summaryrefslogtreecommitdiffstats
path: root/src/math/bits/bits.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/math/bits/bits.go
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/bits/bits.go')
-rw-r--r--src/math/bits/bits.go599
1 files changed, 599 insertions, 0 deletions
diff --git a/src/math/bits/bits.go b/src/math/bits/bits.go
new file mode 100644
index 0000000..c1c7b79
--- /dev/null
+++ b/src/math/bits/bits.go
@@ -0,0 +1,599 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:generate go run make_tables.go
+
+// Package bits implements bit counting and manipulation
+// functions for the predeclared unsigned integer types.
+//
+// Functions in this package may be implemented directly by
+// the compiler, for better performance. For those functions
+// the code in this package will not be used. Which
+// functions are implemented by the compiler depends on the
+// architecture and the Go release.
+package bits
+
+const uintSize = 32 << (^uint(0) >> 63) // 32 or 64
+
+// UintSize is the size of a uint in bits.
+const UintSize = uintSize
+
+// --- LeadingZeros ---
+
+// LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
+func LeadingZeros(x uint) int { return UintSize - Len(x) }
+
+// LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
+func LeadingZeros8(x uint8) int { return 8 - Len8(x) }
+
+// LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
+func LeadingZeros16(x uint16) int { return 16 - Len16(x) }
+
+// LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
+func LeadingZeros32(x uint32) int { return 32 - Len32(x) }
+
+// LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
+func LeadingZeros64(x uint64) int { return 64 - Len64(x) }
+
+// --- TrailingZeros ---
+
+// See http://supertech.csail.mit.edu/papers/debruijn.pdf
+const deBruijn32 = 0x077CB531
+
+var deBruijn32tab = [32]byte{
+ 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
+ 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
+}
+
+const deBruijn64 = 0x03f79d71b4ca8b09
+
+var deBruijn64tab = [64]byte{
+ 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
+ 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
+ 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
+ 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
+}
+
+// TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
+func TrailingZeros(x uint) int {
+ if UintSize == 32 {
+ return TrailingZeros32(uint32(x))
+ }
+ return TrailingZeros64(uint64(x))
+}
+
+// TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
+func TrailingZeros8(x uint8) int {
+ return int(ntz8tab[x])
+}
+
+// TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
+func TrailingZeros16(x uint16) int {
+ if x == 0 {
+ return 16
+ }
+ // see comment in TrailingZeros64
+ return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
+}
+
+// TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
+func TrailingZeros32(x uint32) int {
+ if x == 0 {
+ return 32
+ }
+ // see comment in TrailingZeros64
+ return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
+}
+
+// TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
+func TrailingZeros64(x uint64) int {
+ if x == 0 {
+ return 64
+ }
+ // If popcount is fast, replace code below with return popcount(^x & (x - 1)).
+ //
+ // x & -x leaves only the right-most bit set in the word. Let k be the
+ // index of that bit. Since only a single bit is set, the value is two
+ // to the power of k. Multiplying by a power of two is equivalent to
+ // left shifting, in this case by k bits. The de Bruijn (64 bit) constant
+ // is such that all six bit, consecutive substrings are distinct.
+ // Therefore, if we have a left shifted version of this constant we can
+ // find by how many bits it was shifted by looking at which six bit
+ // substring ended up at the top of the word.
+ // (Knuth, volume 4, section 7.3.1)
+ return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
+}
+
+// --- OnesCount ---
+
+const m0 = 0x5555555555555555 // 01010101 ...
+const m1 = 0x3333333333333333 // 00110011 ...
+const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
+const m3 = 0x00ff00ff00ff00ff // etc.
+const m4 = 0x0000ffff0000ffff
+
+// OnesCount returns the number of one bits ("population count") in x.
+func OnesCount(x uint) int {
+ if UintSize == 32 {
+ return OnesCount32(uint32(x))
+ }
+ return OnesCount64(uint64(x))
+}
+
+// OnesCount8 returns the number of one bits ("population count") in x.
+func OnesCount8(x uint8) int {
+ return int(pop8tab[x])
+}
+
+// OnesCount16 returns the number of one bits ("population count") in x.
+func OnesCount16(x uint16) int {
+ return int(pop8tab[x>>8] + pop8tab[x&0xff])
+}
+
+// OnesCount32 returns the number of one bits ("population count") in x.
+func OnesCount32(x uint32) int {
+ return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff])
+}
+
+// OnesCount64 returns the number of one bits ("population count") in x.
+func OnesCount64(x uint64) int {
+ // Implementation: Parallel summing of adjacent bits.
+ // See "Hacker's Delight", Chap. 5: Counting Bits.
+ // The following pattern shows the general approach:
+ //
+ // x = x>>1&(m0&m) + x&(m0&m)
+ // x = x>>2&(m1&m) + x&(m1&m)
+ // x = x>>4&(m2&m) + x&(m2&m)
+ // x = x>>8&(m3&m) + x&(m3&m)
+ // x = x>>16&(m4&m) + x&(m4&m)
+ // x = x>>32&(m5&m) + x&(m5&m)
+ // return int(x)
+ //
+ // Masking (& operations) can be left away when there's no
+ // danger that a field's sum will carry over into the next
+ // field: Since the result cannot be > 64, 8 bits is enough
+ // and we can ignore the masks for the shifts by 8 and up.
+ // Per "Hacker's Delight", the first line can be simplified
+ // more, but it saves at best one instruction, so we leave
+ // it alone for clarity.
+ const m = 1<<64 - 1
+ x = x>>1&(m0&m) + x&(m0&m)
+ x = x>>2&(m1&m) + x&(m1&m)
+ x = (x>>4 + x) & (m2 & m)
+ x += x >> 8
+ x += x >> 16
+ x += x >> 32
+ return int(x) & (1<<7 - 1)
+}
+
+// --- RotateLeft ---
+
+// RotateLeft returns the value of x rotated left by (k mod UintSize) bits.
+// To rotate x right by k bits, call RotateLeft(x, -k).
+//
+// This function's execution time does not depend on the inputs.
+func RotateLeft(x uint, k int) uint {
+ if UintSize == 32 {
+ return uint(RotateLeft32(uint32(x), k))
+ }
+ return uint(RotateLeft64(uint64(x), k))
+}
+
+// RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
+// To rotate x right by k bits, call RotateLeft8(x, -k).
+//
+// This function's execution time does not depend on the inputs.
+func RotateLeft8(x uint8, k int) uint8 {
+ const n = 8
+ s := uint(k) & (n - 1)
+ return x<<s | x>>(n-s)
+}
+
+// RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
+// To rotate x right by k bits, call RotateLeft16(x, -k).
+//
+// This function's execution time does not depend on the inputs.
+func RotateLeft16(x uint16, k int) uint16 {
+ const n = 16
+ s := uint(k) & (n - 1)
+ return x<<s | x>>(n-s)
+}
+
+// RotateLeft32 returns the value of x rotated left by (k mod 32) bits.
+// To rotate x right by k bits, call RotateLeft32(x, -k).
+//
+// This function's execution time does not depend on the inputs.
+func RotateLeft32(x uint32, k int) uint32 {
+ const n = 32
+ s := uint(k) & (n - 1)
+ return x<<s | x>>(n-s)
+}
+
+// RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
+// To rotate x right by k bits, call RotateLeft64(x, -k).
+//
+// This function's execution time does not depend on the inputs.
+func RotateLeft64(x uint64, k int) uint64 {
+ const n = 64
+ s := uint(k) & (n - 1)
+ return x<<s | x>>(n-s)
+}
+
+// --- Reverse ---
+
+// Reverse returns the value of x with its bits in reversed order.
+func Reverse(x uint) uint {
+ if UintSize == 32 {
+ return uint(Reverse32(uint32(x)))
+ }
+ return uint(Reverse64(uint64(x)))
+}
+
+// Reverse8 returns the value of x with its bits in reversed order.
+func Reverse8(x uint8) uint8 {
+ return rev8tab[x]
+}
+
+// Reverse16 returns the value of x with its bits in reversed order.
+func Reverse16(x uint16) uint16 {
+ return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8
+}
+
+// Reverse32 returns the value of x with its bits in reversed order.
+func Reverse32(x uint32) uint32 {
+ const m = 1<<32 - 1
+ x = x>>1&(m0&m) | x&(m0&m)<<1
+ x = x>>2&(m1&m) | x&(m1&m)<<2
+ x = x>>4&(m2&m) | x&(m2&m)<<4
+ return ReverseBytes32(x)
+}
+
+// Reverse64 returns the value of x with its bits in reversed order.
+func Reverse64(x uint64) uint64 {
+ const m = 1<<64 - 1
+ x = x>>1&(m0&m) | x&(m0&m)<<1
+ x = x>>2&(m1&m) | x&(m1&m)<<2
+ x = x>>4&(m2&m) | x&(m2&m)<<4
+ return ReverseBytes64(x)
+}
+
+// --- ReverseBytes ---
+
+// ReverseBytes returns the value of x with its bytes in reversed order.
+//
+// This function's execution time does not depend on the inputs.
+func ReverseBytes(x uint) uint {
+ if UintSize == 32 {
+ return uint(ReverseBytes32(uint32(x)))
+ }
+ return uint(ReverseBytes64(uint64(x)))
+}
+
+// ReverseBytes16 returns the value of x with its bytes in reversed order.
+//
+// This function's execution time does not depend on the inputs.
+func ReverseBytes16(x uint16) uint16 {
+ return x>>8 | x<<8
+}
+
+// ReverseBytes32 returns the value of x with its bytes in reversed order.
+//
+// This function's execution time does not depend on the inputs.
+func ReverseBytes32(x uint32) uint32 {
+ const m = 1<<32 - 1
+ x = x>>8&(m3&m) | x&(m3&m)<<8
+ return x>>16 | x<<16
+}
+
+// ReverseBytes64 returns the value of x with its bytes in reversed order.
+//
+// This function's execution time does not depend on the inputs.
+func ReverseBytes64(x uint64) uint64 {
+ const m = 1<<64 - 1
+ x = x>>8&(m3&m) | x&(m3&m)<<8
+ x = x>>16&(m4&m) | x&(m4&m)<<16
+ return x>>32 | x<<32
+}
+
+// --- Len ---
+
+// Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
+func Len(x uint) int {
+ if UintSize == 32 {
+ return Len32(uint32(x))
+ }
+ return Len64(uint64(x))
+}
+
+// Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
+func Len8(x uint8) int {
+ return int(len8tab[x])
+}
+
+// Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
+func Len16(x uint16) (n int) {
+ if x >= 1<<8 {
+ x >>= 8
+ n = 8
+ }
+ return n + int(len8tab[x])
+}
+
+// Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
+func Len32(x uint32) (n int) {
+ if x >= 1<<16 {
+ x >>= 16
+ n = 16
+ }
+ if x >= 1<<8 {
+ x >>= 8
+ n += 8
+ }
+ return n + int(len8tab[x])
+}
+
+// Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
+func Len64(x uint64) (n int) {
+ if x >= 1<<32 {
+ x >>= 32
+ n = 32
+ }
+ if x >= 1<<16 {
+ x >>= 16
+ n += 16
+ }
+ if x >= 1<<8 {
+ x >>= 8
+ n += 8
+ }
+ return n + int(len8tab[x])
+}
+
+// --- Add with carry ---
+
+// Add returns the sum with carry of x, y and carry: sum = x + y + carry.
+// The carry input must be 0 or 1; otherwise the behavior is undefined.
+// The carryOut output is guaranteed to be 0 or 1.
+//
+// This function's execution time does not depend on the inputs.
+func Add(x, y, carry uint) (sum, carryOut uint) {
+ if UintSize == 32 {
+ s32, c32 := Add32(uint32(x), uint32(y), uint32(carry))
+ return uint(s32), uint(c32)
+ }
+ s64, c64 := Add64(uint64(x), uint64(y), uint64(carry))
+ return uint(s64), uint(c64)
+}
+
+// Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.
+// The carry input must be 0 or 1; otherwise the behavior is undefined.
+// The carryOut output is guaranteed to be 0 or 1.
+//
+// This function's execution time does not depend on the inputs.
+func Add32(x, y, carry uint32) (sum, carryOut uint32) {
+ sum64 := uint64(x) + uint64(y) + uint64(carry)
+ sum = uint32(sum64)
+ carryOut = uint32(sum64 >> 32)
+ return
+}
+
+// Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.
+// The carry input must be 0 or 1; otherwise the behavior is undefined.
+// The carryOut output is guaranteed to be 0 or 1.
+//
+// This function's execution time does not depend on the inputs.
+func Add64(x, y, carry uint64) (sum, carryOut uint64) {
+ sum = x + y + carry
+ // The sum will overflow if both top bits are set (x & y) or if one of them
+ // is (x | y), and a carry from the lower place happened. If such a carry
+ // happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
+ carryOut = ((x & y) | ((x | y) &^ sum)) >> 63
+ return
+}
+
+// --- Subtract with borrow ---
+
+// Sub returns the difference of x, y and borrow: diff = x - y - borrow.
+// The borrow input must be 0 or 1; otherwise the behavior is undefined.
+// The borrowOut output is guaranteed to be 0 or 1.
+//
+// This function's execution time does not depend on the inputs.
+func Sub(x, y, borrow uint) (diff, borrowOut uint) {
+ if UintSize == 32 {
+ d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow))
+ return uint(d32), uint(b32)
+ }
+ d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow))
+ return uint(d64), uint(b64)
+}
+
+// Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.
+// The borrow input must be 0 or 1; otherwise the behavior is undefined.
+// The borrowOut output is guaranteed to be 0 or 1.
+//
+// This function's execution time does not depend on the inputs.
+func Sub32(x, y, borrow uint32) (diff, borrowOut uint32) {
+ diff = x - y - borrow
+ // The difference will underflow if the top bit of x is not set and the top
+ // bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
+ // from the lower place happens. If that borrow happens, the result will be
+ // 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
+ borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31
+ return
+}
+
+// Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.
+// The borrow input must be 0 or 1; otherwise the behavior is undefined.
+// The borrowOut output is guaranteed to be 0 or 1.
+//
+// This function's execution time does not depend on the inputs.
+func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) {
+ diff = x - y - borrow
+ // See Sub32 for the bit logic.
+ borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
+ return
+}
+
+// --- Full-width multiply ---
+
+// Mul returns the full-width product of x and y: (hi, lo) = x * y
+// with the product bits' upper half returned in hi and the lower
+// half returned in lo.
+//
+// This function's execution time does not depend on the inputs.
+func Mul(x, y uint) (hi, lo uint) {
+ if UintSize == 32 {
+ h, l := Mul32(uint32(x), uint32(y))
+ return uint(h), uint(l)
+ }
+ h, l := Mul64(uint64(x), uint64(y))
+ return uint(h), uint(l)
+}
+
+// Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y
+// with the product bits' upper half returned in hi and the lower
+// half returned in lo.
+//
+// This function's execution time does not depend on the inputs.
+func Mul32(x, y uint32) (hi, lo uint32) {
+ tmp := uint64(x) * uint64(y)
+ hi, lo = uint32(tmp>>32), uint32(tmp)
+ return
+}
+
+// Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y
+// with the product bits' upper half returned in hi and the lower
+// half returned in lo.
+//
+// This function's execution time does not depend on the inputs.
+func Mul64(x, y uint64) (hi, lo uint64) {
+ const mask32 = 1<<32 - 1
+ x0 := x & mask32
+ x1 := x >> 32
+ y0 := y & mask32
+ y1 := y >> 32
+ w0 := x0 * y0
+ t := x1*y0 + w0>>32
+ w1 := t & mask32
+ w2 := t >> 32
+ w1 += x0 * y1
+ hi = x1*y1 + w2 + w1>>32
+ lo = x * y
+ return
+}
+
+// --- Full-width divide ---
+
+// Div returns the quotient and remainder of (hi, lo) divided by y:
+// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
+// half in parameter hi and the lower half in parameter lo.
+// Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
+func Div(hi, lo, y uint) (quo, rem uint) {
+ if UintSize == 32 {
+ q, r := Div32(uint32(hi), uint32(lo), uint32(y))
+ return uint(q), uint(r)
+ }
+ q, r := Div64(uint64(hi), uint64(lo), uint64(y))
+ return uint(q), uint(r)
+}
+
+// Div32 returns the quotient and remainder of (hi, lo) divided by y:
+// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
+// half in parameter hi and the lower half in parameter lo.
+// Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
+func Div32(hi, lo, y uint32) (quo, rem uint32) {
+ if y != 0 && y <= hi {
+ panic(overflowError)
+ }
+ z := uint64(hi)<<32 | uint64(lo)
+ quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y))
+ return
+}
+
+// Div64 returns the quotient and remainder of (hi, lo) divided by y:
+// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
+// half in parameter hi and the lower half in parameter lo.
+// Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
+func Div64(hi, lo, y uint64) (quo, rem uint64) {
+ if y == 0 {
+ panic(divideError)
+ }
+ if y <= hi {
+ panic(overflowError)
+ }
+
+ // If high part is zero, we can directly return the results.
+ if hi == 0 {
+ return lo / y, lo % y
+ }
+
+ s := uint(LeadingZeros64(y))
+ y <<= s
+
+ const (
+ two32 = 1 << 32
+ mask32 = two32 - 1
+ )
+ yn1 := y >> 32
+ yn0 := y & mask32
+ un32 := hi<<s | lo>>(64-s)
+ un10 := lo << s
+ un1 := un10 >> 32
+ un0 := un10 & mask32
+ q1 := un32 / yn1
+ rhat := un32 - q1*yn1
+
+ for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
+ q1--
+ rhat += yn1
+ if rhat >= two32 {
+ break
+ }
+ }
+
+ un21 := un32*two32 + un1 - q1*y
+ q0 := un21 / yn1
+ rhat = un21 - q0*yn1
+
+ for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
+ q0--
+ rhat += yn1
+ if rhat >= two32 {
+ break
+ }
+ }
+
+ return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
+}
+
+// Rem returns the remainder of (hi, lo) divided by y. Rem panics for
+// y == 0 (division by zero) but, unlike Div, it doesn't panic on a
+// quotient overflow.
+func Rem(hi, lo, y uint) uint {
+ if UintSize == 32 {
+ return uint(Rem32(uint32(hi), uint32(lo), uint32(y)))
+ }
+ return uint(Rem64(uint64(hi), uint64(lo), uint64(y)))
+}
+
+// Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics
+// for y == 0 (division by zero) but, unlike Div32, it doesn't panic
+// on a quotient overflow.
+func Rem32(hi, lo, y uint32) uint32 {
+ return uint32((uint64(hi)<<32 | uint64(lo)) % uint64(y))
+}
+
+// Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics
+// for y == 0 (division by zero) but, unlike Div64, it doesn't panic
+// on a quotient overflow.
+func Rem64(hi, lo, y uint64) uint64 {
+ // We scale down hi so that hi < y, then use Div64 to compute the
+ // rem with the guarantee that it won't panic on quotient overflow.
+ // Given that
+ // hi ≡ hi%y (mod y)
+ // we have
+ // hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y)
+ _, rem := Div64(hi%y, lo, y)
+ return rem
+}