summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/abt
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/abt')
-rw-r--r--src/cmd/compile/internal/abt/avlint32.go832
-rw-r--r--src/cmd/compile/internal/abt/avlint32_test.go700
2 files changed, 1532 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/abt/avlint32.go b/src/cmd/compile/internal/abt/avlint32.go
new file mode 100644
index 0000000..9800e03
--- /dev/null
+++ b/src/cmd/compile/internal/abt/avlint32.go
@@ -0,0 +1,832 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package abt
+
+import (
+ "fmt"
+ "strconv"
+ "strings"
+)
+
+const (
+ LEAF_HEIGHT = 1
+ ZERO_HEIGHT = 0
+ NOT_KEY32 = int32(-0x80000000)
+)
+
+// T is the exported applicative balanced tree data type.
+// A T can be used as a value; updates to one copy of the value
+// do not change other copies.
+type T struct {
+ root *node32
+ size int
+}
+
+// node32 is the internal tree node data type
+type node32 struct {
+ // Standard conventions hold for left = smaller, right = larger
+ left, right *node32
+ data interface{}
+ key int32
+ height_ int8
+}
+
+func makeNode(key int32) *node32 {
+ return &node32{key: key, height_: LEAF_HEIGHT}
+}
+
+// IsEmpty returns true iff t is empty.
+func (t *T) IsEmpty() bool {
+ return t.root == nil
+}
+
+// IsSingle returns true iff t is a singleton (leaf).
+func (t *T) IsSingle() bool {
+ return t.root != nil && t.root.isLeaf()
+}
+
+// VisitInOrder applies f to the key and data pairs in t,
+// with keys ordered from smallest to largest.
+func (t *T) VisitInOrder(f func(int32, interface{})) {
+ if t.root == nil {
+ return
+ }
+ t.root.visitInOrder(f)
+}
+
+func (n *node32) nilOrData() interface{} {
+ if n == nil {
+ return nil
+ }
+ return n.data
+}
+
+func (n *node32) nilOrKeyAndData() (k int32, d interface{}) {
+ if n == nil {
+ k = NOT_KEY32
+ d = nil
+ } else {
+ k = n.key
+ d = n.data
+ }
+ return
+}
+
+func (n *node32) height() int8 {
+ if n == nil {
+ return 0
+ }
+ return n.height_
+}
+
+// Find returns the data associated with x in the tree, or
+// nil if x is not in the tree.
+func (t *T) Find(x int32) interface{} {
+ return t.root.find(x).nilOrData()
+}
+
+// Insert either adds x to the tree if x was not previously
+// a key in the tree, or updates the data for x in the tree if
+// x was already a key in the tree. The previous data associated
+// with x is returned, and is nil if x was not previously a
+// key in the tree.
+func (t *T) Insert(x int32, data interface{}) interface{} {
+ if x == NOT_KEY32 {
+ panic("Cannot use sentinel value -0x80000000 as key")
+ }
+ n := t.root
+ var newroot *node32
+ var o *node32
+ if n == nil {
+ n = makeNode(x)
+ newroot = n
+ } else {
+ newroot, n, o = n.aInsert(x)
+ }
+ var r interface{}
+ if o != nil {
+ r = o.data
+ } else {
+ t.size++
+ }
+ n.data = data
+ t.root = newroot
+ return r
+}
+
+func (t *T) Copy() *T {
+ u := *t
+ return &u
+}
+
+func (t *T) Delete(x int32) interface{} {
+ n := t.root
+ if n == nil {
+ return nil
+ }
+ d, s := n.aDelete(x)
+ if d == nil {
+ return nil
+ }
+ t.root = s
+ t.size--
+ return d.data
+}
+
+func (t *T) DeleteMin() (int32, interface{}) {
+ n := t.root
+ if n == nil {
+ return NOT_KEY32, nil
+ }
+ d, s := n.aDeleteMin()
+ if d == nil {
+ return NOT_KEY32, nil
+ }
+ t.root = s
+ t.size--
+ return d.key, d.data
+}
+
+func (t *T) DeleteMax() (int32, interface{}) {
+ n := t.root
+ if n == nil {
+ return NOT_KEY32, nil
+ }
+ d, s := n.aDeleteMax()
+ if d == nil {
+ return NOT_KEY32, nil
+ }
+ t.root = s
+ t.size--
+ return d.key, d.data
+}
+
+func (t *T) Size() int {
+ return t.size
+}
+
+// Intersection returns the intersection of t and u, where the result
+// data for any common keys is given by f(t's data, u's data) -- f need
+// not be symmetric. If f returns nil, then the key and data are not
+// added to the result. If f itself is nil, then whatever value was
+// already present in the smaller set is used.
+func (t *T) Intersection(u *T, f func(x, y interface{}) interface{}) *T {
+ if t.Size() == 0 || u.Size() == 0 {
+ return &T{}
+ }
+
+ // For faster execution and less allocation, prefer t smaller, iterate over t.
+ if t.Size() <= u.Size() {
+ v := t.Copy()
+ for it := t.Iterator(); !it.Done(); {
+ k, d := it.Next()
+ e := u.Find(k)
+ if e == nil {
+ v.Delete(k)
+ continue
+ }
+ if f == nil {
+ continue
+ }
+ if c := f(d, e); c != d {
+ if c == nil {
+ v.Delete(k)
+ } else {
+ v.Insert(k, c)
+ }
+ }
+ }
+ return v
+ }
+ v := u.Copy()
+ for it := u.Iterator(); !it.Done(); {
+ k, e := it.Next()
+ d := t.Find(k)
+ if d == nil {
+ v.Delete(k)
+ continue
+ }
+ if f == nil {
+ continue
+ }
+ if c := f(d, e); c != d {
+ if c == nil {
+ v.Delete(k)
+ } else {
+ v.Insert(k, c)
+ }
+ }
+ }
+
+ return v
+}
+
+// Union returns the union of t and u, where the result data for any common keys
+// is given by f(t's data, u's data) -- f need not be symmetric. If f returns nil,
+// then the key and data are not added to the result. If f itself is nil, then
+// whatever value was already present in the larger set is used.
+func (t *T) Union(u *T, f func(x, y interface{}) interface{}) *T {
+ if t.Size() == 0 {
+ return u
+ }
+ if u.Size() == 0 {
+ return t
+ }
+
+ if t.Size() >= u.Size() {
+ v := t.Copy()
+ for it := u.Iterator(); !it.Done(); {
+ k, e := it.Next()
+ d := t.Find(k)
+ if d == nil {
+ v.Insert(k, e)
+ continue
+ }
+ if f == nil {
+ continue
+ }
+ if c := f(d, e); c != d {
+ if c == nil {
+ v.Delete(k)
+ } else {
+ v.Insert(k, c)
+ }
+ }
+ }
+ return v
+ }
+
+ v := u.Copy()
+ for it := t.Iterator(); !it.Done(); {
+ k, d := it.Next()
+ e := u.Find(k)
+ if e == nil {
+ v.Insert(k, d)
+ continue
+ }
+ if f == nil {
+ continue
+ }
+ if c := f(d, e); c != d {
+ if c == nil {
+ v.Delete(k)
+ } else {
+ v.Insert(k, c)
+ }
+ }
+ }
+ return v
+}
+
+// Difference returns the difference of t and u, subject to the result
+// of f applied to data corresponding to equal keys. If f returns nil
+// (or if f is nil) then the key+data are excluded, as usual. If f
+// returns not-nil, then that key+data pair is inserted. instead.
+func (t *T) Difference(u *T, f func(x, y interface{}) interface{}) *T {
+ if t.Size() == 0 {
+ return &T{}
+ }
+ if u.Size() == 0 {
+ return t
+ }
+ v := t.Copy()
+ for it := t.Iterator(); !it.Done(); {
+ k, d := it.Next()
+ e := u.Find(k)
+ if e != nil {
+ if f == nil {
+ v.Delete(k)
+ continue
+ }
+ c := f(d, e)
+ if c == nil {
+ v.Delete(k)
+ continue
+ }
+ if c != d {
+ v.Insert(k, c)
+ }
+ }
+ }
+ return v
+}
+
+func (t *T) Iterator() Iterator {
+ return Iterator{it: t.root.iterator()}
+}
+
+func (t *T) Equals(u *T) bool {
+ if t == u {
+ return true
+ }
+ if t.Size() != u.Size() {
+ return false
+ }
+ return t.root.equals(u.root)
+}
+
+func (t *T) String() string {
+ var b strings.Builder
+ first := true
+ for it := t.Iterator(); !it.Done(); {
+ k, v := it.Next()
+ if first {
+ first = false
+ } else {
+ b.WriteString("; ")
+ }
+ b.WriteString(strconv.FormatInt(int64(k), 10))
+ b.WriteString(":")
+ fmt.Fprint(&b, v)
+ }
+ return b.String()
+}
+
+func (t *node32) equals(u *node32) bool {
+ if t == u {
+ return true
+ }
+ it, iu := t.iterator(), u.iterator()
+ for !it.done() && !iu.done() {
+ nt := it.next()
+ nu := iu.next()
+ if nt == nu {
+ continue
+ }
+ if nt.key != nu.key {
+ return false
+ }
+ if nt.data != nu.data {
+ return false
+ }
+ }
+ return it.done() == iu.done()
+}
+
+func (t *T) Equiv(u *T, eqv func(x, y interface{}) bool) bool {
+ if t == u {
+ return true
+ }
+ if t.Size() != u.Size() {
+ return false
+ }
+ return t.root.equiv(u.root, eqv)
+}
+
+func (t *node32) equiv(u *node32, eqv func(x, y interface{}) bool) bool {
+ if t == u {
+ return true
+ }
+ it, iu := t.iterator(), u.iterator()
+ for !it.done() && !iu.done() {
+ nt := it.next()
+ nu := iu.next()
+ if nt == nu {
+ continue
+ }
+ if nt.key != nu.key {
+ return false
+ }
+ if !eqv(nt.data, nu.data) {
+ return false
+ }
+ }
+ return it.done() == iu.done()
+}
+
+type iterator struct {
+ parents []*node32
+}
+
+type Iterator struct {
+ it iterator
+}
+
+func (it *Iterator) Next() (int32, interface{}) {
+ x := it.it.next()
+ if x == nil {
+ return NOT_KEY32, nil
+ }
+ return x.key, x.data
+}
+
+func (it *Iterator) Done() bool {
+ return len(it.it.parents) == 0
+}
+
+func (t *node32) iterator() iterator {
+ if t == nil {
+ return iterator{}
+ }
+ it := iterator{parents: make([]*node32, 0, int(t.height()))}
+ it.leftmost(t)
+ return it
+}
+
+func (it *iterator) leftmost(t *node32) {
+ for t != nil {
+ it.parents = append(it.parents, t)
+ t = t.left
+ }
+}
+
+func (it *iterator) done() bool {
+ return len(it.parents) == 0
+}
+
+func (it *iterator) next() *node32 {
+ l := len(it.parents)
+ if l == 0 {
+ return nil
+ }
+ x := it.parents[l-1] // return value
+ if x.right != nil {
+ it.leftmost(x.right)
+ return x
+ }
+ // discard visited top of parents
+ l--
+ it.parents = it.parents[:l]
+ y := x // y is known visited/returned
+ for l > 0 && y == it.parents[l-1].right {
+ y = it.parents[l-1]
+ l--
+ it.parents = it.parents[:l]
+ }
+
+ return x
+}
+
+// Min returns the minimum element of t.
+// If t is empty, then (NOT_KEY32, nil) is returned.
+func (t *T) Min() (k int32, d interface{}) {
+ return t.root.min().nilOrKeyAndData()
+}
+
+// Max returns the maximum element of t.
+// If t is empty, then (NOT_KEY32, nil) is returned.
+func (t *T) Max() (k int32, d interface{}) {
+ return t.root.max().nilOrKeyAndData()
+}
+
+// Glb returns the greatest-lower-bound-exclusive of x and the associated
+// data. If x has no glb in the tree, then (NOT_KEY32, nil) is returned.
+func (t *T) Glb(x int32) (k int32, d interface{}) {
+ return t.root.glb(x, false).nilOrKeyAndData()
+}
+
+// GlbEq returns the greatest-lower-bound-inclusive of x and the associated
+// data. If x has no glbEQ in the tree, then (NOT_KEY32, nil) is returned.
+func (t *T) GlbEq(x int32) (k int32, d interface{}) {
+ return t.root.glb(x, true).nilOrKeyAndData()
+}
+
+// Lub returns the least-upper-bound-exclusive of x and the associated
+// data. If x has no lub in the tree, then (NOT_KEY32, nil) is returned.
+func (t *T) Lub(x int32) (k int32, d interface{}) {
+ return t.root.lub(x, false).nilOrKeyAndData()
+}
+
+// LubEq returns the least-upper-bound-inclusive of x and the associated
+// data. If x has no lubEq in the tree, then (NOT_KEY32, nil) is returned.
+func (t *T) LubEq(x int32) (k int32, d interface{}) {
+ return t.root.lub(x, true).nilOrKeyAndData()
+}
+
+func (t *node32) isLeaf() bool {
+ return t.left == nil && t.right == nil && t.height_ == LEAF_HEIGHT
+}
+
+func (t *node32) visitInOrder(f func(int32, interface{})) {
+ if t.left != nil {
+ t.left.visitInOrder(f)
+ }
+ f(t.key, t.data)
+ if t.right != nil {
+ t.right.visitInOrder(f)
+ }
+}
+
+func (t *node32) find(key int32) *node32 {
+ for t != nil {
+ if key < t.key {
+ t = t.left
+ } else if key > t.key {
+ t = t.right
+ } else {
+ return t
+ }
+ }
+ return nil
+}
+
+func (t *node32) min() *node32 {
+ if t == nil {
+ return t
+ }
+ for t.left != nil {
+ t = t.left
+ }
+ return t
+}
+
+func (t *node32) max() *node32 {
+ if t == nil {
+ return t
+ }
+ for t.right != nil {
+ t = t.right
+ }
+ return t
+}
+
+func (t *node32) glb(key int32, allow_eq bool) *node32 {
+ var best *node32 = nil
+ for t != nil {
+ if key <= t.key {
+ if allow_eq && key == t.key {
+ return t
+ }
+ // t is too big, glb is to left.
+ t = t.left
+ } else {
+ // t is a lower bound, record it and seek a better one.
+ best = t
+ t = t.right
+ }
+ }
+ return best
+}
+
+func (t *node32) lub(key int32, allow_eq bool) *node32 {
+ var best *node32 = nil
+ for t != nil {
+ if key >= t.key {
+ if allow_eq && key == t.key {
+ return t
+ }
+ // t is too small, lub is to right.
+ t = t.right
+ } else {
+ // t is a upper bound, record it and seek a better one.
+ best = t
+ t = t.left
+ }
+ }
+ return best
+}
+
+func (t *node32) aInsert(x int32) (newroot, newnode, oldnode *node32) {
+ // oldnode default of nil is good, others should be assigned.
+ if x == t.key {
+ oldnode = t
+ newt := *t
+ newnode = &newt
+ newroot = newnode
+ return
+ }
+ if x < t.key {
+ if t.left == nil {
+ t = t.copy()
+ n := makeNode(x)
+ t.left = n
+ newnode = n
+ newroot = t
+ t.height_ = 2 // was balanced w/ 0, sibling is height 0 or 1
+ return
+ }
+ var new_l *node32
+ new_l, newnode, oldnode = t.left.aInsert(x)
+ t = t.copy()
+ t.left = new_l
+ if new_l.height() > 1+t.right.height() {
+ newroot = t.aLeftIsHigh(newnode)
+ } else {
+ t.height_ = 1 + max(t.left.height(), t.right.height())
+ newroot = t
+ }
+ } else { // x > t.key
+ if t.right == nil {
+ t = t.copy()
+ n := makeNode(x)
+ t.right = n
+ newnode = n
+ newroot = t
+ t.height_ = 2 // was balanced w/ 0, sibling is height 0 or 1
+ return
+ }
+ var new_r *node32
+ new_r, newnode, oldnode = t.right.aInsert(x)
+ t = t.copy()
+ t.right = new_r
+ if new_r.height() > 1+t.left.height() {
+ newroot = t.aRightIsHigh(newnode)
+ } else {
+ t.height_ = 1 + max(t.left.height(), t.right.height())
+ newroot = t
+ }
+ }
+ return
+}
+
+func (t *node32) aDelete(key int32) (deleted, newSubTree *node32) {
+ if t == nil {
+ return nil, nil
+ }
+
+ if key < t.key {
+ oh := t.left.height()
+ d, tleft := t.left.aDelete(key)
+ if tleft == t.left {
+ return d, t
+ }
+ return d, t.copy().aRebalanceAfterLeftDeletion(oh, tleft)
+ } else if key > t.key {
+ oh := t.right.height()
+ d, tright := t.right.aDelete(key)
+ if tright == t.right {
+ return d, t
+ }
+ return d, t.copy().aRebalanceAfterRightDeletion(oh, tright)
+ }
+
+ if t.height() == LEAF_HEIGHT {
+ return t, nil
+ }
+
+ // Interior delete by removing left.Max or right.Min,
+ // then swapping contents
+ if t.left.height() > t.right.height() {
+ oh := t.left.height()
+ d, tleft := t.left.aDeleteMax()
+ r := t
+ t = t.copy()
+ t.data, t.key = d.data, d.key
+ return r, t.aRebalanceAfterLeftDeletion(oh, tleft)
+ }
+
+ oh := t.right.height()
+ d, tright := t.right.aDeleteMin()
+ r := t
+ t = t.copy()
+ t.data, t.key = d.data, d.key
+ return r, t.aRebalanceAfterRightDeletion(oh, tright)
+}
+
+func (t *node32) aDeleteMin() (deleted, newSubTree *node32) {
+ if t == nil {
+ return nil, nil
+ }
+ if t.left == nil { // leaf or left-most
+ return t, t.right
+ }
+ oh := t.left.height()
+ d, tleft := t.left.aDeleteMin()
+ if tleft == t.left {
+ return d, t
+ }
+ return d, t.copy().aRebalanceAfterLeftDeletion(oh, tleft)
+}
+
+func (t *node32) aDeleteMax() (deleted, newSubTree *node32) {
+ if t == nil {
+ return nil, nil
+ }
+
+ if t.right == nil { // leaf or right-most
+ return t, t.left
+ }
+
+ oh := t.right.height()
+ d, tright := t.right.aDeleteMax()
+ if tright == t.right {
+ return d, t
+ }
+ return d, t.copy().aRebalanceAfterRightDeletion(oh, tright)
+}
+
+func (t *node32) aRebalanceAfterLeftDeletion(oldLeftHeight int8, tleft *node32) *node32 {
+ t.left = tleft
+
+ if oldLeftHeight == tleft.height() || oldLeftHeight == t.right.height() {
+ // this node is still balanced and its height is unchanged
+ return t
+ }
+
+ if oldLeftHeight > t.right.height() {
+ // left was larger
+ t.height_--
+ return t
+ }
+
+ // left height fell by 1 and it was already less than right height
+ t.right = t.right.copy()
+ return t.aRightIsHigh(nil)
+}
+
+func (t *node32) aRebalanceAfterRightDeletion(oldRightHeight int8, tright *node32) *node32 {
+ t.right = tright
+
+ if oldRightHeight == tright.height() || oldRightHeight == t.left.height() {
+ // this node is still balanced and its height is unchanged
+ return t
+ }
+
+ if oldRightHeight > t.left.height() {
+ // left was larger
+ t.height_--
+ return t
+ }
+
+ // right height fell by 1 and it was already less than left height
+ t.left = t.left.copy()
+ return t.aLeftIsHigh(nil)
+}
+
+// aRightIsHigh does rotations necessary to fix a high right child
+// assume that t and t.right are already fresh copies.
+func (t *node32) aRightIsHigh(newnode *node32) *node32 {
+ right := t.right
+ if right.right.height() < right.left.height() {
+ // double rotation
+ if newnode != right.left {
+ right.left = right.left.copy()
+ }
+ t.right = right.leftToRoot()
+ }
+ t = t.rightToRoot()
+ return t
+}
+
+// aLeftIsHigh does rotations necessary to fix a high left child
+// assume that t and t.left are already fresh copies.
+func (t *node32) aLeftIsHigh(newnode *node32) *node32 {
+ left := t.left
+ if left.left.height() < left.right.height() {
+ // double rotation
+ if newnode != left.right {
+ left.right = left.right.copy()
+ }
+ t.left = left.rightToRoot()
+ }
+ t = t.leftToRoot()
+ return t
+}
+
+// rightToRoot does that rotation, modifying t and t.right in the process.
+func (t *node32) rightToRoot() *node32 {
+ // this
+ // left right
+ // rl rr
+ //
+ // becomes
+ //
+ // right
+ // this rr
+ // left rl
+ //
+ right := t.right
+ rl := right.left
+ right.left = t
+ // parent's child ptr fixed in caller
+ t.right = rl
+ t.height_ = 1 + max(rl.height(), t.left.height())
+ right.height_ = 1 + max(t.height(), right.right.height())
+ return right
+}
+
+// leftToRoot does that rotation, modifying t and t.left in the process.
+func (t *node32) leftToRoot() *node32 {
+ // this
+ // left right
+ // ll lr
+ //
+ // becomes
+ //
+ // left
+ // ll this
+ // lr right
+ //
+ left := t.left
+ lr := left.right
+ left.right = t
+ // parent's child ptr fixed in caller
+ t.left = lr
+ t.height_ = 1 + max(lr.height(), t.right.height())
+ left.height_ = 1 + max(t.height(), left.left.height())
+ return left
+}
+
+func max(a, b int8) int8 {
+ if a > b {
+ return a
+ }
+ return b
+}
+
+func (t *node32) copy() *node32 {
+ u := *t
+ return &u
+}
diff --git a/src/cmd/compile/internal/abt/avlint32_test.go b/src/cmd/compile/internal/abt/avlint32_test.go
new file mode 100644
index 0000000..7fa9ed4
--- /dev/null
+++ b/src/cmd/compile/internal/abt/avlint32_test.go
@@ -0,0 +1,700 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package abt
+
+import (
+ "fmt"
+ "strconv"
+ "testing"
+)
+
+func makeTree(te *testing.T, x []int32, check bool) (t *T, k int, min, max int32) {
+ t = &T{}
+ k = 0
+ min = int32(0x7fffffff)
+ max = int32(-0x80000000)
+ history := []*T{}
+
+ for _, d := range x {
+ d = d + d // double everything for Glb/Lub testing.
+
+ if check {
+ history = append(history, t.Copy())
+ }
+
+ t.Insert(d, stringer(fmt.Sprintf("%v", d)))
+
+ k++
+ if d < min {
+ min = d
+ }
+ if d > max {
+ max = d
+ }
+
+ if !check {
+ continue
+ }
+
+ for j, old := range history {
+ s, i := old.wellFormed()
+ if s != "" {
+ te.Errorf("Old tree consistency problem %v at k=%d, j=%d, old=\n%v, t=\n%v", s, k, j, old.DebugString(), t.DebugString())
+ return
+ }
+ if i != j {
+ te.Errorf("Wrong tree size %v, expected %v for old %v", i, j, old.DebugString())
+ }
+ }
+ s, i := t.wellFormed()
+ if s != "" {
+ te.Errorf("Tree consistency problem at %v", s)
+ return
+ }
+ if i != k {
+ te.Errorf("Wrong tree size %v, expected %v for %v", i, k, t.DebugString())
+ return
+ }
+ if t.Size() != k {
+ te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), k, t.DebugString())
+ return
+ }
+ }
+ return
+}
+
+func applicInsert(te *testing.T, x []int32) {
+ makeTree(te, x, true)
+}
+
+func applicFind(te *testing.T, x []int32) {
+ t, _, _, _ := makeTree(te, x, false)
+
+ for _, d := range x {
+ d = d + d // double everything for Glb/Lub testing.
+ s := fmt.Sprintf("%v", d)
+ f := t.Find(d)
+
+ // data
+ if s != fmt.Sprint(f) {
+ te.Errorf("s(%v) != f(%v)", s, f)
+ }
+ }
+}
+
+func applicBounds(te *testing.T, x []int32) {
+ t, _, min, max := makeTree(te, x, false)
+ for _, d := range x {
+ d = d + d // double everything for Glb/Lub testing.
+ s := fmt.Sprintf("%v", d)
+
+ kg, g := t.Glb(d + 1)
+ kge, ge := t.GlbEq(d)
+ kl, l := t.Lub(d - 1)
+ kle, le := t.LubEq(d)
+
+ // keys
+ if d != kg {
+ te.Errorf("d(%v) != kg(%v)", d, kg)
+ }
+ if d != kl {
+ te.Errorf("d(%v) != kl(%v)", d, kl)
+ }
+ if d != kge {
+ te.Errorf("d(%v) != kge(%v)", d, kge)
+ }
+ if d != kle {
+ te.Errorf("d(%v) != kle(%v)", d, kle)
+ }
+ // data
+ if s != fmt.Sprint(g) {
+ te.Errorf("s(%v) != g(%v)", s, g)
+ }
+ if s != fmt.Sprint(l) {
+ te.Errorf("s(%v) != l(%v)", s, l)
+ }
+ if s != fmt.Sprint(ge) {
+ te.Errorf("s(%v) != ge(%v)", s, ge)
+ }
+ if s != fmt.Sprint(le) {
+ te.Errorf("s(%v) != le(%v)", s, le)
+ }
+ }
+
+ for _, d := range x {
+ d = d + d // double everything for Glb/Lub testing.
+ s := fmt.Sprintf("%v", d)
+ kge, ge := t.GlbEq(d + 1)
+ kle, le := t.LubEq(d - 1)
+ if d != kge {
+ te.Errorf("d(%v) != kge(%v)", d, kge)
+ }
+ if d != kle {
+ te.Errorf("d(%v) != kle(%v)", d, kle)
+ }
+ if s != fmt.Sprint(ge) {
+ te.Errorf("s(%v) != ge(%v)", s, ge)
+ }
+ if s != fmt.Sprint(le) {
+ te.Errorf("s(%v) != le(%v)", s, le)
+ }
+ }
+
+ kg, g := t.Glb(min)
+ kge, ge := t.GlbEq(min - 1)
+ kl, l := t.Lub(max)
+ kle, le := t.LubEq(max + 1)
+ fmin := t.Find(min - 1)
+ fmax := t.Find(max + 1)
+
+ if kg != NOT_KEY32 || kge != NOT_KEY32 || kl != NOT_KEY32 || kle != NOT_KEY32 {
+ te.Errorf("Got non-error-key for missing query")
+ }
+
+ if g != nil || ge != nil || l != nil || le != nil || fmin != nil || fmax != nil {
+ te.Errorf("Got non-error-data for missing query")
+ }
+}
+
+func applicDeleteMin(te *testing.T, x []int32) {
+ t, _, _, _ := makeTree(te, x, false)
+ _, size := t.wellFormed()
+ history := []*T{}
+ for !t.IsEmpty() {
+ k, _ := t.Min()
+ history = append(history, t.Copy())
+ kd, _ := t.DeleteMin()
+ if kd != k {
+ te.Errorf("Deleted minimum key %v not equal to minimum %v", kd, k)
+ }
+ for j, old := range history {
+ s, i := old.wellFormed()
+ if s != "" {
+ te.Errorf("Tree consistency problem %s at old after DeleteMin, old=\n%stree=\n%v", s, old.DebugString(), t.DebugString())
+ return
+ }
+ if i != len(x)-j {
+ te.Errorf("Wrong old tree size %v, expected %v after DeleteMin, old=\n%vtree\n%v", i, len(x)-j, old.DebugString(), t.DebugString())
+ return
+ }
+ }
+ size--
+ s, i := t.wellFormed()
+ if s != "" {
+ te.Errorf("Tree consistency problem at %v after DeleteMin, tree=\n%v", s, t.DebugString())
+ return
+ }
+ if i != size {
+ te.Errorf("Wrong tree size %v, expected %v after DeleteMin", i, size)
+ return
+ }
+ if t.Size() != size {
+ te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), i, t.DebugString())
+ return
+ }
+ }
+}
+
+func applicDeleteMax(te *testing.T, x []int32) {
+ t, _, _, _ := makeTree(te, x, false)
+ _, size := t.wellFormed()
+ history := []*T{}
+
+ for !t.IsEmpty() {
+ k, _ := t.Max()
+ history = append(history, t.Copy())
+ kd, _ := t.DeleteMax()
+ if kd != k {
+ te.Errorf("Deleted maximum key %v not equal to maximum %v", kd, k)
+ }
+
+ for j, old := range history {
+ s, i := old.wellFormed()
+ if s != "" {
+ te.Errorf("Tree consistency problem %s at old after DeleteMin, old=\n%stree=\n%v", s, old.DebugString(), t.DebugString())
+ return
+ }
+ if i != len(x)-j {
+ te.Errorf("Wrong old tree size %v, expected %v after DeleteMin, old=\n%vtree\n%v", i, len(x)-j, old.DebugString(), t.DebugString())
+ return
+ }
+ }
+
+ size--
+ s, i := t.wellFormed()
+ if s != "" {
+ te.Errorf("Tree consistency problem at %v after DeleteMax, tree=\n%v", s, t.DebugString())
+ return
+ }
+ if i != size {
+ te.Errorf("Wrong tree size %v, expected %v after DeleteMax", i, size)
+ return
+ }
+ if t.Size() != size {
+ te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), i, t.DebugString())
+ return
+ }
+ }
+}
+
+func applicDelete(te *testing.T, x []int32) {
+ t, _, _, _ := makeTree(te, x, false)
+ _, size := t.wellFormed()
+ history := []*T{}
+
+ missing := t.Delete(11)
+ if missing != nil {
+ te.Errorf("Returned a value when there should have been none, %v", missing)
+ return
+ }
+
+ s, i := t.wellFormed()
+ if s != "" {
+ te.Errorf("Tree consistency problem at %v after delete of missing value, tree=\n%v", s, t.DebugString())
+ return
+ }
+ if size != i {
+ te.Errorf("Delete of missing data should not change tree size, expected %d, got %d", size, i)
+ return
+ }
+
+ for _, d := range x {
+ d += d // double
+ vWant := fmt.Sprintf("%v", d)
+ history = append(history, t.Copy())
+ v := t.Delete(d)
+
+ for j, old := range history {
+ s, i := old.wellFormed()
+ if s != "" {
+ te.Errorf("Tree consistency problem %s at old after DeleteMin, old=\n%stree=\n%v", s, old.DebugString(), t.DebugString())
+ return
+ }
+ if i != len(x)-j {
+ te.Errorf("Wrong old tree size %v, expected %v after DeleteMin, old=\n%vtree\n%v", i, len(x)-j, old.DebugString(), t.DebugString())
+ return
+ }
+ }
+
+ if v.(*sstring).s != vWant {
+ te.Errorf("Deleted %v expected %v but got %v", d, vWant, v)
+ return
+ }
+ size--
+ s, i := t.wellFormed()
+ if s != "" {
+ te.Errorf("Tree consistency problem at %v after Delete %d, tree=\n%v", s, d, t.DebugString())
+ return
+ }
+ if i != size {
+ te.Errorf("Wrong tree size %v, expected %v after Delete", i, size)
+ return
+ }
+ if t.Size() != size {
+ te.Errorf("Wrong t.Size() %v, expected %v for %v", t.Size(), i, t.DebugString())
+ return
+ }
+ }
+
+}
+
+func applicIterator(te *testing.T, x []int32) {
+ t, _, _, _ := makeTree(te, x, false)
+ it := t.Iterator()
+ for !it.Done() {
+ k0, d0 := it.Next()
+ k1, d1 := t.DeleteMin()
+ if k0 != k1 || d0 != d1 {
+ te.Errorf("Iterator and deleteMin mismatch, k0, k1, d0, d1 = %v, %v, %v, %v", k0, k1, d0, d1)
+ return
+ }
+ }
+ if t.Size() != 0 {
+ te.Errorf("Iterator ended early, remaining tree = \n%s", t.DebugString())
+ return
+ }
+}
+
+func equiv(a, b interface{}) bool {
+ sa, sb := a.(*sstring), b.(*sstring)
+ return *sa == *sb
+}
+
+func applicEquals(te *testing.T, x, y []int32) {
+ t, _, _, _ := makeTree(te, x, false)
+ u, _, _, _ := makeTree(te, y, false)
+ if !t.Equiv(t, equiv) {
+ te.Errorf("Equiv failure, t == t, =\n%v", t.DebugString())
+ return
+ }
+ if !t.Equiv(t.Copy(), equiv) {
+ te.Errorf("Equiv failure, t == t.Copy(), =\n%v", t.DebugString())
+ return
+ }
+ if !t.Equiv(u, equiv) {
+ te.Errorf("Equiv failure, t == u, =\n%v", t.DebugString())
+ return
+ }
+ v := t.Copy()
+
+ v.DeleteMax()
+ if t.Equiv(v, equiv) {
+ te.Errorf("!Equiv failure, t != v, =\n%v\nand%v\n", t.DebugString(), v.DebugString())
+ return
+ }
+
+ if v.Equiv(u, equiv) {
+ te.Errorf("!Equiv failure, v != u, =\n%v\nand%v\n", v.DebugString(), u.DebugString())
+ return
+ }
+
+}
+
+func tree(x []int32) *T {
+ t := &T{}
+ for _, d := range x {
+ t.Insert(d, stringer(fmt.Sprintf("%v", d)))
+ }
+ return t
+}
+
+func treePlus1(x []int32) *T {
+ t := &T{}
+ for _, d := range x {
+ t.Insert(d, stringer(fmt.Sprintf("%v", d+1)))
+ }
+ return t
+}
+func TestApplicInsert(t *testing.T) {
+ applicInsert(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
+ applicInsert(t, []int32{1, 2, 3, 4})
+ applicInsert(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
+ applicInsert(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
+ applicInsert(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicInsert(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicInsert(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
+ applicInsert(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
+}
+
+func TestApplicFind(t *testing.T) {
+ applicFind(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
+ applicFind(t, []int32{1, 2, 3, 4})
+ applicFind(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
+ applicFind(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
+ applicFind(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicFind(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicFind(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
+ applicFind(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
+}
+
+func TestBounds(t *testing.T) {
+ applicBounds(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
+ applicBounds(t, []int32{1, 2, 3, 4})
+ applicBounds(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
+ applicBounds(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
+ applicBounds(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicBounds(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicBounds(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
+ applicBounds(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
+}
+func TestDeleteMin(t *testing.T) {
+ applicDeleteMin(t, []int32{1, 2, 3, 4})
+ applicDeleteMin(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
+ applicDeleteMin(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
+ applicDeleteMin(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
+ applicDeleteMin(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicDeleteMin(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicDeleteMin(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
+ applicDeleteMin(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
+}
+func TestDeleteMax(t *testing.T) {
+ applicDeleteMax(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
+ applicDeleteMax(t, []int32{1, 2, 3, 4})
+ applicDeleteMax(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
+ applicDeleteMax(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
+ applicDeleteMax(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicDeleteMax(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicDeleteMax(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
+ applicDeleteMax(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
+}
+func TestDelete(t *testing.T) {
+ applicDelete(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
+ applicDelete(t, []int32{1, 2, 3, 4})
+ applicDelete(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
+ applicDelete(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
+ applicDelete(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicDelete(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicDelete(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
+ applicDelete(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
+}
+func TestIterator(t *testing.T) {
+ applicIterator(t, []int32{1, 2, 3, 4})
+ applicIterator(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9})
+ applicIterator(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
+ applicIterator(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
+ applicIterator(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicIterator(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicIterator(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
+ applicIterator(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
+}
+func TestEquals(t *testing.T) {
+ applicEquals(t, []int32{1, 2, 3, 4}, []int32{4, 3, 2, 1})
+
+ applicEquals(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25},
+ []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
+ applicEquals(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1},
+ []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
+ applicEquals(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24},
+ []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
+}
+
+func first(x, y interface{}) interface{} {
+ return x
+}
+func second(x, y interface{}) interface{} {
+ return y
+}
+func alwaysNil(x, y interface{}) interface{} {
+ return nil
+}
+func smaller(x, y interface{}) interface{} {
+ xi, _ := strconv.Atoi(fmt.Sprint(x))
+ yi, _ := strconv.Atoi(fmt.Sprint(y))
+ if xi < yi {
+ return x
+ }
+ return y
+}
+func assert(t *testing.T, expected, got *T, what string) {
+ s, _ := got.wellFormed()
+ if s != "" {
+ t.Errorf("Tree consistency problem %v for 'got' in assert for %s, tree=\n%v", s, what, got.DebugString())
+ return
+ }
+
+ if !expected.Equiv(got, equiv) {
+ t.Errorf("%s fail, expected\n%vgot\n%v\n", what, expected.DebugString(), got.DebugString())
+ }
+}
+
+func TestSetOps(t *testing.T) {
+ A := tree([]int32{1, 2, 3, 4})
+ B := tree([]int32{3, 4, 5, 6, 7})
+
+ AIB := tree([]int32{3, 4})
+ ADB := tree([]int32{1, 2})
+ BDA := tree([]int32{5, 6, 7})
+ AUB := tree([]int32{1, 2, 3, 4, 5, 6, 7})
+ AXB := tree([]int32{1, 2, 5, 6, 7})
+
+ aib1 := A.Intersection(B, first)
+ assert(t, AIB, aib1, "aib1")
+ if A.Find(3) != aib1.Find(3) {
+ t.Errorf("Failed aliasing/reuse check, A/aib1")
+ }
+ aib2 := A.Intersection(B, second)
+ assert(t, AIB, aib2, "aib2")
+ if B.Find(3) != aib2.Find(3) {
+ t.Errorf("Failed aliasing/reuse check, B/aib2")
+ }
+ aib3 := B.Intersection(A, first)
+ assert(t, AIB, aib3, "aib3")
+ if A.Find(3) != aib3.Find(3) {
+ // A is smaller, intersection favors reuse from smaller when function is "first"
+ t.Errorf("Failed aliasing/reuse check, A/aib3")
+ }
+ aib4 := B.Intersection(A, second)
+ assert(t, AIB, aib4, "aib4")
+ if A.Find(3) != aib4.Find(3) {
+ t.Errorf("Failed aliasing/reuse check, A/aib4")
+ }
+
+ aub1 := A.Union(B, first)
+ assert(t, AUB, aub1, "aub1")
+ if B.Find(3) != aub1.Find(3) {
+ // B is larger, union favors reuse from larger when function is "first"
+ t.Errorf("Failed aliasing/reuse check, A/aub1")
+ }
+ aub2 := A.Union(B, second)
+ assert(t, AUB, aub2, "aub2")
+ if B.Find(3) != aub2.Find(3) {
+ t.Errorf("Failed aliasing/reuse check, B/aub2")
+ }
+ aub3 := B.Union(A, first)
+ assert(t, AUB, aub3, "aub3")
+ if B.Find(3) != aub3.Find(3) {
+ t.Errorf("Failed aliasing/reuse check, B/aub3")
+ }
+ aub4 := B.Union(A, second)
+ assert(t, AUB, aub4, "aub4")
+ if A.Find(3) != aub4.Find(3) {
+ t.Errorf("Failed aliasing/reuse check, A/aub4")
+ }
+
+ axb1 := A.Union(B, alwaysNil)
+ assert(t, AXB, axb1, "axb1")
+ axb2 := B.Union(A, alwaysNil)
+ assert(t, AXB, axb2, "axb2")
+
+ adb := A.Difference(B, alwaysNil)
+ assert(t, ADB, adb, "adb")
+ bda := B.Difference(A, nil)
+ assert(t, BDA, bda, "bda")
+
+ Ap1 := treePlus1([]int32{1, 2, 3, 4})
+
+ ada1_1 := A.Difference(Ap1, smaller)
+ assert(t, A, ada1_1, "ada1_1")
+ ada1_2 := Ap1.Difference(A, smaller)
+ assert(t, A, ada1_2, "ada1_2")
+
+}
+
+type sstring struct {
+ s string
+}
+
+func (s *sstring) String() string {
+ return s.s
+}
+
+func stringer(s string) interface{} {
+ return &sstring{s}
+}
+
+// wellFormed ensures that a red-black tree meets
+// all of its invariants and returns a string identifying
+// the first problem encountered. If there is no problem
+// then the returned string is empty. The size is also
+// returned to allow comparison of calculated tree size
+// with expected.
+func (t *T) wellFormed() (s string, i int) {
+ if t.root == nil {
+ s = ""
+ i = 0
+ return
+ }
+ return t.root.wellFormedSubtree(nil, -0x80000000, 0x7fffffff)
+}
+
+// wellFormedSubtree ensures that a red-black subtree meets
+// all of its invariants and returns a string identifying
+// the first problem encountered. If there is no problem
+// then the returned string is empty. The size is also
+// returned to allow comparison of calculated tree size
+// with expected.
+func (t *node32) wellFormedSubtree(parent *node32, keyMin, keyMax int32) (s string, i int) {
+ i = -1 // initialize to a failing value
+ s = "" // s is the reason for failure; empty means okay.
+
+ if keyMin >= t.key {
+ s = " min >= t.key"
+ return
+ }
+
+ if keyMax <= t.key {
+ s = " max <= t.key"
+ return
+ }
+
+ l := t.left
+ r := t.right
+
+ lh := l.height()
+ rh := r.height()
+ mh := max(lh, rh)
+ th := t.height()
+ dh := lh - rh
+ if dh < 0 {
+ dh = -dh
+ }
+ if dh > 1 {
+ s = fmt.Sprintf(" dh > 1, t=%d", t.key)
+ return
+ }
+
+ if l == nil && r == nil {
+ if th != LEAF_HEIGHT {
+ s = " leaf height wrong"
+ return
+ }
+ }
+
+ if th != mh+1 {
+ s = " th != mh + 1"
+ return
+ }
+
+ if l != nil {
+ if th <= lh {
+ s = " t.height <= l.height"
+ } else if th > 2+lh {
+ s = " t.height > 2+l.height"
+ } else if t.key <= l.key {
+ s = " t.key <= l.key"
+ }
+ if s != "" {
+ return
+ }
+
+ }
+
+ if r != nil {
+ if th <= rh {
+ s = " t.height <= r.height"
+ } else if th > 2+rh {
+ s = " t.height > 2+r.height"
+ } else if t.key >= r.key {
+ s = " t.key >= r.key"
+ }
+ if s != "" {
+ return
+ }
+ }
+
+ ii := 1
+ if l != nil {
+ res, il := l.wellFormedSubtree(t, keyMin, t.key)
+ if res != "" {
+ s = ".L" + res
+ return
+ }
+ ii += il
+ }
+ if r != nil {
+ res, ir := r.wellFormedSubtree(t, t.key, keyMax)
+ if res != "" {
+ s = ".R" + res
+ return
+ }
+ ii += ir
+ }
+ i = ii
+ return
+}
+
+func (t *T) DebugString() string {
+ if t.root == nil {
+ return ""
+ }
+ return t.root.DebugString(0)
+}
+
+// DebugString prints the tree with nested information
+// to allow an eyeball check on the tree balance.
+func (t *node32) DebugString(indent int) string {
+ s := ""
+ if t.left != nil {
+ s = s + t.left.DebugString(indent+1)
+ }
+ for i := 0; i < indent; i++ {
+ s = s + " "
+ }
+ s = s + fmt.Sprintf("%v=%v:%d\n", t.key, t.data, t.height_)
+ if t.right != nil {
+ s = s + t.right.DebugString(indent+1)
+ }
+ return s
+}