summaryrefslogtreecommitdiffstats
path: root/src/text/template/doc.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/text/template/doc.go
parentInitial commit. (diff)
downloadgolang-1.20-upstream.tar.xz
golang-1.20-upstream.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/text/template/doc.go')
-rw-r--r--src/text/template/doc.go464
1 files changed, 464 insertions, 0 deletions
diff --git a/src/text/template/doc.go b/src/text/template/doc.go
new file mode 100644
index 0000000..7817a17
--- /dev/null
+++ b/src/text/template/doc.go
@@ -0,0 +1,464 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+Package template implements data-driven templates for generating textual output.
+
+To generate HTML output, see package html/template, which has the same interface
+as this package but automatically secures HTML output against certain attacks.
+
+Templates are executed by applying them to a data structure. Annotations in the
+template refer to elements of the data structure (typically a field of a struct
+or a key in a map) to control execution and derive values to be displayed.
+Execution of the template walks the structure and sets the cursor, represented
+by a period '.' and called "dot", to the value at the current location in the
+structure as execution proceeds.
+
+The input text for a template is UTF-8-encoded text in any format.
+"Actions"--data evaluations or control structures--are delimited by
+"{{" and "}}"; all text outside actions is copied to the output unchanged.
+
+Once parsed, a template may be executed safely in parallel, although if parallel
+executions share a Writer the output may be interleaved.
+
+Here is a trivial example that prints "17 items are made of wool".
+
+ type Inventory struct {
+ Material string
+ Count uint
+ }
+ sweaters := Inventory{"wool", 17}
+ tmpl, err := template.New("test").Parse("{{.Count}} items are made of {{.Material}}")
+ if err != nil { panic(err) }
+ err = tmpl.Execute(os.Stdout, sweaters)
+ if err != nil { panic(err) }
+
+More intricate examples appear below.
+
+Text and spaces
+
+By default, all text between actions is copied verbatim when the template is
+executed. For example, the string " items are made of " in the example above
+appears on standard output when the program is run.
+
+However, to aid in formatting template source code, if an action's left
+delimiter (by default "{{") is followed immediately by a minus sign and white
+space, all trailing white space is trimmed from the immediately preceding text.
+Similarly, if the right delimiter ("}}") is preceded by white space and a minus
+sign, all leading white space is trimmed from the immediately following text.
+In these trim markers, the white space must be present:
+"{{- 3}}" is like "{{3}}" but trims the immediately preceding text, while
+"{{-3}}" parses as an action containing the number -3.
+
+For instance, when executing the template whose source is
+
+ "{{23 -}} < {{- 45}}"
+
+the generated output would be
+
+ "23<45"
+
+For this trimming, the definition of white space characters is the same as in Go:
+space, horizontal tab, carriage return, and newline.
+
+Actions
+
+Here is the list of actions. "Arguments" and "pipelines" are evaluations of
+data, defined in detail in the corresponding sections that follow.
+
+*/
+// {{/* a comment */}}
+// {{- /* a comment with white space trimmed from preceding and following text */ -}}
+// A comment; discarded. May contain newlines.
+// Comments do not nest and must start and end at the
+// delimiters, as shown here.
+/*
+
+ {{pipeline}}
+ The default textual representation (the same as would be
+ printed by fmt.Print) of the value of the pipeline is copied
+ to the output.
+
+ {{if pipeline}} T1 {{end}}
+ If the value of the pipeline is empty, no output is generated;
+ otherwise, T1 is executed. The empty values are false, 0, any
+ nil pointer or interface value, and any array, slice, map, or
+ string of length zero.
+ Dot is unaffected.
+
+ {{if pipeline}} T1 {{else}} T0 {{end}}
+ If the value of the pipeline is empty, T0 is executed;
+ otherwise, T1 is executed. Dot is unaffected.
+
+ {{if pipeline}} T1 {{else if pipeline}} T0 {{end}}
+ To simplify the appearance of if-else chains, the else action
+ of an if may include another if directly; the effect is exactly
+ the same as writing
+ {{if pipeline}} T1 {{else}}{{if pipeline}} T0 {{end}}{{end}}
+
+ {{range pipeline}} T1 {{end}}
+ The value of the pipeline must be an array, slice, map, or channel.
+ If the value of the pipeline has length zero, nothing is output;
+ otherwise, dot is set to the successive elements of the array,
+ slice, or map and T1 is executed. If the value is a map and the
+ keys are of basic type with a defined order, the elements will be
+ visited in sorted key order.
+
+ {{range pipeline}} T1 {{else}} T0 {{end}}
+ The value of the pipeline must be an array, slice, map, or channel.
+ If the value of the pipeline has length zero, dot is unaffected and
+ T0 is executed; otherwise, dot is set to the successive elements
+ of the array, slice, or map and T1 is executed.
+
+ {{break}}
+ The innermost {{range pipeline}} loop is ended early, stopping the
+ current iteration and bypassing all remaining iterations.
+
+ {{continue}}
+ The current iteration of the innermost {{range pipeline}} loop is
+ stopped, and the loop starts the next iteration.
+
+ {{template "name"}}
+ The template with the specified name is executed with nil data.
+
+ {{template "name" pipeline}}
+ The template with the specified name is executed with dot set
+ to the value of the pipeline.
+
+ {{block "name" pipeline}} T1 {{end}}
+ A block is shorthand for defining a template
+ {{define "name"}} T1 {{end}}
+ and then executing it in place
+ {{template "name" pipeline}}
+ The typical use is to define a set of root templates that are
+ then customized by redefining the block templates within.
+
+ {{with pipeline}} T1 {{end}}
+ If the value of the pipeline is empty, no output is generated;
+ otherwise, dot is set to the value of the pipeline and T1 is
+ executed.
+
+ {{with pipeline}} T1 {{else}} T0 {{end}}
+ If the value of the pipeline is empty, dot is unaffected and T0
+ is executed; otherwise, dot is set to the value of the pipeline
+ and T1 is executed.
+
+Arguments
+
+An argument is a simple value, denoted by one of the following.
+
+ - A boolean, string, character, integer, floating-point, imaginary
+ or complex constant in Go syntax. These behave like Go's untyped
+ constants. Note that, as in Go, whether a large integer constant
+ overflows when assigned or passed to a function can depend on whether
+ the host machine's ints are 32 or 64 bits.
+ - The keyword nil, representing an untyped Go nil.
+ - The character '.' (period):
+ .
+ The result is the value of dot.
+ - A variable name, which is a (possibly empty) alphanumeric string
+ preceded by a dollar sign, such as
+ $piOver2
+ or
+ $
+ The result is the value of the variable.
+ Variables are described below.
+ - The name of a field of the data, which must be a struct, preceded
+ by a period, such as
+ .Field
+ The result is the value of the field. Field invocations may be
+ chained:
+ .Field1.Field2
+ Fields can also be evaluated on variables, including chaining:
+ $x.Field1.Field2
+ - The name of a key of the data, which must be a map, preceded
+ by a period, such as
+ .Key
+ The result is the map element value indexed by the key.
+ Key invocations may be chained and combined with fields to any
+ depth:
+ .Field1.Key1.Field2.Key2
+ Although the key must be an alphanumeric identifier, unlike with
+ field names they do not need to start with an upper case letter.
+ Keys can also be evaluated on variables, including chaining:
+ $x.key1.key2
+ - The name of a niladic method of the data, preceded by a period,
+ such as
+ .Method
+ The result is the value of invoking the method with dot as the
+ receiver, dot.Method(). Such a method must have one return value (of
+ any type) or two return values, the second of which is an error.
+ If it has two and the returned error is non-nil, execution terminates
+ and an error is returned to the caller as the value of Execute.
+ Method invocations may be chained and combined with fields and keys
+ to any depth:
+ .Field1.Key1.Method1.Field2.Key2.Method2
+ Methods can also be evaluated on variables, including chaining:
+ $x.Method1.Field
+ - The name of a niladic function, such as
+ fun
+ The result is the value of invoking the function, fun(). The return
+ types and values behave as in methods. Functions and function
+ names are described below.
+ - A parenthesized instance of one the above, for grouping. The result
+ may be accessed by a field or map key invocation.
+ print (.F1 arg1) (.F2 arg2)
+ (.StructValuedMethod "arg").Field
+
+Arguments may evaluate to any type; if they are pointers the implementation
+automatically indirects to the base type when required.
+If an evaluation yields a function value, such as a function-valued
+field of a struct, the function is not invoked automatically, but it
+can be used as a truth value for an if action and the like. To invoke
+it, use the call function, defined below.
+
+Pipelines
+
+A pipeline is a possibly chained sequence of "commands". A command is a simple
+value (argument) or a function or method call, possibly with multiple arguments:
+
+ Argument
+ The result is the value of evaluating the argument.
+ .Method [Argument...]
+ The method can be alone or the last element of a chain but,
+ unlike methods in the middle of a chain, it can take arguments.
+ The result is the value of calling the method with the
+ arguments:
+ dot.Method(Argument1, etc.)
+ functionName [Argument...]
+ The result is the value of calling the function associated
+ with the name:
+ function(Argument1, etc.)
+ Functions and function names are described below.
+
+A pipeline may be "chained" by separating a sequence of commands with pipeline
+characters '|'. In a chained pipeline, the result of each command is
+passed as the last argument of the following command. The output of the final
+command in the pipeline is the value of the pipeline.
+
+The output of a command will be either one value or two values, the second of
+which has type error. If that second value is present and evaluates to
+non-nil, execution terminates and the error is returned to the caller of
+Execute.
+
+Variables
+
+A pipeline inside an action may initialize a variable to capture the result.
+The initialization has syntax
+
+ $variable := pipeline
+
+where $variable is the name of the variable. An action that declares a
+variable produces no output.
+
+Variables previously declared can also be assigned, using the syntax
+
+ $variable = pipeline
+
+If a "range" action initializes a variable, the variable is set to the
+successive elements of the iteration. Also, a "range" may declare two
+variables, separated by a comma:
+
+ range $index, $element := pipeline
+
+in which case $index and $element are set to the successive values of the
+array/slice index or map key and element, respectively. Note that if there is
+only one variable, it is assigned the element; this is opposite to the
+convention in Go range clauses.
+
+A variable's scope extends to the "end" action of the control structure ("if",
+"with", or "range") in which it is declared, or to the end of the template if
+there is no such control structure. A template invocation does not inherit
+variables from the point of its invocation.
+
+When execution begins, $ is set to the data argument passed to Execute, that is,
+to the starting value of dot.
+
+Examples
+
+Here are some example one-line templates demonstrating pipelines and variables.
+All produce the quoted word "output":
+
+ {{"\"output\""}}
+ A string constant.
+ {{`"output"`}}
+ A raw string constant.
+ {{printf "%q" "output"}}
+ A function call.
+ {{"output" | printf "%q"}}
+ A function call whose final argument comes from the previous
+ command.
+ {{printf "%q" (print "out" "put")}}
+ A parenthesized argument.
+ {{"put" | printf "%s%s" "out" | printf "%q"}}
+ A more elaborate call.
+ {{"output" | printf "%s" | printf "%q"}}
+ A longer chain.
+ {{with "output"}}{{printf "%q" .}}{{end}}
+ A with action using dot.
+ {{with $x := "output" | printf "%q"}}{{$x}}{{end}}
+ A with action that creates and uses a variable.
+ {{with $x := "output"}}{{printf "%q" $x}}{{end}}
+ A with action that uses the variable in another action.
+ {{with $x := "output"}}{{$x | printf "%q"}}{{end}}
+ The same, but pipelined.
+
+Functions
+
+During execution functions are found in two function maps: first in the
+template, then in the global function map. By default, no functions are defined
+in the template but the Funcs method can be used to add them.
+
+Predefined global functions are named as follows.
+
+ and
+ Returns the boolean AND of its arguments by returning the
+ first empty argument or the last argument. That is,
+ "and x y" behaves as "if x then y else x."
+ Evaluation proceeds through the arguments left to right
+ and returns when the result is determined.
+ call
+ Returns the result of calling the first argument, which
+ must be a function, with the remaining arguments as parameters.
+ Thus "call .X.Y 1 2" is, in Go notation, dot.X.Y(1, 2) where
+ Y is a func-valued field, map entry, or the like.
+ The first argument must be the result of an evaluation
+ that yields a value of function type (as distinct from
+ a predefined function such as print). The function must
+ return either one or two result values, the second of which
+ is of type error. If the arguments don't match the function
+ or the returned error value is non-nil, execution stops.
+ html
+ Returns the escaped HTML equivalent of the textual
+ representation of its arguments. This function is unavailable
+ in html/template, with a few exceptions.
+ index
+ Returns the result of indexing its first argument by the
+ following arguments. Thus "index x 1 2 3" is, in Go syntax,
+ x[1][2][3]. Each indexed item must be a map, slice, or array.
+ slice
+ slice returns the result of slicing its first argument by the
+ remaining arguments. Thus "slice x 1 2" is, in Go syntax, x[1:2],
+ while "slice x" is x[:], "slice x 1" is x[1:], and "slice x 1 2 3"
+ is x[1:2:3]. The first argument must be a string, slice, or array.
+ js
+ Returns the escaped JavaScript equivalent of the textual
+ representation of its arguments.
+ len
+ Returns the integer length of its argument.
+ not
+ Returns the boolean negation of its single argument.
+ or
+ Returns the boolean OR of its arguments by returning the
+ first non-empty argument or the last argument, that is,
+ "or x y" behaves as "if x then x else y".
+ Evaluation proceeds through the arguments left to right
+ and returns when the result is determined.
+ print
+ An alias for fmt.Sprint
+ printf
+ An alias for fmt.Sprintf
+ println
+ An alias for fmt.Sprintln
+ urlquery
+ Returns the escaped value of the textual representation of
+ its arguments in a form suitable for embedding in a URL query.
+ This function is unavailable in html/template, with a few
+ exceptions.
+
+The boolean functions take any zero value to be false and a non-zero
+value to be true.
+
+There is also a set of binary comparison operators defined as
+functions:
+
+ eq
+ Returns the boolean truth of arg1 == arg2
+ ne
+ Returns the boolean truth of arg1 != arg2
+ lt
+ Returns the boolean truth of arg1 < arg2
+ le
+ Returns the boolean truth of arg1 <= arg2
+ gt
+ Returns the boolean truth of arg1 > arg2
+ ge
+ Returns the boolean truth of arg1 >= arg2
+
+For simpler multi-way equality tests, eq (only) accepts two or more
+arguments and compares the second and subsequent to the first,
+returning in effect
+
+ arg1==arg2 || arg1==arg3 || arg1==arg4 ...
+
+(Unlike with || in Go, however, eq is a function call and all the
+arguments will be evaluated.)
+
+The comparison functions work on any values whose type Go defines as
+comparable. For basic types such as integers, the rules are relaxed:
+size and exact type are ignored, so any integer value, signed or unsigned,
+may be compared with any other integer value. (The arithmetic value is compared,
+not the bit pattern, so all negative integers are less than all unsigned integers.)
+However, as usual, one may not compare an int with a float32 and so on.
+
+Associated templates
+
+Each template is named by a string specified when it is created. Also, each
+template is associated with zero or more other templates that it may invoke by
+name; such associations are transitive and form a name space of templates.
+
+A template may use a template invocation to instantiate another associated
+template; see the explanation of the "template" action above. The name must be
+that of a template associated with the template that contains the invocation.
+
+Nested template definitions
+
+When parsing a template, another template may be defined and associated with the
+template being parsed. Template definitions must appear at the top level of the
+template, much like global variables in a Go program.
+
+The syntax of such definitions is to surround each template declaration with a
+"define" and "end" action.
+
+The define action names the template being created by providing a string
+constant. Here is a simple example:
+
+ {{define "T1"}}ONE{{end}}
+ {{define "T2"}}TWO{{end}}
+ {{define "T3"}}{{template "T1"}} {{template "T2"}}{{end}}
+ {{template "T3"}}
+
+This defines two templates, T1 and T2, and a third T3 that invokes the other two
+when it is executed. Finally it invokes T3. If executed this template will
+produce the text
+
+ ONE TWO
+
+By construction, a template may reside in only one association. If it's
+necessary to have a template addressable from multiple associations, the
+template definition must be parsed multiple times to create distinct *Template
+values, or must be copied with the Clone or AddParseTree method.
+
+Parse may be called multiple times to assemble the various associated templates;
+see the ParseFiles and ParseGlob functions and methods for simple ways to parse
+related templates stored in files.
+
+A template may be executed directly or through ExecuteTemplate, which executes
+an associated template identified by name. To invoke our example above, we
+might write,
+
+ err := tmpl.Execute(os.Stdout, "no data needed")
+ if err != nil {
+ log.Fatalf("execution failed: %s", err)
+ }
+
+or to invoke a particular template explicitly by name,
+
+ err := tmpl.ExecuteTemplate(os.Stdout, "T2", "no data needed")
+ if err != nil {
+ log.Fatalf("execution failed: %s", err)
+ }
+
+*/
+package template