summaryrefslogtreecommitdiffstats
path: root/src/math/cmplx/sin.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/math/cmplx/sin.go
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/cmplx/sin.go')
-rw-r--r--src/math/cmplx/sin.go184
1 files changed, 184 insertions, 0 deletions
diff --git a/src/math/cmplx/sin.go b/src/math/cmplx/sin.go
new file mode 100644
index 0000000..51cf405
--- /dev/null
+++ b/src/math/cmplx/sin.go
@@ -0,0 +1,184 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package cmplx
+
+import "math"
+
+// The original C code, the long comment, and the constants
+// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
+// The go code is a simplified version of the original C.
+//
+// Cephes Math Library Release 2.8: June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+// Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+// The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+// Stephen L. Moshier
+// moshier@na-net.ornl.gov
+
+// Complex circular sine
+//
+// DESCRIPTION:
+//
+// If
+// z = x + iy,
+//
+// then
+//
+// w = sin x cosh y + i cos x sinh y.
+//
+// csin(z) = -i csinh(iz).
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC -10,+10 8400 5.3e-17 1.3e-17
+// IEEE -10,+10 30000 3.8e-16 1.0e-16
+// Also tested by csin(casin(z)) = z.
+
+// Sin returns the sine of x.
+func Sin(x complex128) complex128 {
+ switch re, im := real(x), imag(x); {
+ case im == 0 && (math.IsInf(re, 0) || math.IsNaN(re)):
+ return complex(math.NaN(), im)
+ case math.IsInf(im, 0):
+ switch {
+ case re == 0:
+ return x
+ case math.IsInf(re, 0) || math.IsNaN(re):
+ return complex(math.NaN(), im)
+ }
+ case re == 0 && math.IsNaN(im):
+ return x
+ }
+ s, c := math.Sincos(real(x))
+ sh, ch := sinhcosh(imag(x))
+ return complex(s*ch, c*sh)
+}
+
+// Complex hyperbolic sine
+//
+// DESCRIPTION:
+//
+// csinh z = (cexp(z) - cexp(-z))/2
+// = sinh x * cos y + i cosh x * sin y .
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// IEEE -10,+10 30000 3.1e-16 8.2e-17
+
+// Sinh returns the hyperbolic sine of x.
+func Sinh(x complex128) complex128 {
+ switch re, im := real(x), imag(x); {
+ case re == 0 && (math.IsInf(im, 0) || math.IsNaN(im)):
+ return complex(re, math.NaN())
+ case math.IsInf(re, 0):
+ switch {
+ case im == 0:
+ return complex(re, im)
+ case math.IsInf(im, 0) || math.IsNaN(im):
+ return complex(re, math.NaN())
+ }
+ case im == 0 && math.IsNaN(re):
+ return complex(math.NaN(), im)
+ }
+ s, c := math.Sincos(imag(x))
+ sh, ch := sinhcosh(real(x))
+ return complex(c*sh, s*ch)
+}
+
+// Complex circular cosine
+//
+// DESCRIPTION:
+//
+// If
+// z = x + iy,
+//
+// then
+//
+// w = cos x cosh y - i sin x sinh y.
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC -10,+10 8400 4.5e-17 1.3e-17
+// IEEE -10,+10 30000 3.8e-16 1.0e-16
+
+// Cos returns the cosine of x.
+func Cos(x complex128) complex128 {
+ switch re, im := real(x), imag(x); {
+ case im == 0 && (math.IsInf(re, 0) || math.IsNaN(re)):
+ return complex(math.NaN(), -im*math.Copysign(0, re))
+ case math.IsInf(im, 0):
+ switch {
+ case re == 0:
+ return complex(math.Inf(1), -re*math.Copysign(0, im))
+ case math.IsInf(re, 0) || math.IsNaN(re):
+ return complex(math.Inf(1), math.NaN())
+ }
+ case re == 0 && math.IsNaN(im):
+ return complex(math.NaN(), 0)
+ }
+ s, c := math.Sincos(real(x))
+ sh, ch := sinhcosh(imag(x))
+ return complex(c*ch, -s*sh)
+}
+
+// Complex hyperbolic cosine
+//
+// DESCRIPTION:
+//
+// ccosh(z) = cosh x cos y + i sinh x sin y .
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// IEEE -10,+10 30000 2.9e-16 8.1e-17
+
+// Cosh returns the hyperbolic cosine of x.
+func Cosh(x complex128) complex128 {
+ switch re, im := real(x), imag(x); {
+ case re == 0 && (math.IsInf(im, 0) || math.IsNaN(im)):
+ return complex(math.NaN(), re*math.Copysign(0, im))
+ case math.IsInf(re, 0):
+ switch {
+ case im == 0:
+ return complex(math.Inf(1), im*math.Copysign(0, re))
+ case math.IsInf(im, 0) || math.IsNaN(im):
+ return complex(math.Inf(1), math.NaN())
+ }
+ case im == 0 && math.IsNaN(re):
+ return complex(math.NaN(), im)
+ }
+ s, c := math.Sincos(imag(x))
+ sh, ch := sinhcosh(real(x))
+ return complex(c*ch, s*sh)
+}
+
+// calculate sinh and cosh.
+func sinhcosh(x float64) (sh, ch float64) {
+ if math.Abs(x) <= 0.5 {
+ return math.Sinh(x), math.Cosh(x)
+ }
+ e := math.Exp(x)
+ ei := 0.5 / e
+ e *= 0.5
+ return e - ei, e + ei
+}