
+
+func (z nat) or(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ s := x
+ if m < n {
+ n, m = m, n
+ s = y
+ }
+ // m >= n
+
+ z = z.make(m)
+ for i := 0; i < n; i++ {
+ z[i] = x[i] | y[i]
+ }
+ copy(z[n:m], s[n:m])
+
+ return z.norm()
+}
+
+func (z nat) xor(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ s := x
+ if m < n {
+ n, m = m, n
+ s = y
+ }
+ // m >= n
+
+ z = z.make(m)
+ for i := 0; i < n; i++ {
+ z[i] = x[i] ^ y[i]
+ }
+ copy(z[n:m], s[n:m])
+
+ return z.norm()
+}
+
+// random creates a random integer in [0..limit), using the space in z if
+// possible. n is the bit length of limit.
+func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
+ if alias(z, limit) {
+ z = nil // z is an alias for limit - cannot reuse
+ }
+ z = z.make(len(limit))
+
+ bitLengthOfMSW := uint(n % _W)
+ if bitLengthOfMSW == 0 {
+ bitLengthOfMSW = _W
+ }
+ mask := Word((1 << bitLengthOfMSW) - 1)
+
+ for {
+ switch _W {
+ case 32:
+ for i := range z {
+ z[i] = Word(rand.Uint32())
+ }
+ case 64:
+ for i := range z {
+ z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
+ }
+ default:
+ panic("unknown word size")
+ }
+ z[len(limit)-1] &= mask
+ if z.cmp(limit) < 0 {
+ break
+ }
+ }
+
+ return z.norm()
+}
+
+// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
+// otherwise it sets z to x**y. The result is the value of z.
+func (z nat) expNN(x, y, m nat, slow bool) nat {
+ if alias(z, x) || alias(z, y) {
+ // We cannot allow in-place modification of x or y.
+ z = nil
+ }
+
+ // x**y mod 1 == 0
+ if len(m) == 1 && m[0] == 1 {
+ return z.setWord(0)
+ }
+ // m == 0 || m > 1
+
+ // x**0 == 1
+ if len(y) == 0 {
+ return z.setWord(1)
+ }
+ // y > 0
+
+ // 0**y = 0
+ if len(x) == 0 {
+ return z.setWord(0)
+ }
+ // x > 0
+
+ // 1**y = 1
+ if len(x) == 1 && x[0] == 1 {
+ return z.setWord(1)
+ }
+ // x > 1
+
+ // x**1 == x
+ if len(y) == 1 && y[0] == 1 {
+ if len(m) != 0 {
+ return z.rem(x, m)
+ }
+ return z.set(x)
+ }
+ // y > 1
+
+ if len(m) != 0 {
+ // We likely end up being as long as the modulus.
+ z = z.make(len(m))
+
+ // If the exponent is large, we use the Montgomery method for odd values,
+ // and a 4-bit, windowed exponentiation for powers of two,
+ // and a CRT-decomposed Montgomery method for the remaining values
+ // (even values times non-trivial odd values, which decompose into one
+ // instance of each of the first two cases).
+ if len(y) > 1 && !slow {
+ if m[0]&1 == 1 {
+ return z.expNNMontgomery(x, y, m)
+ }
+ if logM, ok := m.isPow2(); ok {
+ return z.expNNWindowed(x, y, logM)
+ }
+ return z.expNNMontgomeryEven(x, y, m)
+ }
+ }
+
+ z = z.set(x)
+ v := y[len(y)-1] // v > 0 because y is normalized and y > 0
+ shift := nlz(v) + 1
+ v <<= shift
+ var q nat
+
+ const mask = 1 << (_W - 1)
+
+ // We walk through the bits of the exponent one by one. Each time we
+ // see a bit, we square, thus doubling the power. If the bit is a one,
+ // we also multiply by x, thus adding one to the power.
+
+ w := _W - int(shift)
+ // zz and r are used to avoid allocating in mul and div as
+ // otherwise the arguments would alias.
+ var zz, r nat
+ for j := 0; j < w; j++ {
+ zz = zz.sqr(z)
+ zz, z = z, zz
+
+ if v&mask != 0 {
+ zz = zz.mul(z, x)
+ zz, z = z, zz
+ }
+
+ if len(m) != 0 {
+ zz, r = zz.div(r, z, m)
+ zz, r, q, z = q, z, zz, r
+ }
+
+ v <<= 1
+ }
+
+ for i := len(y) - 2; i >= 0; i-- {
+ v = y[i]
+
+ for j := 0; j < _W; j++ {
+ zz = zz.sqr(z)
+ zz, z = z, zz
+
+ if v&mask != 0 {
+ zz = zz.mul(z, x)
+ zz, z = z, zz
+ }
+
+ if len(m) != 0 {
+ zz, r = zz.div(r, z, m)
+ zz, r, q, z = q, z, zz, r
+ }
+
+ v <<= 1
+ }
+ }
+
+ return z.norm()
+}
+
+// expNNMontgomeryEven calculates x**y mod m where m = m1 × m2 for m1 = 2ⁿ and m2 odd.
+// It uses two recursive calls to expNN for x**y mod m1 and x**y mod m2
+// and then uses the Chinese Remainder Theorem to combine the results.
+// The recursive call using m1 will use expNNWindowed,
+// while the recursive call using m2 will use expNNMontgomery.
+// For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”,
+// IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994.
+// http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf
+func (z nat) expNNMontgomeryEven(x, y, m nat) nat {
+ // Split m = m₁ × m₂ where m₁ = 2ⁿ
+ n := m.trailingZeroBits()
+ m1 := nat(nil).shl(natOne, n)
+ m2 := nat(nil).shr(m, n)
+
+ // We want z = x**y mod m.
+ // z₁ = x**y mod m1 = (x**y mod m) mod m1 = z mod m1
+ // z₂ = x**y mod m2 = (x**y mod m) mod m2 = z mod m2
+ // (We are using the math/big convention for names here,
+ // where the computation is z = x**y mod m, so its parts are z1 and z2.
+ // The paper is computing x = a**e mod n; it refers to these as x2 and z1.)
+ z1 := nat(nil).expNN(x, y, m1, false)
+ z2 := nat(nil).expNN(x, y, m2, false)
+
+ // Reconstruct z from z₁, z₂ using CRT, using algorithm from paper,
+ // which uses only a single modInverse (and an easy one at that).
+ // p = (z₁ - z₂) × m₂⁻¹ (mod m₁)
+ // z = z₂ + p × m₂
+ // The final addition is in range because:
+ // z = z₂ + p × m₂
+ // ≤ z₂ + (m₁-1) × m₂
+ // < m₂ + (m₁-1) × m₂
+ // = m₁ × m₂
+ // = m.
+ z = z.set(z2)
+
+ // Compute (z₁ - z₂) mod m1 [m1 == 2**n] into z1.
+ z1 = z1.subMod2N(z1, z2, n)
+
+ // Reuse z2 for p = (z₁ - z₂) [in z1] * m2⁻¹ (mod m₁ [= 2ⁿ]).
+ m2inv := nat(nil).modInverse(m2, m1)
+ z2 = z2.mul(z1, m2inv)
+ z2 = z2.trunc(z2, n)
+
+ // Reuse z1 for p * m2.
+ z = z.add(z, z1.mul(z2, m2))
+
+ return z
+}
+
+// expNNWindowed calculates x**y mod m using a fixed, 4-bit window,
+// where m = 2**logM.
+func (z nat) expNNWindowed(x, y nat, logM uint) nat {
+ if len(y) <= 1 {
+ panic("big: misuse of expNNWindowed")
+ }
+ if x[0]&1 == 0 {
+ // len(y) > 1, so y > logM.
+ // x is even, so x**y is a multiple of 2**y which is a multiple of 2**logM.
+ return z.setWord(0)
+ }
+ if logM == 1 {
+ return z.setWord(1)
+ }
+
+ // zz is used to avoid allocating in mul as otherwise
+ // the arguments would alias.
+ w := int((logM + _W - 1) / _W)
+ zzp := getNat(w)
+ zz := *zzp
+
+ const n = 4
+ // powers[i] contains x^i.
+ var powers [1 << n]*nat
+ for i := range powers {
+ powers[i] = getNat(w)
+ }
+ *powers[0] = powers[0].set(natOne)
+ *powers[1] = powers[1].trunc(x, logM)
+ for i := 2; i < 1<<n; i += 2 {
+ p2, p, p1 := powers[i/2], powers[i], powers[i+1]
+ *p = p.sqr(*p2)
+ *p = p.trunc(*p, logM)
+ *p1 = p1.mul(*p, x)
+ *p1 = p1.trunc(*p1, logM)
+ }
+
+ // Because phi(2**logM) = 2**(logM-1), x**(2**(logM-1)) = 1,
+ // so we can compute x**(y mod 2**(logM-1)) instead of x**y.
+ // That is, we can throw away all but the bottom logM-1 bits of y.
+ // Instead of allocating a new y, we start reading y at the right word
+ // and truncate it appropriately at the start of the loop.
+ i := len(y) - 1
+ mtop := int((logM - 2) / _W) // -2 because the top word of N bits is the (N-1)/W'th word.
+ mmask := ^Word(0)
+ if mbits := (logM - 1) & (_W - 1); mbits != 0 {
+ mmask = (1 << mbits) - 1
+ }
+ if i > mtop {
+ i = mtop
+ }
+ advance := false
+ z = z.setWord(1)
+ for ; i >= 0; i-- {
+ yi := y[i]
+ if i == mtop {
+ yi &= mmask
+ }
+ for j := 0; j < _W; j += n {
+ if advance {
+ // Account for use of 4 bits in previous iteration.
+ // Unrolled loop for significant performance
+ // gain. Use go test -bench=".*" in crypto/rsa
+ // to check performance before making changes.
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+ }
+
+ zz = zz.mul(z, *powers[yi>>(_W-n)])
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+
+ yi <<= n
+ advance = true
+ }
+ }
+
+ *zzp = zz
+ putNat(zzp)
+ for i := range powers {
+ putNat(powers[i])
+ }
+
+ return z.norm()
+}
+
+// expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
+// Uses Montgomery representation.
+func (z nat) expNNMontgomery(x, y, m nat) nat {
+ numWords := len(m)
+
+ // We want the lengths of x and m to be equal.
+ // It is OK if x >= m as long as len(x) == len(m).
+ if len(x) > numWords {
+ _, x = nat(nil).div(nil, x, m)
+ // Note: now len(x) <= numWords, not guaranteed ==.
+ }
+ if len(x) < numWords {
+ rr := make(nat, numWords)
+ copy(rr, x)
+ x = rr
+ }
+
+ // Ideally the precomputations would be performed outside, and reused
+ // k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson
+ // Iteration for Multiplicative Inverses Modulo Prime Powers".
+ k0 := 2 - m[0]
+ t := m[0] - 1
+ for i := 1; i < _W; i <<= 1 {
+ t *= t
+ k0 *= (t + 1)
+ }
+ k0 = -k0
+
+ // RR = 2**(2*_W*len(m)) mod m
+ RR := nat(nil).setWord(1)
+ zz := nat(nil).shl(RR, uint(2*numWords*_W))
+ _, RR = nat(nil).div(RR, zz, m)
+ if len(RR) < numWords {
+ zz = zz.make(numWords)
+ copy(zz, RR)
+ RR = zz
+ }
+ // one = 1, with equal length to that of m
+ one := make(nat, numWords)
+ one[0] = 1
+
+ const n = 4
+ // powers[i] contains x^i
+ var powers [1 << n]nat
+ powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
+ powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
+ for i := 2; i < 1<<n; i++ {
+ powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
+ }
+
+ // initialize z = 1 (Montgomery 1)
+ z = z.make(numWords)
+ copy(z, powers[0])
+
+ zz = zz.make(numWords)
+
+ // same windowed exponent, but with Montgomery multiplications
+ for i := len(y) - 1; i >= 0; i-- {
+ yi := y[i]
+ for j := 0; j < _W; j += n {
+ if i != len(y)-1 || j != 0 {
+ zz = zz.montgomery(z, z, m, k0, numWords)
+ z = z.montgomery(zz, zz, m, k0, numWords)
+ zz = zz.montgomery(z, z, m, k0, numWords)
+ z = z.montgomery(zz, zz, m, k0, numWords)
+ }
+ zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
+ z, zz = zz, z
+ yi <<= n
+ }
+ }
+ // convert to regular number
+ zz = zz.montgomery(z, one, m, k0, numWords)
+
+ // One last reduction, just in case.
+ // See golang.org/issue/13907.
+ if zz.cmp(m) >= 0 {
+ // Common case is m has high bit set; in that case,
+ // since zz is the same length as m, there can be just
+ // one multiple of m to remove. Just subtract.
+ // We think that the subtract should be sufficient in general,
+ // so do that unconditionally, but double-check,
+ // in case our beliefs are wrong.
+ // The div is not expected to be reached.
+ zz = zz.sub(zz, m)
+ if zz.cmp(m) >= 0 {
+ _, zz = nat(nil).div(nil, zz, m)
+ }
+ }
+
+ return zz.norm()
+}
+
+// bytes writes the value of z into buf using big-endian encoding.
+// The value of z is encoded in the slice buf[i:]. If the value of z
+// cannot be represented in buf, bytes panics. The number i of unused
+// bytes at the beginning of buf is returned as result.
+func (z nat) bytes(buf []byte) (i int) {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ i = len(buf)
+ for _, d := range z {
+ for j := 0; j < _S; j++ {
+ i--
+ if i >= 0 {
+ buf[i] = byte(d)
+ } else if byte(d) != 0 {
+ panic("math/big: buffer too small to fit value")
+ }
+ d >>= 8
+ }
+ }
+
+ if i < 0 {
+ i = 0
+ }
+ for i < len(buf) && buf[i] == 0 {
+ i++
+ }
+
+ return
+}
+
+// bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value.
+func bigEndianWord(buf []byte) Word {
+ if _W == 64 {
+ return Word(binary.BigEndian.Uint64(buf))
+ }
+ return Word(binary.BigEndian.Uint32(buf))
+}
+
+// setBytes interprets buf as the bytes of a big-endian unsigned
+// integer, sets z to that value, and returns z.
+func (z nat) setBytes(buf []byte) nat {
+ z = z.make((len(buf) + _S - 1) / _S)
+
+ i := len(buf)
+ for k := 0; i >= _S; k++ {
+ z[k] = bigEndianWord(buf[i-_S : i])
+ i -= _S
+ }
+ if i > 0 {
+ var d Word
+ for s := uint(0); i > 0; s += 8 {
+ d |= Word(buf[i-1]) << s
+ i--
+ }
+ z[len(z)-1] = d
+ }
+
+ return z.norm()
+}
+
+// sqrt sets z = ⌊√x⌋
+func (z nat) sqrt(x nat) nat {
+ if x.cmp(natOne) <= 0 {
+ return z.set(x)
+ }
+ if alias(z, x) {
+ z = nil
+ }
+
+ // Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
+ // See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
+ // https://members.loria.fr/PZimmermann/mca/pub226.html
+ // If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
+ // otherwise it converges to the correct z and stays there.
+ var z1, z2 nat
+ z1 = z
+ z1 = z1.setUint64(1)
+ z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x
+ for n := 0; ; n++ {
+ z2, _ = z2.div(nil, x, z1)
+ z2 = z2.add(z2, z1)
+ z2 = z2.shr(z2, 1)
+ if z2.cmp(z1) >= 0 {
+ // z1 is answer.
+ // Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
+ if n&1 == 0 {
+ return z1
+ }
+ return z.set(z1)
+ }
+ z1, z2 = z2, z1
+ }
+}
+
+// subMod2N returns z = (x - y) mod 2ⁿ.
+func (z nat) subMod2N(x, y nat, n uint) nat {
+ if uint(x.bitLen()) > n {
+ if alias(z, x) {
+ // ok to overwrite x in place
+ x = x.trunc(x, n)
+ } else {
+ x = nat(nil).trunc(x, n)
+ }
+ }
+ if uint(y.bitLen()) > n {
+ if alias(z, y) {
+ // ok to overwrite y in place
+ y = y.trunc(y, n)
+ } else {
+ y = nat(nil).trunc(y, n)
+ }
+ }
+ if x.cmp(y) >= 0 {
+ return z.sub(x, y)
+ }
+ // x - y < 0; x - y mod 2ⁿ = x - y + 2ⁿ = 2ⁿ - (y - x) = 1 + 2ⁿ-1 - (y - x) = 1 + ^(y - x).
+ z = z.sub(y, x)
+ for uint(len(z))*_W < n {
+ z = append(z, 0)
+ }
+ for i := range z {
+ z[i] = ^z[i]
+ }
+ z = z.trunc(z, n)
+ return z.add(z, natOne)
+}