diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/math/cmplx/sqrt.go | |
parent | Initial commit. (diff) | |
download | golang-1.20-upstream.tar.xz golang-1.20-upstream.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/cmplx/sqrt.go')
-rw-r--r-- | src/math/cmplx/sqrt.go | 107 |
1 files changed, 107 insertions, 0 deletions
diff --git a/src/math/cmplx/sqrt.go b/src/math/cmplx/sqrt.go new file mode 100644 index 0000000..eddce2f --- /dev/null +++ b/src/math/cmplx/sqrt.go @@ -0,0 +1,107 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cmplx + +import "math" + +// The original C code, the long comment, and the constants +// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. +// The go code is a simplified version of the original C. +// +// Cephes Math Library Release 2.8: June, 2000 +// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier +// +// The readme file at http://netlib.sandia.gov/cephes/ says: +// Some software in this archive may be from the book _Methods and +// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster +// International, 1989) or from the Cephes Mathematical Library, a +// commercial product. In either event, it is copyrighted by the author. +// What you see here may be used freely but it comes with no support or +// guarantee. +// +// The two known misprints in the book are repaired here in the +// source listings for the gamma function and the incomplete beta +// integral. +// +// Stephen L. Moshier +// moshier@na-net.ornl.gov + +// Complex square root +// +// DESCRIPTION: +// +// If z = x + iy, r = |z|, then +// +// 1/2 +// Re w = [ (r + x)/2 ] , +// +// 1/2 +// Im w = [ (r - x)/2 ] . +// +// Cancellation error in r-x or r+x is avoided by using the +// identity 2 Re w Im w = y. +// +// Note that -w is also a square root of z. The root chosen +// is always in the right half plane and Im w has the same sign as y. +// +// ACCURACY: +// +// Relative error: +// arithmetic domain # trials peak rms +// DEC -10,+10 25000 3.2e-17 9.6e-18 +// IEEE -10,+10 1,000,000 2.9e-16 6.1e-17 + +// Sqrt returns the square root of x. +// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x). +func Sqrt(x complex128) complex128 { + if imag(x) == 0 { + // Ensure that imag(r) has the same sign as imag(x) for imag(x) == signed zero. + if real(x) == 0 { + return complex(0, imag(x)) + } + if real(x) < 0 { + return complex(0, math.Copysign(math.Sqrt(-real(x)), imag(x))) + } + return complex(math.Sqrt(real(x)), imag(x)) + } else if math.IsInf(imag(x), 0) { + return complex(math.Inf(1.0), imag(x)) + } + if real(x) == 0 { + if imag(x) < 0 { + r := math.Sqrt(-0.5 * imag(x)) + return complex(r, -r) + } + r := math.Sqrt(0.5 * imag(x)) + return complex(r, r) + } + a := real(x) + b := imag(x) + var scale float64 + // Rescale to avoid internal overflow or underflow. + if math.Abs(a) > 4 || math.Abs(b) > 4 { + a *= 0.25 + b *= 0.25 + scale = 2 + } else { + a *= 1.8014398509481984e16 // 2**54 + b *= 1.8014398509481984e16 + scale = 7.450580596923828125e-9 // 2**-27 + } + r := math.Hypot(a, b) + var t float64 + if a > 0 { + t = math.Sqrt(0.5*r + 0.5*a) + r = scale * math.Abs((0.5*b)/t) + t *= scale + } else { + r = math.Sqrt(0.5*r - 0.5*a) + t = scale * math.Abs((0.5*b)/r) + r *= scale + } + if b < 0 { + return complex(t, -r) + } + return complex(t, r) +} |