summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/noder/writer.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/noder/writer.go')
-rw-r--r--src/cmd/compile/internal/noder/writer.go2735
1 files changed, 2735 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/noder/writer.go b/src/cmd/compile/internal/noder/writer.go
new file mode 100644
index 0000000..da5c1e9
--- /dev/null
+++ b/src/cmd/compile/internal/noder/writer.go
@@ -0,0 +1,2735 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package noder
+
+import (
+ "fmt"
+ "internal/pkgbits"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/syntax"
+ "cmd/compile/internal/types"
+ "cmd/compile/internal/types2"
+)
+
+// This file implements the Unified IR package writer and defines the
+// Unified IR export data format.
+//
+// Low-level coding details (e.g., byte-encoding of individual
+// primitive values, or handling element bitstreams and
+// cross-references) are handled by internal/pkgbits, so here we only
+// concern ourselves with higher-level worries like mapping Go
+// language constructs into elements.
+
+// There are two central types in the writing process: the "writer"
+// type handles writing out individual elements, while the "pkgWriter"
+// type keeps track of which elements have already been created.
+//
+// For each sort of "thing" (e.g., position, package, object, type)
+// that can be written into the export data, there are generally
+// several methods that work together:
+//
+// - writer.thing handles writing out a *use* of a thing, which often
+// means writing a relocation to that thing's encoded index.
+//
+// - pkgWriter.thingIdx handles reserving an index for a thing, and
+// writing out any elements needed for the thing.
+//
+// - writer.doThing handles writing out the *definition* of a thing,
+// which in general is a mix of low-level coding primitives (e.g.,
+// ints and strings) or uses of other things.
+//
+// A design goal of Unified IR is to have a single, canonical writer
+// implementation, but multiple reader implementations each tailored
+// to their respective needs. For example, within cmd/compile's own
+// backend, inlining is implemented largely by just re-running the
+// function body reading code.
+
+// TODO(mdempsky): Add an importer for Unified IR to the x/tools repo,
+// and better document the file format boundary between public and
+// private data.
+
+// A pkgWriter constructs Unified IR export data from the results of
+// running the types2 type checker on a Go compilation unit.
+type pkgWriter struct {
+ pkgbits.PkgEncoder
+
+ m posMap
+ curpkg *types2.Package
+ info *types2.Info
+
+ // Indices for previously written syntax and types2 things.
+
+ posBasesIdx map[*syntax.PosBase]pkgbits.Index
+ pkgsIdx map[*types2.Package]pkgbits.Index
+ typsIdx map[types2.Type]pkgbits.Index
+ objsIdx map[types2.Object]pkgbits.Index
+
+ // Maps from types2.Objects back to their syntax.Decl.
+
+ funDecls map[*types2.Func]*syntax.FuncDecl
+ typDecls map[*types2.TypeName]typeDeclGen
+
+ // linknames maps package-scope objects to their linker symbol name,
+ // if specified by a //go:linkname directive.
+ linknames map[types2.Object]string
+
+ // cgoPragmas accumulates any //go:cgo_* pragmas that need to be
+ // passed through to cmd/link.
+ cgoPragmas [][]string
+}
+
+// newPkgWriter returns an initialized pkgWriter for the specified
+// package.
+func newPkgWriter(m posMap, pkg *types2.Package, info *types2.Info) *pkgWriter {
+ return &pkgWriter{
+ PkgEncoder: pkgbits.NewPkgEncoder(base.Debug.SyncFrames),
+
+ m: m,
+ curpkg: pkg,
+ info: info,
+
+ pkgsIdx: make(map[*types2.Package]pkgbits.Index),
+ objsIdx: make(map[types2.Object]pkgbits.Index),
+ typsIdx: make(map[types2.Type]pkgbits.Index),
+
+ posBasesIdx: make(map[*syntax.PosBase]pkgbits.Index),
+
+ funDecls: make(map[*types2.Func]*syntax.FuncDecl),
+ typDecls: make(map[*types2.TypeName]typeDeclGen),
+
+ linknames: make(map[types2.Object]string),
+ }
+}
+
+// errorf reports a user error about thing p.
+func (pw *pkgWriter) errorf(p poser, msg string, args ...interface{}) {
+ base.ErrorfAt(pw.m.pos(p), msg, args...)
+}
+
+// fatalf reports an internal compiler error about thing p.
+func (pw *pkgWriter) fatalf(p poser, msg string, args ...interface{}) {
+ base.FatalfAt(pw.m.pos(p), msg, args...)
+}
+
+// unexpected reports a fatal error about a thing of unexpected
+// dynamic type.
+func (pw *pkgWriter) unexpected(what string, p poser) {
+ pw.fatalf(p, "unexpected %s: %v (%T)", what, p, p)
+}
+
+func (pw *pkgWriter) typeAndValue(x syntax.Expr) syntax.TypeAndValue {
+ tv := x.GetTypeInfo()
+ if tv.Type == nil {
+ pw.fatalf(x, "missing Types entry: %v", syntax.String(x))
+ }
+ return tv
+}
+func (pw *pkgWriter) maybeTypeAndValue(x syntax.Expr) (syntax.TypeAndValue, bool) {
+ tv := x.GetTypeInfo()
+ return tv, tv.Type != nil
+}
+
+// typeOf returns the Type of the given value expression.
+func (pw *pkgWriter) typeOf(expr syntax.Expr) types2.Type {
+ tv := pw.typeAndValue(expr)
+ if !tv.IsValue() {
+ pw.fatalf(expr, "expected value: %v", syntax.String(expr))
+ }
+ return tv.Type
+}
+
+// A writer provides APIs for writing out an individual element.
+type writer struct {
+ p *pkgWriter
+
+ pkgbits.Encoder
+
+ // sig holds the signature for the current function body, if any.
+ sig *types2.Signature
+
+ // TODO(mdempsky): We should be able to prune localsIdx whenever a
+ // scope closes, and then maybe we can just use the same map for
+ // storing the TypeParams too (as their TypeName instead).
+
+ // localsIdx tracks any local variables declared within this
+ // function body. It's unused for writing out non-body things.
+ localsIdx map[*types2.Var]int
+
+ // closureVars tracks any free variables that are referenced by this
+ // function body. It's unused for writing out non-body things.
+ closureVars []posVar
+ closureVarsIdx map[*types2.Var]int // index of previously seen free variables
+
+ dict *writerDict
+
+ // derived tracks whether the type being written out references any
+ // type parameters. It's unused for writing non-type things.
+ derived bool
+}
+
+// A writerDict tracks types and objects that are used by a declaration.
+type writerDict struct {
+ implicits []*types2.TypeName
+
+ // derived is a slice of type indices for computing derived types
+ // (i.e., types that depend on the declaration's type parameters).
+ derived []derivedInfo
+
+ // derivedIdx maps a Type to its corresponding index within the
+ // derived slice, if present.
+ derivedIdx map[types2.Type]pkgbits.Index
+
+ // These slices correspond to entries in the runtime dictionary.
+ typeParamMethodExprs []writerMethodExprInfo
+ subdicts []objInfo
+ rtypes []typeInfo
+ itabs []itabInfo
+}
+
+type itabInfo struct {
+ typ typeInfo
+ iface typeInfo
+}
+
+// typeParamIndex returns the index of the given type parameter within
+// the dictionary. This may differ from typ.Index() when there are
+// implicit type parameters due to defined types declared within a
+// generic function or method.
+func (dict *writerDict) typeParamIndex(typ *types2.TypeParam) int {
+ for idx, implicit := range dict.implicits {
+ if implicit.Type().(*types2.TypeParam) == typ {
+ return idx
+ }
+ }
+
+ return len(dict.implicits) + typ.Index()
+}
+
+// A derivedInfo represents a reference to an encoded generic Go type.
+type derivedInfo struct {
+ idx pkgbits.Index
+ needed bool // TODO(mdempsky): Remove.
+}
+
+// A typeInfo represents a reference to an encoded Go type.
+//
+// If derived is true, then the typeInfo represents a generic Go type
+// that contains type parameters. In this case, idx is an index into
+// the readerDict.derived{,Types} arrays.
+//
+// Otherwise, the typeInfo represents a non-generic Go type, and idx
+// is an index into the reader.typs array instead.
+type typeInfo struct {
+ idx pkgbits.Index
+ derived bool
+}
+
+// An objInfo represents a reference to an encoded, instantiated (if
+// applicable) Go object.
+type objInfo struct {
+ idx pkgbits.Index // index for the generic function declaration
+ explicits []typeInfo // info for the type arguments
+}
+
+// A selectorInfo represents a reference to an encoded field or method
+// name (i.e., objects that can only be accessed using selector
+// expressions).
+type selectorInfo struct {
+ pkgIdx pkgbits.Index
+ nameIdx pkgbits.Index
+}
+
+// anyDerived reports whether any of info's explicit type arguments
+// are derived types.
+func (info objInfo) anyDerived() bool {
+ for _, explicit := range info.explicits {
+ if explicit.derived {
+ return true
+ }
+ }
+ return false
+}
+
+// equals reports whether info and other represent the same Go object
+// (i.e., same base object and identical type arguments, if any).
+func (info objInfo) equals(other objInfo) bool {
+ if info.idx != other.idx {
+ return false
+ }
+ assert(len(info.explicits) == len(other.explicits))
+ for i, targ := range info.explicits {
+ if targ != other.explicits[i] {
+ return false
+ }
+ }
+ return true
+}
+
+type writerMethodExprInfo struct {
+ typeParamIdx int
+ methodInfo selectorInfo
+}
+
+// typeParamMethodExprIdx returns the index where the given encoded
+// method expression function pointer appears within this dictionary's
+// type parameters method expressions section, adding it if necessary.
+func (dict *writerDict) typeParamMethodExprIdx(typeParamIdx int, methodInfo selectorInfo) int {
+ newInfo := writerMethodExprInfo{typeParamIdx, methodInfo}
+
+ for idx, oldInfo := range dict.typeParamMethodExprs {
+ if oldInfo == newInfo {
+ return idx
+ }
+ }
+
+ idx := len(dict.typeParamMethodExprs)
+ dict.typeParamMethodExprs = append(dict.typeParamMethodExprs, newInfo)
+ return idx
+}
+
+// subdictIdx returns the index where the given encoded object's
+// runtime dictionary appears within this dictionary's subdictionary
+// section, adding it if necessary.
+func (dict *writerDict) subdictIdx(newInfo objInfo) int {
+ for idx, oldInfo := range dict.subdicts {
+ if oldInfo.equals(newInfo) {
+ return idx
+ }
+ }
+
+ idx := len(dict.subdicts)
+ dict.subdicts = append(dict.subdicts, newInfo)
+ return idx
+}
+
+// rtypeIdx returns the index where the given encoded type's
+// *runtime._type value appears within this dictionary's rtypes
+// section, adding it if necessary.
+func (dict *writerDict) rtypeIdx(newInfo typeInfo) int {
+ for idx, oldInfo := range dict.rtypes {
+ if oldInfo == newInfo {
+ return idx
+ }
+ }
+
+ idx := len(dict.rtypes)
+ dict.rtypes = append(dict.rtypes, newInfo)
+ return idx
+}
+
+// itabIdx returns the index where the given encoded type pair's
+// *runtime.itab value appears within this dictionary's itabs section,
+// adding it if necessary.
+func (dict *writerDict) itabIdx(typInfo, ifaceInfo typeInfo) int {
+ newInfo := itabInfo{typInfo, ifaceInfo}
+
+ for idx, oldInfo := range dict.itabs {
+ if oldInfo == newInfo {
+ return idx
+ }
+ }
+
+ idx := len(dict.itabs)
+ dict.itabs = append(dict.itabs, newInfo)
+ return idx
+}
+
+func (pw *pkgWriter) newWriter(k pkgbits.RelocKind, marker pkgbits.SyncMarker) *writer {
+ return &writer{
+ Encoder: pw.NewEncoder(k, marker),
+ p: pw,
+ }
+}
+
+// @@@ Positions
+
+// pos writes the position of p into the element bitstream.
+func (w *writer) pos(p poser) {
+ w.Sync(pkgbits.SyncPos)
+ pos := p.Pos()
+
+ // TODO(mdempsky): Track down the remaining cases here and fix them.
+ if !w.Bool(pos.IsKnown()) {
+ return
+ }
+
+ // TODO(mdempsky): Delta encoding.
+ w.posBase(pos.Base())
+ w.Uint(pos.Line())
+ w.Uint(pos.Col())
+}
+
+// posBase writes a reference to the given PosBase into the element
+// bitstream.
+func (w *writer) posBase(b *syntax.PosBase) {
+ w.Reloc(pkgbits.RelocPosBase, w.p.posBaseIdx(b))
+}
+
+// posBaseIdx returns the index for the given PosBase.
+func (pw *pkgWriter) posBaseIdx(b *syntax.PosBase) pkgbits.Index {
+ if idx, ok := pw.posBasesIdx[b]; ok {
+ return idx
+ }
+
+ w := pw.newWriter(pkgbits.RelocPosBase, pkgbits.SyncPosBase)
+ w.p.posBasesIdx[b] = w.Idx
+
+ w.String(trimFilename(b))
+
+ if !w.Bool(b.IsFileBase()) {
+ w.pos(b)
+ w.Uint(b.Line())
+ w.Uint(b.Col())
+ }
+
+ return w.Flush()
+}
+
+// @@@ Packages
+
+// pkg writes a use of the given Package into the element bitstream.
+func (w *writer) pkg(pkg *types2.Package) {
+ w.pkgRef(w.p.pkgIdx(pkg))
+}
+
+func (w *writer) pkgRef(idx pkgbits.Index) {
+ w.Sync(pkgbits.SyncPkg)
+ w.Reloc(pkgbits.RelocPkg, idx)
+}
+
+// pkgIdx returns the index for the given package, adding it to the
+// package export data if needed.
+func (pw *pkgWriter) pkgIdx(pkg *types2.Package) pkgbits.Index {
+ if idx, ok := pw.pkgsIdx[pkg]; ok {
+ return idx
+ }
+
+ w := pw.newWriter(pkgbits.RelocPkg, pkgbits.SyncPkgDef)
+ pw.pkgsIdx[pkg] = w.Idx
+
+ // The universe and package unsafe need to be handled specially by
+ // importers anyway, so we serialize them using just their package
+ // path. This ensures that readers don't confuse them for
+ // user-defined packages.
+ switch pkg {
+ case nil: // universe
+ w.String("builtin") // same package path used by godoc
+ case types2.Unsafe:
+ w.String("unsafe")
+ default:
+ // TODO(mdempsky): Write out pkg.Path() for curpkg too.
+ var path string
+ if pkg != w.p.curpkg {
+ path = pkg.Path()
+ }
+ base.Assertf(path != "builtin" && path != "unsafe", "unexpected path for user-defined package: %q", path)
+ w.String(path)
+ w.String(pkg.Name())
+
+ w.Len(len(pkg.Imports()))
+ for _, imp := range pkg.Imports() {
+ w.pkg(imp)
+ }
+ }
+
+ return w.Flush()
+}
+
+// @@@ Types
+
+var (
+ anyTypeName = types2.Universe.Lookup("any").(*types2.TypeName)
+ comparableTypeName = types2.Universe.Lookup("comparable").(*types2.TypeName)
+ runeTypeName = types2.Universe.Lookup("rune").(*types2.TypeName)
+)
+
+// typ writes a use of the given type into the bitstream.
+func (w *writer) typ(typ types2.Type) {
+ w.typInfo(w.p.typIdx(typ, w.dict))
+}
+
+// typInfo writes a use of the given type (specified as a typeInfo
+// instead) into the bitstream.
+func (w *writer) typInfo(info typeInfo) {
+ w.Sync(pkgbits.SyncType)
+ if w.Bool(info.derived) {
+ w.Len(int(info.idx))
+ w.derived = true
+ } else {
+ w.Reloc(pkgbits.RelocType, info.idx)
+ }
+}
+
+// typIdx returns the index where the export data description of type
+// can be read back in. If no such index exists yet, it's created.
+//
+// typIdx also reports whether typ is a derived type; that is, whether
+// its identity depends on type parameters.
+func (pw *pkgWriter) typIdx(typ types2.Type, dict *writerDict) typeInfo {
+ if idx, ok := pw.typsIdx[typ]; ok {
+ return typeInfo{idx: idx, derived: false}
+ }
+ if dict != nil {
+ if idx, ok := dict.derivedIdx[typ]; ok {
+ return typeInfo{idx: idx, derived: true}
+ }
+ }
+
+ w := pw.newWriter(pkgbits.RelocType, pkgbits.SyncTypeIdx)
+ w.dict = dict
+
+ switch typ := typ.(type) {
+ default:
+ base.Fatalf("unexpected type: %v (%T)", typ, typ)
+
+ case *types2.Basic:
+ switch kind := typ.Kind(); {
+ case kind == types2.Invalid:
+ base.Fatalf("unexpected types2.Invalid")
+
+ case types2.Typ[kind] == typ:
+ w.Code(pkgbits.TypeBasic)
+ w.Len(int(kind))
+
+ default:
+ // Handle "byte" and "rune" as references to their TypeNames.
+ obj := types2.Universe.Lookup(typ.Name())
+ assert(obj.Type() == typ)
+
+ w.Code(pkgbits.TypeNamed)
+ w.obj(obj, nil)
+ }
+
+ case *types2.Named:
+ obj, targs := splitNamed(typ)
+
+ // Defined types that are declared within a generic function (and
+ // thus have implicit type parameters) are always derived types.
+ if w.p.hasImplicitTypeParams(obj) {
+ w.derived = true
+ }
+
+ w.Code(pkgbits.TypeNamed)
+ w.obj(obj, targs)
+
+ case *types2.TypeParam:
+ w.derived = true
+ w.Code(pkgbits.TypeTypeParam)
+ w.Len(w.dict.typeParamIndex(typ))
+
+ case *types2.Array:
+ w.Code(pkgbits.TypeArray)
+ w.Uint64(uint64(typ.Len()))
+ w.typ(typ.Elem())
+
+ case *types2.Chan:
+ w.Code(pkgbits.TypeChan)
+ w.Len(int(typ.Dir()))
+ w.typ(typ.Elem())
+
+ case *types2.Map:
+ w.Code(pkgbits.TypeMap)
+ w.typ(typ.Key())
+ w.typ(typ.Elem())
+
+ case *types2.Pointer:
+ w.Code(pkgbits.TypePointer)
+ w.typ(typ.Elem())
+
+ case *types2.Signature:
+ base.Assertf(typ.TypeParams() == nil, "unexpected type params: %v", typ)
+ w.Code(pkgbits.TypeSignature)
+ w.signature(typ)
+
+ case *types2.Slice:
+ w.Code(pkgbits.TypeSlice)
+ w.typ(typ.Elem())
+
+ case *types2.Struct:
+ w.Code(pkgbits.TypeStruct)
+ w.structType(typ)
+
+ case *types2.Interface:
+ // Handle "any" as reference to its TypeName.
+ if typ == anyTypeName.Type() {
+ w.Code(pkgbits.TypeNamed)
+ w.obj(anyTypeName, nil)
+ break
+ }
+
+ w.Code(pkgbits.TypeInterface)
+ w.interfaceType(typ)
+
+ case *types2.Union:
+ w.Code(pkgbits.TypeUnion)
+ w.unionType(typ)
+ }
+
+ if w.derived {
+ idx := pkgbits.Index(len(dict.derived))
+ dict.derived = append(dict.derived, derivedInfo{idx: w.Flush()})
+ dict.derivedIdx[typ] = idx
+ return typeInfo{idx: idx, derived: true}
+ }
+
+ pw.typsIdx[typ] = w.Idx
+ return typeInfo{idx: w.Flush(), derived: false}
+}
+
+func (w *writer) structType(typ *types2.Struct) {
+ w.Len(typ.NumFields())
+ for i := 0; i < typ.NumFields(); i++ {
+ f := typ.Field(i)
+ w.pos(f)
+ w.selector(f)
+ w.typ(f.Type())
+ w.String(typ.Tag(i))
+ w.Bool(f.Embedded())
+ }
+}
+
+func (w *writer) unionType(typ *types2.Union) {
+ w.Len(typ.Len())
+ for i := 0; i < typ.Len(); i++ {
+ t := typ.Term(i)
+ w.Bool(t.Tilde())
+ w.typ(t.Type())
+ }
+}
+
+func (w *writer) interfaceType(typ *types2.Interface) {
+ // If typ has no embedded types but it's not a basic interface, then
+ // the natural description we write out below will fail to
+ // reconstruct it.
+ if typ.NumEmbeddeds() == 0 && !typ.IsMethodSet() {
+ // Currently, this can only happen for the underlying Interface of
+ // "comparable", which is needed to handle type declarations like
+ // "type C comparable".
+ assert(typ == comparableTypeName.Type().(*types2.Named).Underlying())
+
+ // Export as "interface{ comparable }".
+ w.Len(0) // NumExplicitMethods
+ w.Len(1) // NumEmbeddeds
+ w.Bool(false) // IsImplicit
+ w.typ(comparableTypeName.Type()) // EmbeddedType(0)
+ return
+ }
+
+ w.Len(typ.NumExplicitMethods())
+ w.Len(typ.NumEmbeddeds())
+
+ if typ.NumExplicitMethods() == 0 && typ.NumEmbeddeds() == 1 {
+ w.Bool(typ.IsImplicit())
+ } else {
+ // Implicit interfaces always have 0 explicit methods and 1
+ // embedded type, so we skip writing out the implicit flag
+ // otherwise as a space optimization.
+ assert(!typ.IsImplicit())
+ }
+
+ for i := 0; i < typ.NumExplicitMethods(); i++ {
+ m := typ.ExplicitMethod(i)
+ sig := m.Type().(*types2.Signature)
+ assert(sig.TypeParams() == nil)
+
+ w.pos(m)
+ w.selector(m)
+ w.signature(sig)
+ }
+
+ for i := 0; i < typ.NumEmbeddeds(); i++ {
+ w.typ(typ.EmbeddedType(i))
+ }
+}
+
+func (w *writer) signature(sig *types2.Signature) {
+ w.Sync(pkgbits.SyncSignature)
+ w.params(sig.Params())
+ w.params(sig.Results())
+ w.Bool(sig.Variadic())
+}
+
+func (w *writer) params(typ *types2.Tuple) {
+ w.Sync(pkgbits.SyncParams)
+ w.Len(typ.Len())
+ for i := 0; i < typ.Len(); i++ {
+ w.param(typ.At(i))
+ }
+}
+
+func (w *writer) param(param *types2.Var) {
+ w.Sync(pkgbits.SyncParam)
+ w.pos(param)
+ w.localIdent(param)
+ w.typ(param.Type())
+}
+
+// @@@ Objects
+
+// obj writes a use of the given object into the bitstream.
+//
+// If obj is a generic object, then explicits are the explicit type
+// arguments used to instantiate it (i.e., used to substitute the
+// object's own declared type parameters).
+func (w *writer) obj(obj types2.Object, explicits *types2.TypeList) {
+ w.objInfo(w.p.objInstIdx(obj, explicits, w.dict))
+}
+
+// objInfo writes a use of the given encoded object into the
+// bitstream.
+func (w *writer) objInfo(info objInfo) {
+ w.Sync(pkgbits.SyncObject)
+ w.Bool(false) // TODO(mdempsky): Remove; was derived func inst.
+ w.Reloc(pkgbits.RelocObj, info.idx)
+
+ w.Len(len(info.explicits))
+ for _, info := range info.explicits {
+ w.typInfo(info)
+ }
+}
+
+// objInstIdx returns the indices for an object and a corresponding
+// list of type arguments used to instantiate it, adding them to the
+// export data as needed.
+func (pw *pkgWriter) objInstIdx(obj types2.Object, explicits *types2.TypeList, dict *writerDict) objInfo {
+ explicitInfos := make([]typeInfo, explicits.Len())
+ for i := range explicitInfos {
+ explicitInfos[i] = pw.typIdx(explicits.At(i), dict)
+ }
+ return objInfo{idx: pw.objIdx(obj), explicits: explicitInfos}
+}
+
+// objIdx returns the index for the given Object, adding it to the
+// export data as needed.
+func (pw *pkgWriter) objIdx(obj types2.Object) pkgbits.Index {
+ // TODO(mdempsky): Validate that obj is a global object (or a local
+ // defined type, which we hoist to global scope anyway).
+
+ if idx, ok := pw.objsIdx[obj]; ok {
+ return idx
+ }
+
+ dict := &writerDict{
+ derivedIdx: make(map[types2.Type]pkgbits.Index),
+ }
+
+ if isDefinedType(obj) && obj.Pkg() == pw.curpkg {
+ decl, ok := pw.typDecls[obj.(*types2.TypeName)]
+ assert(ok)
+ dict.implicits = decl.implicits
+ }
+
+ // We encode objects into 4 elements across different sections, all
+ // sharing the same index:
+ //
+ // - RelocName has just the object's qualified name (i.e.,
+ // Object.Pkg and Object.Name) and the CodeObj indicating what
+ // specific type of Object it is (Var, Func, etc).
+ //
+ // - RelocObj has the remaining public details about the object,
+ // relevant to go/types importers.
+ //
+ // - RelocObjExt has additional private details about the object,
+ // which are only relevant to cmd/compile itself. This is
+ // separated from RelocObj so that go/types importers are
+ // unaffected by internal compiler changes.
+ //
+ // - RelocObjDict has public details about the object's type
+ // parameters and derived type's used by the object. This is
+ // separated to facilitate the eventual introduction of
+ // shape-based stenciling.
+ //
+ // TODO(mdempsky): Re-evaluate whether RelocName still makes sense
+ // to keep separate from RelocObj.
+
+ w := pw.newWriter(pkgbits.RelocObj, pkgbits.SyncObject1)
+ wext := pw.newWriter(pkgbits.RelocObjExt, pkgbits.SyncObject1)
+ wname := pw.newWriter(pkgbits.RelocName, pkgbits.SyncObject1)
+ wdict := pw.newWriter(pkgbits.RelocObjDict, pkgbits.SyncObject1)
+
+ pw.objsIdx[obj] = w.Idx // break cycles
+ assert(wext.Idx == w.Idx)
+ assert(wname.Idx == w.Idx)
+ assert(wdict.Idx == w.Idx)
+
+ w.dict = dict
+ wext.dict = dict
+
+ code := w.doObj(wext, obj)
+ w.Flush()
+ wext.Flush()
+
+ wname.qualifiedIdent(obj)
+ wname.Code(code)
+ wname.Flush()
+
+ wdict.objDict(obj, w.dict)
+ wdict.Flush()
+
+ return w.Idx
+}
+
+// doObj writes the RelocObj definition for obj to w, and the
+// RelocObjExt definition to wext.
+func (w *writer) doObj(wext *writer, obj types2.Object) pkgbits.CodeObj {
+ if obj.Pkg() != w.p.curpkg {
+ return pkgbits.ObjStub
+ }
+
+ switch obj := obj.(type) {
+ default:
+ w.p.unexpected("object", obj)
+ panic("unreachable")
+
+ case *types2.Const:
+ w.pos(obj)
+ w.typ(obj.Type())
+ w.Value(obj.Val())
+ return pkgbits.ObjConst
+
+ case *types2.Func:
+ decl, ok := w.p.funDecls[obj]
+ assert(ok)
+ sig := obj.Type().(*types2.Signature)
+
+ w.pos(obj)
+ w.typeParamNames(sig.TypeParams())
+ w.signature(sig)
+ w.pos(decl)
+ wext.funcExt(obj)
+ return pkgbits.ObjFunc
+
+ case *types2.TypeName:
+ if obj.IsAlias() {
+ w.pos(obj)
+ w.typ(obj.Type())
+ return pkgbits.ObjAlias
+ }
+
+ named := obj.Type().(*types2.Named)
+ assert(named.TypeArgs() == nil)
+
+ w.pos(obj)
+ w.typeParamNames(named.TypeParams())
+ wext.typeExt(obj)
+ w.typ(named.Underlying())
+
+ w.Len(named.NumMethods())
+ for i := 0; i < named.NumMethods(); i++ {
+ w.method(wext, named.Method(i))
+ }
+
+ return pkgbits.ObjType
+
+ case *types2.Var:
+ w.pos(obj)
+ w.typ(obj.Type())
+ wext.varExt(obj)
+ return pkgbits.ObjVar
+ }
+}
+
+// objDict writes the dictionary needed for reading the given object.
+func (w *writer) objDict(obj types2.Object, dict *writerDict) {
+ // TODO(mdempsky): Split objDict into multiple entries? reader.go
+ // doesn't care about the type parameter bounds, and reader2.go
+ // doesn't care about referenced functions.
+
+ w.dict = dict // TODO(mdempsky): This is a bit sketchy.
+
+ w.Len(len(dict.implicits))
+
+ tparams := objTypeParams(obj)
+ ntparams := tparams.Len()
+ w.Len(ntparams)
+ for i := 0; i < ntparams; i++ {
+ w.typ(tparams.At(i).Constraint())
+ }
+
+ nderived := len(dict.derived)
+ w.Len(nderived)
+ for _, typ := range dict.derived {
+ w.Reloc(pkgbits.RelocType, typ.idx)
+ w.Bool(typ.needed)
+ }
+
+ // Write runtime dictionary information.
+ //
+ // N.B., the go/types importer reads up to the section, but doesn't
+ // read any further, so it's safe to change. (See TODO above.)
+
+ // For each type parameter, write out whether the constraint is a
+ // basic interface. This is used to determine how aggressively we
+ // can shape corresponding type arguments.
+ //
+ // This is somewhat redundant with writing out the full type
+ // parameter constraints above, but the compiler currently skips
+ // over those. Also, we don't care about the *declared* constraints,
+ // but how the type parameters are actually *used*. E.g., if a type
+ // parameter is constrained to `int | uint` but then never used in
+ // arithmetic/conversions/etc, we could shape those together.
+ for _, implicit := range dict.implicits {
+ tparam := implicit.Type().(*types2.TypeParam)
+ w.Bool(tparam.Underlying().(*types2.Interface).IsMethodSet())
+ }
+ for i := 0; i < ntparams; i++ {
+ tparam := tparams.At(i)
+ w.Bool(tparam.Underlying().(*types2.Interface).IsMethodSet())
+ }
+
+ w.Len(len(dict.typeParamMethodExprs))
+ for _, info := range dict.typeParamMethodExprs {
+ w.Len(info.typeParamIdx)
+ w.selectorInfo(info.methodInfo)
+ }
+
+ w.Len(len(dict.subdicts))
+ for _, info := range dict.subdicts {
+ w.objInfo(info)
+ }
+
+ w.Len(len(dict.rtypes))
+ for _, info := range dict.rtypes {
+ w.typInfo(info)
+ }
+
+ w.Len(len(dict.itabs))
+ for _, info := range dict.itabs {
+ w.typInfo(info.typ)
+ w.typInfo(info.iface)
+ }
+
+ assert(len(dict.derived) == nderived)
+}
+
+func (w *writer) typeParamNames(tparams *types2.TypeParamList) {
+ w.Sync(pkgbits.SyncTypeParamNames)
+
+ ntparams := tparams.Len()
+ for i := 0; i < ntparams; i++ {
+ tparam := tparams.At(i).Obj()
+ w.pos(tparam)
+ w.localIdent(tparam)
+ }
+}
+
+func (w *writer) method(wext *writer, meth *types2.Func) {
+ decl, ok := w.p.funDecls[meth]
+ assert(ok)
+ sig := meth.Type().(*types2.Signature)
+
+ w.Sync(pkgbits.SyncMethod)
+ w.pos(meth)
+ w.selector(meth)
+ w.typeParamNames(sig.RecvTypeParams())
+ w.param(sig.Recv())
+ w.signature(sig)
+
+ w.pos(decl) // XXX: Hack to workaround linker limitations.
+ wext.funcExt(meth)
+}
+
+// qualifiedIdent writes out the name of an object declared at package
+// scope. (For now, it's also used to refer to local defined types.)
+func (w *writer) qualifiedIdent(obj types2.Object) {
+ w.Sync(pkgbits.SyncSym)
+
+ name := obj.Name()
+ if isDefinedType(obj) && obj.Pkg() == w.p.curpkg {
+ decl, ok := w.p.typDecls[obj.(*types2.TypeName)]
+ assert(ok)
+ if decl.gen != 0 {
+ // For local defined types, we embed a scope-disambiguation
+ // number directly into their name. types.SplitVargenSuffix then
+ // knows to look for this.
+ //
+ // TODO(mdempsky): Find a better solution; this is terrible.
+ name = fmt.Sprintf("%s·%v", name, decl.gen)
+ }
+ }
+
+ w.pkg(obj.Pkg())
+ w.String(name)
+}
+
+// TODO(mdempsky): We should be able to omit pkg from both localIdent
+// and selector, because they should always be known from context.
+// However, past frustrations with this optimization in iexport make
+// me a little nervous to try it again.
+
+// localIdent writes the name of a locally declared object (i.e.,
+// objects that can only be accessed by non-qualified name, within the
+// context of a particular function).
+func (w *writer) localIdent(obj types2.Object) {
+ assert(!isGlobal(obj))
+ w.Sync(pkgbits.SyncLocalIdent)
+ w.pkg(obj.Pkg())
+ w.String(obj.Name())
+}
+
+// selector writes the name of a field or method (i.e., objects that
+// can only be accessed using selector expressions).
+func (w *writer) selector(obj types2.Object) {
+ w.selectorInfo(w.p.selectorIdx(obj))
+}
+
+func (w *writer) selectorInfo(info selectorInfo) {
+ w.Sync(pkgbits.SyncSelector)
+ w.pkgRef(info.pkgIdx)
+ w.StringRef(info.nameIdx)
+}
+
+func (pw *pkgWriter) selectorIdx(obj types2.Object) selectorInfo {
+ pkgIdx := pw.pkgIdx(obj.Pkg())
+ nameIdx := pw.StringIdx(obj.Name())
+ return selectorInfo{pkgIdx: pkgIdx, nameIdx: nameIdx}
+}
+
+// @@@ Compiler extensions
+
+func (w *writer) funcExt(obj *types2.Func) {
+ decl, ok := w.p.funDecls[obj]
+ assert(ok)
+
+ // TODO(mdempsky): Extend these pragma validation flags to account
+ // for generics. E.g., linkname probably doesn't make sense at
+ // least.
+
+ pragma := asPragmaFlag(decl.Pragma)
+ if pragma&ir.Systemstack != 0 && pragma&ir.Nosplit != 0 {
+ w.p.errorf(decl, "go:nosplit and go:systemstack cannot be combined")
+ }
+
+ if decl.Body != nil {
+ if pragma&ir.Noescape != 0 {
+ w.p.errorf(decl, "can only use //go:noescape with external func implementations")
+ }
+ if (pragma&ir.UintptrKeepAlive != 0 && pragma&ir.UintptrEscapes == 0) && pragma&ir.Nosplit == 0 {
+ // Stack growth can't handle uintptr arguments that may
+ // be pointers (as we don't know which are pointers
+ // when creating the stack map). Thus uintptrkeepalive
+ // functions (and all transitive callees) must be
+ // nosplit.
+ //
+ // N.B. uintptrescapes implies uintptrkeepalive but it
+ // is OK since the arguments must escape to the heap.
+ //
+ // TODO(prattmic): Add recursive nosplit check of callees.
+ // TODO(prattmic): Functions with no body (i.e.,
+ // assembly) must also be nosplit, but we can't check
+ // that here.
+ w.p.errorf(decl, "go:uintptrkeepalive requires go:nosplit")
+ }
+ } else {
+ if base.Flag.Complete || decl.Name.Value == "init" {
+ // Linknamed functions are allowed to have no body. Hopefully
+ // the linkname target has a body. See issue 23311.
+ if _, ok := w.p.linknames[obj]; !ok {
+ w.p.errorf(decl, "missing function body")
+ }
+ }
+ }
+
+ sig, block := obj.Type().(*types2.Signature), decl.Body
+ body, closureVars := w.p.bodyIdx(sig, block, w.dict)
+ assert(len(closureVars) == 0)
+
+ w.Sync(pkgbits.SyncFuncExt)
+ w.pragmaFlag(pragma)
+ w.linkname(obj)
+ w.Bool(false) // stub extension
+ w.Reloc(pkgbits.RelocBody, body)
+ w.Sync(pkgbits.SyncEOF)
+}
+
+func (w *writer) typeExt(obj *types2.TypeName) {
+ decl, ok := w.p.typDecls[obj]
+ assert(ok)
+
+ w.Sync(pkgbits.SyncTypeExt)
+
+ w.pragmaFlag(asPragmaFlag(decl.Pragma))
+
+ // No LSym.SymIdx info yet.
+ w.Int64(-1)
+ w.Int64(-1)
+}
+
+func (w *writer) varExt(obj *types2.Var) {
+ w.Sync(pkgbits.SyncVarExt)
+ w.linkname(obj)
+}
+
+func (w *writer) linkname(obj types2.Object) {
+ w.Sync(pkgbits.SyncLinkname)
+ w.Int64(-1)
+ w.String(w.p.linknames[obj])
+}
+
+func (w *writer) pragmaFlag(p ir.PragmaFlag) {
+ w.Sync(pkgbits.SyncPragma)
+ w.Int(int(p))
+}
+
+// @@@ Function bodies
+
+// bodyIdx returns the index for the given function body (specified by
+// block), adding it to the export data
+func (pw *pkgWriter) bodyIdx(sig *types2.Signature, block *syntax.BlockStmt, dict *writerDict) (idx pkgbits.Index, closureVars []posVar) {
+ w := pw.newWriter(pkgbits.RelocBody, pkgbits.SyncFuncBody)
+ w.sig = sig
+ w.dict = dict
+
+ w.funcargs(sig)
+ if w.Bool(block != nil) {
+ w.stmts(block.List)
+ w.pos(block.Rbrace)
+ }
+
+ return w.Flush(), w.closureVars
+}
+
+func (w *writer) funcargs(sig *types2.Signature) {
+ do := func(params *types2.Tuple, result bool) {
+ for i := 0; i < params.Len(); i++ {
+ w.funcarg(params.At(i), result)
+ }
+ }
+
+ if recv := sig.Recv(); recv != nil {
+ w.funcarg(recv, false)
+ }
+ do(sig.Params(), false)
+ do(sig.Results(), true)
+}
+
+func (w *writer) funcarg(param *types2.Var, result bool) {
+ if param.Name() != "" || result {
+ w.addLocal(param)
+ }
+}
+
+// addLocal records the declaration of a new local variable.
+func (w *writer) addLocal(obj *types2.Var) {
+ idx := len(w.localsIdx)
+
+ w.Sync(pkgbits.SyncAddLocal)
+ if w.p.SyncMarkers() {
+ w.Int(idx)
+ }
+ w.varDictIndex(obj)
+
+ if w.localsIdx == nil {
+ w.localsIdx = make(map[*types2.Var]int)
+ }
+ w.localsIdx[obj] = idx
+}
+
+// useLocal writes a reference to the given local or free variable
+// into the bitstream.
+func (w *writer) useLocal(pos syntax.Pos, obj *types2.Var) {
+ w.Sync(pkgbits.SyncUseObjLocal)
+
+ if idx, ok := w.localsIdx[obj]; w.Bool(ok) {
+ w.Len(idx)
+ return
+ }
+
+ idx, ok := w.closureVarsIdx[obj]
+ if !ok {
+ if w.closureVarsIdx == nil {
+ w.closureVarsIdx = make(map[*types2.Var]int)
+ }
+ idx = len(w.closureVars)
+ w.closureVars = append(w.closureVars, posVar{pos, obj})
+ w.closureVarsIdx[obj] = idx
+ }
+ w.Len(idx)
+}
+
+func (w *writer) openScope(pos syntax.Pos) {
+ w.Sync(pkgbits.SyncOpenScope)
+ w.pos(pos)
+}
+
+func (w *writer) closeScope(pos syntax.Pos) {
+ w.Sync(pkgbits.SyncCloseScope)
+ w.pos(pos)
+ w.closeAnotherScope()
+}
+
+func (w *writer) closeAnotherScope() {
+ w.Sync(pkgbits.SyncCloseAnotherScope)
+}
+
+// @@@ Statements
+
+// stmt writes the given statement into the function body bitstream.
+func (w *writer) stmt(stmt syntax.Stmt) {
+ var stmts []syntax.Stmt
+ if stmt != nil {
+ stmts = []syntax.Stmt{stmt}
+ }
+ w.stmts(stmts)
+}
+
+func (w *writer) stmts(stmts []syntax.Stmt) {
+ w.Sync(pkgbits.SyncStmts)
+ for _, stmt := range stmts {
+ w.stmt1(stmt)
+ }
+ w.Code(stmtEnd)
+ w.Sync(pkgbits.SyncStmtsEnd)
+}
+
+func (w *writer) stmt1(stmt syntax.Stmt) {
+ switch stmt := stmt.(type) {
+ default:
+ w.p.unexpected("statement", stmt)
+
+ case nil, *syntax.EmptyStmt:
+ return
+
+ case *syntax.AssignStmt:
+ switch {
+ case stmt.Rhs == nil:
+ w.Code(stmtIncDec)
+ w.op(binOps[stmt.Op])
+ w.expr(stmt.Lhs)
+ w.pos(stmt)
+
+ case stmt.Op != 0 && stmt.Op != syntax.Def:
+ w.Code(stmtAssignOp)
+ w.op(binOps[stmt.Op])
+ w.expr(stmt.Lhs)
+ w.pos(stmt)
+
+ var typ types2.Type
+ if stmt.Op != syntax.Shl && stmt.Op != syntax.Shr {
+ typ = w.p.typeOf(stmt.Lhs)
+ }
+ w.implicitConvExpr(typ, stmt.Rhs)
+
+ default:
+ w.assignStmt(stmt, stmt.Lhs, stmt.Rhs)
+ }
+
+ case *syntax.BlockStmt:
+ w.Code(stmtBlock)
+ w.blockStmt(stmt)
+
+ case *syntax.BranchStmt:
+ w.Code(stmtBranch)
+ w.pos(stmt)
+ w.op(branchOps[stmt.Tok])
+ w.optLabel(stmt.Label)
+
+ case *syntax.CallStmt:
+ w.Code(stmtCall)
+ w.pos(stmt)
+ w.op(callOps[stmt.Tok])
+ w.expr(stmt.Call)
+
+ case *syntax.DeclStmt:
+ for _, decl := range stmt.DeclList {
+ w.declStmt(decl)
+ }
+
+ case *syntax.ExprStmt:
+ w.Code(stmtExpr)
+ w.expr(stmt.X)
+
+ case *syntax.ForStmt:
+ w.Code(stmtFor)
+ w.forStmt(stmt)
+
+ case *syntax.IfStmt:
+ w.Code(stmtIf)
+ w.ifStmt(stmt)
+
+ case *syntax.LabeledStmt:
+ w.Code(stmtLabel)
+ w.pos(stmt)
+ w.label(stmt.Label)
+ w.stmt1(stmt.Stmt)
+
+ case *syntax.ReturnStmt:
+ w.Code(stmtReturn)
+ w.pos(stmt)
+
+ resultTypes := w.sig.Results()
+ dstType := func(i int) types2.Type {
+ return resultTypes.At(i).Type()
+ }
+ w.multiExpr(stmt, dstType, unpackListExpr(stmt.Results))
+
+ case *syntax.SelectStmt:
+ w.Code(stmtSelect)
+ w.selectStmt(stmt)
+
+ case *syntax.SendStmt:
+ chanType := types2.CoreType(w.p.typeOf(stmt.Chan)).(*types2.Chan)
+
+ w.Code(stmtSend)
+ w.pos(stmt)
+ w.expr(stmt.Chan)
+ w.implicitConvExpr(chanType.Elem(), stmt.Value)
+
+ case *syntax.SwitchStmt:
+ w.Code(stmtSwitch)
+ w.switchStmt(stmt)
+ }
+}
+
+func (w *writer) assignList(expr syntax.Expr) {
+ exprs := unpackListExpr(expr)
+ w.Len(len(exprs))
+
+ for _, expr := range exprs {
+ w.assign(expr)
+ }
+}
+
+func (w *writer) assign(expr syntax.Expr) {
+ expr = unparen(expr)
+
+ if name, ok := expr.(*syntax.Name); ok {
+ if name.Value == "_" {
+ w.Code(assignBlank)
+ return
+ }
+
+ if obj, ok := w.p.info.Defs[name]; ok {
+ obj := obj.(*types2.Var)
+
+ w.Code(assignDef)
+ w.pos(obj)
+ w.localIdent(obj)
+ w.typ(obj.Type())
+
+ // TODO(mdempsky): Minimize locals index size by deferring
+ // this until the variables actually come into scope.
+ w.addLocal(obj)
+ return
+ }
+ }
+
+ w.Code(assignExpr)
+ w.expr(expr)
+}
+
+func (w *writer) declStmt(decl syntax.Decl) {
+ switch decl := decl.(type) {
+ default:
+ w.p.unexpected("declaration", decl)
+
+ case *syntax.ConstDecl, *syntax.TypeDecl:
+
+ case *syntax.VarDecl:
+ w.assignStmt(decl, namesAsExpr(decl.NameList), decl.Values)
+ }
+}
+
+// assignStmt writes out an assignment for "lhs = rhs".
+func (w *writer) assignStmt(pos poser, lhs0, rhs0 syntax.Expr) {
+ lhs := unpackListExpr(lhs0)
+ rhs := unpackListExpr(rhs0)
+
+ w.Code(stmtAssign)
+ w.pos(pos)
+
+ // As if w.assignList(lhs0).
+ w.Len(len(lhs))
+ for _, expr := range lhs {
+ w.assign(expr)
+ }
+
+ dstType := func(i int) types2.Type {
+ dst := lhs[i]
+
+ // Finding dstType is somewhat involved, because for VarDecl
+ // statements, the Names are only added to the info.{Defs,Uses}
+ // maps, not to info.Types.
+ if name, ok := unparen(dst).(*syntax.Name); ok {
+ if name.Value == "_" {
+ return nil // ok: no implicit conversion
+ } else if def, ok := w.p.info.Defs[name].(*types2.Var); ok {
+ return def.Type()
+ } else if use, ok := w.p.info.Uses[name].(*types2.Var); ok {
+ return use.Type()
+ } else {
+ w.p.fatalf(dst, "cannot find type of destination object: %v", dst)
+ }
+ }
+
+ return w.p.typeOf(dst)
+ }
+
+ w.multiExpr(pos, dstType, rhs)
+}
+
+func (w *writer) blockStmt(stmt *syntax.BlockStmt) {
+ w.Sync(pkgbits.SyncBlockStmt)
+ w.openScope(stmt.Pos())
+ w.stmts(stmt.List)
+ w.closeScope(stmt.Rbrace)
+}
+
+func (w *writer) forStmt(stmt *syntax.ForStmt) {
+ w.Sync(pkgbits.SyncForStmt)
+ w.openScope(stmt.Pos())
+
+ if rang, ok := stmt.Init.(*syntax.RangeClause); w.Bool(ok) {
+ w.pos(rang)
+ w.assignList(rang.Lhs)
+ w.expr(rang.X)
+
+ xtyp := w.p.typeOf(rang.X)
+ if _, isMap := types2.CoreType(xtyp).(*types2.Map); isMap {
+ w.rtype(xtyp)
+ }
+ {
+ lhs := unpackListExpr(rang.Lhs)
+ assign := func(i int, src types2.Type) {
+ if i >= len(lhs) {
+ return
+ }
+ dst := unparen(lhs[i])
+ if name, ok := dst.(*syntax.Name); ok && name.Value == "_" {
+ return
+ }
+
+ var dstType types2.Type
+ if rang.Def {
+ // For `:=` assignments, the LHS names only appear in Defs,
+ // not Types (as used by typeOf).
+ dstType = w.p.info.Defs[dst.(*syntax.Name)].(*types2.Var).Type()
+ } else {
+ dstType = w.p.typeOf(dst)
+ }
+
+ w.convRTTI(src, dstType)
+ }
+
+ keyType, valueType := w.p.rangeTypes(rang.X)
+ assign(0, keyType)
+ assign(1, valueType)
+ }
+
+ } else {
+ w.pos(stmt)
+ w.stmt(stmt.Init)
+ w.optExpr(stmt.Cond)
+ w.stmt(stmt.Post)
+ }
+
+ w.blockStmt(stmt.Body)
+ w.closeAnotherScope()
+}
+
+// rangeTypes returns the types of values produced by ranging over
+// expr.
+func (pw *pkgWriter) rangeTypes(expr syntax.Expr) (key, value types2.Type) {
+ typ := pw.typeOf(expr)
+ switch typ := types2.CoreType(typ).(type) {
+ case *types2.Pointer: // must be pointer to array
+ return types2.Typ[types2.Int], types2.CoreType(typ.Elem()).(*types2.Array).Elem()
+ case *types2.Array:
+ return types2.Typ[types2.Int], typ.Elem()
+ case *types2.Slice:
+ return types2.Typ[types2.Int], typ.Elem()
+ case *types2.Basic:
+ if typ.Info()&types2.IsString != 0 {
+ return types2.Typ[types2.Int], runeTypeName.Type()
+ }
+ case *types2.Map:
+ return typ.Key(), typ.Elem()
+ case *types2.Chan:
+ return typ.Elem(), nil
+ }
+ pw.fatalf(expr, "unexpected range type: %v", typ)
+ panic("unreachable")
+}
+
+func (w *writer) ifStmt(stmt *syntax.IfStmt) {
+ w.Sync(pkgbits.SyncIfStmt)
+ w.openScope(stmt.Pos())
+ w.pos(stmt)
+ w.stmt(stmt.Init)
+ w.expr(stmt.Cond)
+ w.blockStmt(stmt.Then)
+ w.stmt(stmt.Else)
+ w.closeAnotherScope()
+}
+
+func (w *writer) selectStmt(stmt *syntax.SelectStmt) {
+ w.Sync(pkgbits.SyncSelectStmt)
+
+ w.pos(stmt)
+ w.Len(len(stmt.Body))
+ for i, clause := range stmt.Body {
+ if i > 0 {
+ w.closeScope(clause.Pos())
+ }
+ w.openScope(clause.Pos())
+
+ w.pos(clause)
+ w.stmt(clause.Comm)
+ w.stmts(clause.Body)
+ }
+ if len(stmt.Body) > 0 {
+ w.closeScope(stmt.Rbrace)
+ }
+}
+
+func (w *writer) switchStmt(stmt *syntax.SwitchStmt) {
+ w.Sync(pkgbits.SyncSwitchStmt)
+
+ w.openScope(stmt.Pos())
+ w.pos(stmt)
+ w.stmt(stmt.Init)
+
+ var iface, tagType types2.Type
+ if guard, ok := stmt.Tag.(*syntax.TypeSwitchGuard); w.Bool(ok) {
+ iface = w.p.typeOf(guard.X)
+
+ w.pos(guard)
+ if tag := guard.Lhs; w.Bool(tag != nil) {
+ w.pos(tag)
+
+ // Like w.localIdent, but we don't have a types2.Object.
+ w.Sync(pkgbits.SyncLocalIdent)
+ w.pkg(w.p.curpkg)
+ w.String(tag.Value)
+ }
+ w.expr(guard.X)
+ } else {
+ tag := stmt.Tag
+
+ if tag != nil {
+ tagType = w.p.typeOf(tag)
+ } else {
+ tagType = types2.Typ[types2.Bool]
+ }
+
+ // Walk is going to emit comparisons between the tag value and
+ // each case expression, and we want these comparisons to always
+ // have the same type. If there are any case values that can't be
+ // converted to the tag value's type, then convert everything to
+ // `any` instead.
+ Outer:
+ for _, clause := range stmt.Body {
+ for _, cas := range unpackListExpr(clause.Cases) {
+ if casType := w.p.typeOf(cas); !types2.AssignableTo(casType, tagType) {
+ tagType = types2.NewInterfaceType(nil, nil)
+ break Outer
+ }
+ }
+ }
+
+ if w.Bool(tag != nil) {
+ w.implicitConvExpr(tagType, tag)
+ }
+ }
+
+ w.Len(len(stmt.Body))
+ for i, clause := range stmt.Body {
+ if i > 0 {
+ w.closeScope(clause.Pos())
+ }
+ w.openScope(clause.Pos())
+
+ w.pos(clause)
+
+ cases := unpackListExpr(clause.Cases)
+ if iface != nil {
+ w.Len(len(cases))
+ for _, cas := range cases {
+ if w.Bool(isNil(w.p, cas)) {
+ continue
+ }
+ w.exprType(iface, cas)
+ }
+ } else {
+ // As if w.exprList(clause.Cases),
+ // but with implicit conversions to tagType.
+
+ w.Sync(pkgbits.SyncExprList)
+ w.Sync(pkgbits.SyncExprs)
+ w.Len(len(cases))
+ for _, cas := range cases {
+ w.implicitConvExpr(tagType, cas)
+ }
+ }
+
+ if obj, ok := w.p.info.Implicits[clause]; ok {
+ // TODO(mdempsky): These pos details are quirkish, but also
+ // necessary so the variable's position is correct for DWARF
+ // scope assignment later. It would probably be better for us to
+ // instead just set the variable's DWARF scoping info earlier so
+ // we can give it the correct position information.
+ pos := clause.Pos()
+ if typs := unpackListExpr(clause.Cases); len(typs) != 0 {
+ pos = typeExprEndPos(typs[len(typs)-1])
+ }
+ w.pos(pos)
+
+ obj := obj.(*types2.Var)
+ w.typ(obj.Type())
+ w.addLocal(obj)
+ }
+
+ w.stmts(clause.Body)
+ }
+ if len(stmt.Body) > 0 {
+ w.closeScope(stmt.Rbrace)
+ }
+
+ w.closeScope(stmt.Rbrace)
+}
+
+func (w *writer) label(label *syntax.Name) {
+ w.Sync(pkgbits.SyncLabel)
+
+ // TODO(mdempsky): Replace label strings with dense indices.
+ w.String(label.Value)
+}
+
+func (w *writer) optLabel(label *syntax.Name) {
+ w.Sync(pkgbits.SyncOptLabel)
+ if w.Bool(label != nil) {
+ w.label(label)
+ }
+}
+
+// @@@ Expressions
+
+// expr writes the given expression into the function body bitstream.
+func (w *writer) expr(expr syntax.Expr) {
+ base.Assertf(expr != nil, "missing expression")
+
+ expr = unparen(expr) // skip parens; unneeded after typecheck
+
+ obj, inst := lookupObj(w.p, expr)
+ targs := inst.TypeArgs
+
+ if tv, ok := w.p.maybeTypeAndValue(expr); ok {
+ if tv.IsType() {
+ w.p.fatalf(expr, "unexpected type expression %v", syntax.String(expr))
+ }
+
+ if tv.Value != nil {
+ w.Code(exprConst)
+ w.pos(expr)
+ typ := idealType(tv)
+ assert(typ != nil)
+ w.typ(typ)
+ w.Value(tv.Value)
+
+ // TODO(mdempsky): These details are only important for backend
+ // diagnostics. Explore writing them out separately.
+ w.op(constExprOp(expr))
+ w.String(syntax.String(expr))
+ return
+ }
+
+ if _, isNil := obj.(*types2.Nil); isNil {
+ w.Code(exprNil)
+ w.pos(expr)
+ w.typ(tv.Type)
+ return
+ }
+
+ // With shape types (and particular pointer shaping), we may have
+ // an expression of type "go.shape.*uint8", but need to reshape it
+ // to another shape-identical type to allow use in field
+ // selection, indexing, etc.
+ if typ := tv.Type; !tv.IsBuiltin() && !isTuple(typ) && !isUntyped(typ) {
+ w.Code(exprReshape)
+ w.typ(typ)
+ // fallthrough
+ }
+ }
+
+ if obj != nil {
+ if targs.Len() != 0 {
+ obj := obj.(*types2.Func)
+
+ w.Code(exprFuncInst)
+ w.pos(expr)
+ w.funcInst(obj, targs)
+ return
+ }
+
+ if isGlobal(obj) {
+ w.Code(exprGlobal)
+ w.obj(obj, nil)
+ return
+ }
+
+ obj := obj.(*types2.Var)
+ assert(!obj.IsField())
+
+ w.Code(exprLocal)
+ w.useLocal(expr.Pos(), obj)
+ return
+ }
+
+ switch expr := expr.(type) {
+ default:
+ w.p.unexpected("expression", expr)
+
+ case *syntax.CompositeLit:
+ w.Code(exprCompLit)
+ w.compLit(expr)
+
+ case *syntax.FuncLit:
+ w.Code(exprFuncLit)
+ w.funcLit(expr)
+
+ case *syntax.SelectorExpr:
+ sel, ok := w.p.info.Selections[expr]
+ assert(ok)
+
+ switch sel.Kind() {
+ default:
+ w.p.fatalf(expr, "unexpected selection kind: %v", sel.Kind())
+
+ case types2.FieldVal:
+ w.Code(exprFieldVal)
+ w.expr(expr.X)
+ w.pos(expr)
+ w.selector(sel.Obj())
+
+ case types2.MethodVal:
+ w.Code(exprMethodVal)
+ typ := w.recvExpr(expr, sel)
+ w.pos(expr)
+ w.methodExpr(expr, typ, sel)
+
+ case types2.MethodExpr:
+ w.Code(exprMethodExpr)
+
+ tv := w.p.typeAndValue(expr.X)
+ assert(tv.IsType())
+
+ index := sel.Index()
+ implicits := index[:len(index)-1]
+
+ typ := tv.Type
+ w.typ(typ)
+
+ w.Len(len(implicits))
+ for _, ix := range implicits {
+ w.Len(ix)
+ typ = deref2(typ).Underlying().(*types2.Struct).Field(ix).Type()
+ }
+
+ recv := sel.Obj().(*types2.Func).Type().(*types2.Signature).Recv().Type()
+ if w.Bool(isPtrTo(typ, recv)) { // need deref
+ typ = recv
+ } else if w.Bool(isPtrTo(recv, typ)) { // need addr
+ typ = recv
+ }
+
+ w.pos(expr)
+ w.methodExpr(expr, typ, sel)
+ }
+
+ case *syntax.IndexExpr:
+ _ = w.p.typeOf(expr.Index) // ensure this is an index expression, not an instantiation
+
+ xtyp := w.p.typeOf(expr.X)
+
+ var keyType types2.Type
+ if mapType, ok := types2.CoreType(xtyp).(*types2.Map); ok {
+ keyType = mapType.Key()
+ }
+
+ w.Code(exprIndex)
+ w.expr(expr.X)
+ w.pos(expr)
+ w.implicitConvExpr(keyType, expr.Index)
+ if keyType != nil {
+ w.rtype(xtyp)
+ }
+
+ case *syntax.SliceExpr:
+ w.Code(exprSlice)
+ w.expr(expr.X)
+ w.pos(expr)
+ for _, n := range &expr.Index {
+ w.optExpr(n)
+ }
+
+ case *syntax.AssertExpr:
+ iface := w.p.typeOf(expr.X)
+
+ w.Code(exprAssert)
+ w.expr(expr.X)
+ w.pos(expr)
+ w.exprType(iface, expr.Type)
+ w.rtype(iface)
+
+ case *syntax.Operation:
+ if expr.Y == nil {
+ w.Code(exprUnaryOp)
+ w.op(unOps[expr.Op])
+ w.pos(expr)
+ w.expr(expr.X)
+ break
+ }
+
+ var commonType types2.Type
+ switch expr.Op {
+ case syntax.Shl, syntax.Shr:
+ // ok: operands are allowed to have different types
+ default:
+ xtyp := w.p.typeOf(expr.X)
+ ytyp := w.p.typeOf(expr.Y)
+ switch {
+ case types2.AssignableTo(xtyp, ytyp):
+ commonType = ytyp
+ case types2.AssignableTo(ytyp, xtyp):
+ commonType = xtyp
+ default:
+ w.p.fatalf(expr, "failed to find common type between %v and %v", xtyp, ytyp)
+ }
+ }
+
+ w.Code(exprBinaryOp)
+ w.op(binOps[expr.Op])
+ w.implicitConvExpr(commonType, expr.X)
+ w.pos(expr)
+ w.implicitConvExpr(commonType, expr.Y)
+
+ case *syntax.CallExpr:
+ tv := w.p.typeAndValue(expr.Fun)
+ if tv.IsType() {
+ assert(len(expr.ArgList) == 1)
+ assert(!expr.HasDots)
+ w.convertExpr(tv.Type, expr.ArgList[0], false)
+ break
+ }
+
+ var rtype types2.Type
+ if tv.IsBuiltin() {
+ switch obj, _ := lookupObj(w.p, expr.Fun); obj.Name() {
+ case "make":
+ assert(len(expr.ArgList) >= 1)
+ assert(!expr.HasDots)
+
+ w.Code(exprMake)
+ w.pos(expr)
+ w.exprType(nil, expr.ArgList[0])
+ w.exprs(expr.ArgList[1:])
+
+ typ := w.p.typeOf(expr)
+ switch coreType := types2.CoreType(typ).(type) {
+ default:
+ w.p.fatalf(expr, "unexpected core type: %v", coreType)
+ case *types2.Chan:
+ w.rtype(typ)
+ case *types2.Map:
+ w.rtype(typ)
+ case *types2.Slice:
+ w.rtype(sliceElem(typ))
+ }
+
+ return
+
+ case "new":
+ assert(len(expr.ArgList) == 1)
+ assert(!expr.HasDots)
+
+ w.Code(exprNew)
+ w.pos(expr)
+ w.exprType(nil, expr.ArgList[0])
+ return
+
+ case "append":
+ rtype = sliceElem(w.p.typeOf(expr))
+ case "copy":
+ typ := w.p.typeOf(expr.ArgList[0])
+ if tuple, ok := typ.(*types2.Tuple); ok { // "copy(g())"
+ typ = tuple.At(0).Type()
+ }
+ rtype = sliceElem(typ)
+ case "delete":
+ typ := w.p.typeOf(expr.ArgList[0])
+ if tuple, ok := typ.(*types2.Tuple); ok { // "delete(g())"
+ typ = tuple.At(0).Type()
+ }
+ rtype = typ
+ case "Slice":
+ rtype = sliceElem(w.p.typeOf(expr))
+ }
+ }
+
+ writeFunExpr := func() {
+ fun := unparen(expr.Fun)
+
+ if selector, ok := fun.(*syntax.SelectorExpr); ok {
+ if sel, ok := w.p.info.Selections[selector]; ok && sel.Kind() == types2.MethodVal {
+ w.Bool(true) // method call
+ typ := w.recvExpr(selector, sel)
+ w.methodExpr(selector, typ, sel)
+ return
+ }
+ }
+
+ w.Bool(false) // not a method call (i.e., normal function call)
+
+ if obj, inst := lookupObj(w.p, fun); w.Bool(obj != nil && inst.TypeArgs.Len() != 0) {
+ obj := obj.(*types2.Func)
+
+ w.pos(fun)
+ w.funcInst(obj, inst.TypeArgs)
+ return
+ }
+
+ w.expr(fun)
+ }
+
+ sigType := types2.CoreType(tv.Type).(*types2.Signature)
+ paramTypes := sigType.Params()
+
+ w.Code(exprCall)
+ writeFunExpr()
+ w.pos(expr)
+
+ paramType := func(i int) types2.Type {
+ if sigType.Variadic() && !expr.HasDots && i >= paramTypes.Len()-1 {
+ return paramTypes.At(paramTypes.Len() - 1).Type().(*types2.Slice).Elem()
+ }
+ return paramTypes.At(i).Type()
+ }
+
+ w.multiExpr(expr, paramType, expr.ArgList)
+ w.Bool(expr.HasDots)
+ if rtype != nil {
+ w.rtype(rtype)
+ }
+ }
+}
+
+func sliceElem(typ types2.Type) types2.Type {
+ return types2.CoreType(typ).(*types2.Slice).Elem()
+}
+
+func (w *writer) optExpr(expr syntax.Expr) {
+ if w.Bool(expr != nil) {
+ w.expr(expr)
+ }
+}
+
+// recvExpr writes out expr.X, but handles any implicit addressing,
+// dereferencing, and field selections appropriate for the method
+// selection.
+func (w *writer) recvExpr(expr *syntax.SelectorExpr, sel *types2.Selection) types2.Type {
+ index := sel.Index()
+ implicits := index[:len(index)-1]
+
+ w.Code(exprRecv)
+ w.expr(expr.X)
+ w.pos(expr)
+ w.Len(len(implicits))
+
+ typ := w.p.typeOf(expr.X)
+ for _, ix := range implicits {
+ typ = deref2(typ).Underlying().(*types2.Struct).Field(ix).Type()
+ w.Len(ix)
+ }
+
+ recv := sel.Obj().(*types2.Func).Type().(*types2.Signature).Recv().Type()
+ if w.Bool(isPtrTo(typ, recv)) { // needs deref
+ typ = recv
+ } else if w.Bool(isPtrTo(recv, typ)) { // needs addr
+ typ = recv
+ }
+
+ return typ
+}
+
+// funcInst writes a reference to an instantiated function.
+func (w *writer) funcInst(obj *types2.Func, targs *types2.TypeList) {
+ info := w.p.objInstIdx(obj, targs, w.dict)
+
+ // Type arguments list contains derived types; we can emit a static
+ // call to the shaped function, but need to dynamically compute the
+ // runtime dictionary pointer.
+ if w.Bool(info.anyDerived()) {
+ w.Len(w.dict.subdictIdx(info))
+ return
+ }
+
+ // Type arguments list is statically known; we can emit a static
+ // call with a statically reference to the respective runtime
+ // dictionary.
+ w.objInfo(info)
+}
+
+// methodExpr writes out a reference to the method selected by
+// expr. sel should be the corresponding types2.Selection, and recv
+// the type produced after any implicit addressing, dereferencing, and
+// field selection. (Note: recv might differ from sel.Obj()'s receiver
+// parameter in the case of interface types, and is needed for
+// handling type parameter methods.)
+func (w *writer) methodExpr(expr *syntax.SelectorExpr, recv types2.Type, sel *types2.Selection) {
+ fun := sel.Obj().(*types2.Func)
+ sig := fun.Type().(*types2.Signature)
+
+ w.typ(recv)
+ w.typ(sig)
+ w.pos(expr)
+ w.selector(fun)
+
+ // Method on a type parameter. These require an indirect call
+ // through the current function's runtime dictionary.
+ if typeParam, ok := recv.(*types2.TypeParam); w.Bool(ok) {
+ typeParamIdx := w.dict.typeParamIndex(typeParam)
+ methodInfo := w.p.selectorIdx(fun)
+
+ w.Len(w.dict.typeParamMethodExprIdx(typeParamIdx, methodInfo))
+ return
+ }
+
+ if isInterface(recv) != isInterface(sig.Recv().Type()) {
+ w.p.fatalf(expr, "isInterface inconsistency: %v and %v", recv, sig.Recv().Type())
+ }
+
+ if !isInterface(recv) {
+ if named, ok := deref2(recv).(*types2.Named); ok {
+ obj, targs := splitNamed(named)
+ info := w.p.objInstIdx(obj, targs, w.dict)
+
+ // Method on a derived receiver type. These can be handled by a
+ // static call to the shaped method, but require dynamically
+ // looking up the appropriate dictionary argument in the current
+ // function's runtime dictionary.
+ if w.p.hasImplicitTypeParams(obj) || info.anyDerived() {
+ w.Bool(true) // dynamic subdictionary
+ w.Len(w.dict.subdictIdx(info))
+ return
+ }
+
+ // Method on a fully known receiver type. These can be handled
+ // by a static call to the shaped method, and with a static
+ // reference to the receiver type's dictionary.
+ if targs.Len() != 0 {
+ w.Bool(false) // no dynamic subdictionary
+ w.Bool(true) // static dictionary
+ w.objInfo(info)
+ return
+ }
+ }
+ }
+
+ w.Bool(false) // no dynamic subdictionary
+ w.Bool(false) // no static dictionary
+}
+
+// multiExpr writes a sequence of expressions, where the i'th value is
+// implicitly converted to dstType(i). It also handles when exprs is a
+// single, multi-valued expression (e.g., the multi-valued argument in
+// an f(g()) call, or the RHS operand in a comma-ok assignment).
+func (w *writer) multiExpr(pos poser, dstType func(int) types2.Type, exprs []syntax.Expr) {
+ w.Sync(pkgbits.SyncMultiExpr)
+
+ if len(exprs) == 1 {
+ expr := exprs[0]
+ if tuple, ok := w.p.typeOf(expr).(*types2.Tuple); ok {
+ assert(tuple.Len() > 1)
+ w.Bool(true) // N:1 assignment
+ w.pos(pos)
+ w.expr(expr)
+
+ w.Len(tuple.Len())
+ for i := 0; i < tuple.Len(); i++ {
+ src := tuple.At(i).Type()
+ // TODO(mdempsky): Investigate not writing src here. I think
+ // the reader should be able to infer it from expr anyway.
+ w.typ(src)
+ if dst := dstType(i); w.Bool(dst != nil && !types2.Identical(src, dst)) {
+ if src == nil || dst == nil {
+ w.p.fatalf(pos, "src is %v, dst is %v", src, dst)
+ }
+ if !types2.AssignableTo(src, dst) {
+ w.p.fatalf(pos, "%v is not assignable to %v", src, dst)
+ }
+ w.typ(dst)
+ w.convRTTI(src, dst)
+ }
+ }
+ return
+ }
+ }
+
+ w.Bool(false) // N:N assignment
+ w.Len(len(exprs))
+ for i, expr := range exprs {
+ w.implicitConvExpr(dstType(i), expr)
+ }
+}
+
+// implicitConvExpr is like expr, but if dst is non-nil and different
+// from expr's type, then an implicit conversion operation is inserted
+// at expr's position.
+func (w *writer) implicitConvExpr(dst types2.Type, expr syntax.Expr) {
+ w.convertExpr(dst, expr, true)
+}
+
+func (w *writer) convertExpr(dst types2.Type, expr syntax.Expr, implicit bool) {
+ src := w.p.typeOf(expr)
+
+ // Omit implicit no-op conversions.
+ identical := dst == nil || types2.Identical(src, dst)
+ if implicit && identical {
+ w.expr(expr)
+ return
+ }
+
+ if implicit && !types2.AssignableTo(src, dst) {
+ w.p.fatalf(expr, "%v is not assignable to %v", src, dst)
+ }
+
+ w.Code(exprConvert)
+ w.Bool(implicit)
+ w.typ(dst)
+ w.pos(expr)
+ w.convRTTI(src, dst)
+ w.Bool(isTypeParam(dst))
+ w.Bool(identical)
+ w.expr(expr)
+}
+
+func (w *writer) compLit(lit *syntax.CompositeLit) {
+ typ := w.p.typeOf(lit)
+
+ w.Sync(pkgbits.SyncCompLit)
+ w.pos(lit)
+ w.typ(typ)
+
+ if ptr, ok := types2.CoreType(typ).(*types2.Pointer); ok {
+ typ = ptr.Elem()
+ }
+ var keyType, elemType types2.Type
+ var structType *types2.Struct
+ switch typ0 := typ; typ := types2.CoreType(typ).(type) {
+ default:
+ w.p.fatalf(lit, "unexpected composite literal type: %v", typ)
+ case *types2.Array:
+ elemType = typ.Elem()
+ case *types2.Map:
+ w.rtype(typ0)
+ keyType, elemType = typ.Key(), typ.Elem()
+ case *types2.Slice:
+ elemType = typ.Elem()
+ case *types2.Struct:
+ structType = typ
+ }
+
+ w.Len(len(lit.ElemList))
+ for i, elem := range lit.ElemList {
+ elemType := elemType
+ if structType != nil {
+ if kv, ok := elem.(*syntax.KeyValueExpr); ok {
+ // use position of expr.Key rather than of elem (which has position of ':')
+ w.pos(kv.Key)
+ i = fieldIndex(w.p.info, structType, kv.Key.(*syntax.Name))
+ elem = kv.Value
+ } else {
+ w.pos(elem)
+ }
+ elemType = structType.Field(i).Type()
+ w.Len(i)
+ } else {
+ if kv, ok := elem.(*syntax.KeyValueExpr); w.Bool(ok) {
+ // use position of expr.Key rather than of elem (which has position of ':')
+ w.pos(kv.Key)
+ w.implicitConvExpr(keyType, kv.Key)
+ elem = kv.Value
+ }
+ }
+ w.pos(elem)
+ w.implicitConvExpr(elemType, elem)
+ }
+}
+
+func (w *writer) funcLit(expr *syntax.FuncLit) {
+ sig := w.p.typeOf(expr).(*types2.Signature)
+
+ body, closureVars := w.p.bodyIdx(sig, expr.Body, w.dict)
+
+ w.Sync(pkgbits.SyncFuncLit)
+ w.pos(expr)
+ w.signature(sig)
+
+ w.Len(len(closureVars))
+ for _, cv := range closureVars {
+ w.pos(cv.pos)
+ w.useLocal(cv.pos, cv.var_)
+ }
+
+ w.Reloc(pkgbits.RelocBody, body)
+}
+
+type posVar struct {
+ pos syntax.Pos
+ var_ *types2.Var
+}
+
+func (w *writer) exprList(expr syntax.Expr) {
+ w.Sync(pkgbits.SyncExprList)
+ w.exprs(unpackListExpr(expr))
+}
+
+func (w *writer) exprs(exprs []syntax.Expr) {
+ w.Sync(pkgbits.SyncExprs)
+ w.Len(len(exprs))
+ for _, expr := range exprs {
+ w.expr(expr)
+ }
+}
+
+// rtype writes information so that the reader can construct an
+// expression of type *runtime._type representing typ.
+func (w *writer) rtype(typ types2.Type) {
+ typ = types2.Default(typ)
+
+ info := w.p.typIdx(typ, w.dict)
+ w.rtypeInfo(info)
+}
+
+func (w *writer) rtypeInfo(info typeInfo) {
+ w.Sync(pkgbits.SyncRType)
+
+ if w.Bool(info.derived) {
+ w.Len(w.dict.rtypeIdx(info))
+ } else {
+ w.typInfo(info)
+ }
+}
+
+// varDictIndex writes out information for populating DictIndex for
+// the ir.Name that will represent obj.
+func (w *writer) varDictIndex(obj *types2.Var) {
+ info := w.p.typIdx(obj.Type(), w.dict)
+ if w.Bool(info.derived) {
+ w.Len(w.dict.rtypeIdx(info))
+ }
+}
+
+func isUntyped(typ types2.Type) bool {
+ basic, ok := typ.(*types2.Basic)
+ return ok && basic.Info()&types2.IsUntyped != 0
+}
+
+func isTuple(typ types2.Type) bool {
+ _, ok := typ.(*types2.Tuple)
+ return ok
+}
+
+func (w *writer) itab(typ, iface types2.Type) {
+ typ = types2.Default(typ)
+ iface = types2.Default(iface)
+
+ typInfo := w.p.typIdx(typ, w.dict)
+ ifaceInfo := w.p.typIdx(iface, w.dict)
+
+ w.rtypeInfo(typInfo)
+ w.rtypeInfo(ifaceInfo)
+ if w.Bool(typInfo.derived || ifaceInfo.derived) {
+ w.Len(w.dict.itabIdx(typInfo, ifaceInfo))
+ }
+}
+
+// convRTTI writes information so that the reader can construct
+// expressions for converting from src to dst.
+func (w *writer) convRTTI(src, dst types2.Type) {
+ w.Sync(pkgbits.SyncConvRTTI)
+ w.itab(src, dst)
+}
+
+func (w *writer) exprType(iface types2.Type, typ syntax.Expr) {
+ base.Assertf(iface == nil || isInterface(iface), "%v must be nil or an interface type", iface)
+
+ tv := w.p.typeAndValue(typ)
+ assert(tv.IsType())
+
+ w.Sync(pkgbits.SyncExprType)
+ w.pos(typ)
+
+ if w.Bool(iface != nil && !iface.Underlying().(*types2.Interface).Empty()) {
+ w.itab(tv.Type, iface)
+ } else {
+ w.rtype(tv.Type)
+
+ info := w.p.typIdx(tv.Type, w.dict)
+ w.Bool(info.derived)
+ }
+}
+
+// isInterface reports whether typ is known to be an interface type.
+// If typ is a type parameter, then isInterface reports an internal
+// compiler error instead.
+func isInterface(typ types2.Type) bool {
+ if _, ok := typ.(*types2.TypeParam); ok {
+ // typ is a type parameter and may be instantiated as either a
+ // concrete or interface type, so the writer can't depend on
+ // knowing this.
+ base.Fatalf("%v is a type parameter", typ)
+ }
+
+ _, ok := typ.Underlying().(*types2.Interface)
+ return ok
+}
+
+// op writes an Op into the bitstream.
+func (w *writer) op(op ir.Op) {
+ // TODO(mdempsky): Remove in favor of explicit codes? Would make
+ // export data more stable against internal refactorings, but low
+ // priority at the moment.
+ assert(op != 0)
+ w.Sync(pkgbits.SyncOp)
+ w.Len(int(op))
+}
+
+// @@@ Package initialization
+
+// Caution: This code is still clumsy, because toolstash -cmp is
+// particularly sensitive to it.
+
+type typeDeclGen struct {
+ *syntax.TypeDecl
+ gen int
+
+ // Implicit type parameters in scope at this type declaration.
+ implicits []*types2.TypeName
+}
+
+type fileImports struct {
+ importedEmbed, importedUnsafe bool
+}
+
+// declCollector is a visitor type that collects compiler-needed
+// information about declarations that types2 doesn't track.
+//
+// Notably, it maps declared types and functions back to their
+// declaration statement, keeps track of implicit type parameters, and
+// assigns unique type "generation" numbers to local defined types.
+type declCollector struct {
+ pw *pkgWriter
+ typegen *int
+ file *fileImports
+ withinFunc bool
+ implicits []*types2.TypeName
+}
+
+func (c *declCollector) withTParams(obj types2.Object) *declCollector {
+ tparams := objTypeParams(obj)
+ n := tparams.Len()
+ if n == 0 {
+ return c
+ }
+
+ copy := *c
+ copy.implicits = copy.implicits[:len(copy.implicits):len(copy.implicits)]
+ for i := 0; i < n; i++ {
+ copy.implicits = append(copy.implicits, tparams.At(i).Obj())
+ }
+ return &copy
+}
+
+func (c *declCollector) Visit(n syntax.Node) syntax.Visitor {
+ pw := c.pw
+
+ switch n := n.(type) {
+ case *syntax.File:
+ pw.checkPragmas(n.Pragma, ir.GoBuildPragma, false)
+
+ case *syntax.ImportDecl:
+ pw.checkPragmas(n.Pragma, 0, false)
+
+ switch pkgNameOf(pw.info, n).Imported().Path() {
+ case "embed":
+ c.file.importedEmbed = true
+ case "unsafe":
+ c.file.importedUnsafe = true
+ }
+
+ case *syntax.ConstDecl:
+ pw.checkPragmas(n.Pragma, 0, false)
+
+ case *syntax.FuncDecl:
+ pw.checkPragmas(n.Pragma, funcPragmas, false)
+
+ obj := pw.info.Defs[n.Name].(*types2.Func)
+ pw.funDecls[obj] = n
+
+ return c.withTParams(obj)
+
+ case *syntax.TypeDecl:
+ obj := pw.info.Defs[n.Name].(*types2.TypeName)
+ d := typeDeclGen{TypeDecl: n, implicits: c.implicits}
+
+ if n.Alias {
+ pw.checkPragmas(n.Pragma, 0, false)
+ } else {
+ pw.checkPragmas(n.Pragma, 0, false)
+
+ // Assign a unique ID to function-scoped defined types.
+ if c.withinFunc {
+ *c.typegen++
+ d.gen = *c.typegen
+ }
+ }
+
+ pw.typDecls[obj] = d
+
+ // TODO(mdempsky): Omit? Not strictly necessary; only matters for
+ // type declarations within function literals within parameterized
+ // type declarations, but types2 the function literals will be
+ // constant folded away.
+ return c.withTParams(obj)
+
+ case *syntax.VarDecl:
+ pw.checkPragmas(n.Pragma, 0, true)
+
+ if p, ok := n.Pragma.(*pragmas); ok && len(p.Embeds) > 0 {
+ if err := checkEmbed(n, c.file.importedEmbed, c.withinFunc); err != nil {
+ pw.errorf(p.Embeds[0].Pos, "%s", err)
+ }
+ }
+
+ case *syntax.BlockStmt:
+ if !c.withinFunc {
+ copy := *c
+ copy.withinFunc = true
+ return &copy
+ }
+ }
+
+ return c
+}
+
+func (pw *pkgWriter) collectDecls(noders []*noder) {
+ var typegen int
+ for _, p := range noders {
+ var file fileImports
+
+ syntax.Walk(p.file, &declCollector{
+ pw: pw,
+ typegen: &typegen,
+ file: &file,
+ })
+
+ pw.cgoPragmas = append(pw.cgoPragmas, p.pragcgobuf...)
+
+ for _, l := range p.linknames {
+ if !file.importedUnsafe {
+ pw.errorf(l.pos, "//go:linkname only allowed in Go files that import \"unsafe\"")
+ continue
+ }
+
+ switch obj := pw.curpkg.Scope().Lookup(l.local).(type) {
+ case *types2.Func, *types2.Var:
+ if _, ok := pw.linknames[obj]; !ok {
+ pw.linknames[obj] = l.remote
+ } else {
+ pw.errorf(l.pos, "duplicate //go:linkname for %s", l.local)
+ }
+
+ default:
+ if types.AllowsGoVersion(1, 18) {
+ pw.errorf(l.pos, "//go:linkname must refer to declared function or variable")
+ }
+ }
+ }
+ }
+}
+
+func (pw *pkgWriter) checkPragmas(p syntax.Pragma, allowed ir.PragmaFlag, embedOK bool) {
+ if p == nil {
+ return
+ }
+ pragma := p.(*pragmas)
+
+ for _, pos := range pragma.Pos {
+ if pos.Flag&^allowed != 0 {
+ pw.errorf(pos.Pos, "misplaced compiler directive")
+ }
+ }
+
+ if !embedOK {
+ for _, e := range pragma.Embeds {
+ pw.errorf(e.Pos, "misplaced go:embed directive")
+ }
+ }
+}
+
+func (w *writer) pkgInit(noders []*noder) {
+ w.Len(len(w.p.cgoPragmas))
+ for _, cgoPragma := range w.p.cgoPragmas {
+ w.Strings(cgoPragma)
+ }
+
+ w.Sync(pkgbits.SyncDecls)
+ for _, p := range noders {
+ for _, decl := range p.file.DeclList {
+ w.pkgDecl(decl)
+ }
+ }
+ w.Code(declEnd)
+
+ w.Sync(pkgbits.SyncEOF)
+}
+
+func (w *writer) pkgDecl(decl syntax.Decl) {
+ switch decl := decl.(type) {
+ default:
+ w.p.unexpected("declaration", decl)
+
+ case *syntax.ImportDecl:
+
+ case *syntax.ConstDecl:
+ w.Code(declOther)
+ w.pkgObjs(decl.NameList...)
+
+ case *syntax.FuncDecl:
+ if decl.Name.Value == "_" {
+ break // skip blank functions
+ }
+
+ obj := w.p.info.Defs[decl.Name].(*types2.Func)
+ sig := obj.Type().(*types2.Signature)
+
+ if sig.RecvTypeParams() != nil || sig.TypeParams() != nil {
+ break // skip generic functions
+ }
+
+ if recv := sig.Recv(); recv != nil {
+ w.Code(declMethod)
+ w.typ(recvBase(recv))
+ w.selector(obj)
+ break
+ }
+
+ w.Code(declFunc)
+ w.pkgObjs(decl.Name)
+
+ case *syntax.TypeDecl:
+ if len(decl.TParamList) != 0 {
+ break // skip generic type decls
+ }
+
+ if decl.Name.Value == "_" {
+ break // skip blank type decls
+ }
+
+ name := w.p.info.Defs[decl.Name].(*types2.TypeName)
+ // Skip type declarations for interfaces that are only usable as
+ // type parameter bounds.
+ if iface, ok := name.Type().Underlying().(*types2.Interface); ok && !iface.IsMethodSet() {
+ break
+ }
+
+ w.Code(declOther)
+ w.pkgObjs(decl.Name)
+
+ case *syntax.VarDecl:
+ w.Code(declVar)
+ w.pos(decl)
+ w.pkgObjs(decl.NameList...)
+
+ // TODO(mdempsky): It would make sense to use multiExpr here, but
+ // that results in IR that confuses pkginit/initorder.go. So we
+ // continue using exprList, and let typecheck handle inserting any
+ // implicit conversions. That's okay though, because package-scope
+ // assignments never require dictionaries.
+ w.exprList(decl.Values)
+
+ var embeds []pragmaEmbed
+ if p, ok := decl.Pragma.(*pragmas); ok {
+ embeds = p.Embeds
+ }
+ w.Len(len(embeds))
+ for _, embed := range embeds {
+ w.pos(embed.Pos)
+ w.Strings(embed.Patterns)
+ }
+ }
+}
+
+func (w *writer) pkgObjs(names ...*syntax.Name) {
+ w.Sync(pkgbits.SyncDeclNames)
+ w.Len(len(names))
+
+ for _, name := range names {
+ obj, ok := w.p.info.Defs[name]
+ assert(ok)
+
+ w.Sync(pkgbits.SyncDeclName)
+ w.obj(obj, nil)
+ }
+}
+
+// @@@ Helpers
+
+// hasImplicitTypeParams reports whether obj is a defined type with
+// implicit type parameters (e.g., declared within a generic function
+// or method).
+func (p *pkgWriter) hasImplicitTypeParams(obj *types2.TypeName) bool {
+ if obj.Pkg() == p.curpkg {
+ decl, ok := p.typDecls[obj]
+ assert(ok)
+ if len(decl.implicits) != 0 {
+ return true
+ }
+ }
+ return false
+}
+
+// isDefinedType reports whether obj is a defined type.
+func isDefinedType(obj types2.Object) bool {
+ if obj, ok := obj.(*types2.TypeName); ok {
+ return !obj.IsAlias()
+ }
+ return false
+}
+
+// isGlobal reports whether obj was declared at package scope.
+//
+// Caveat: blank objects are not declared.
+func isGlobal(obj types2.Object) bool {
+ return obj.Parent() == obj.Pkg().Scope()
+}
+
+// lookupObj returns the object that expr refers to, if any. If expr
+// is an explicit instantiation of a generic object, then the instance
+// object is returned as well.
+func lookupObj(p *pkgWriter, expr syntax.Expr) (obj types2.Object, inst types2.Instance) {
+ if index, ok := expr.(*syntax.IndexExpr); ok {
+ args := unpackListExpr(index.Index)
+ if len(args) == 1 {
+ tv := p.typeAndValue(args[0])
+ if tv.IsValue() {
+ return // normal index expression
+ }
+ }
+
+ expr = index.X
+ }
+
+ // Strip package qualifier, if present.
+ if sel, ok := expr.(*syntax.SelectorExpr); ok {
+ if !isPkgQual(p.info, sel) {
+ return // normal selector expression
+ }
+ expr = sel.Sel
+ }
+
+ if name, ok := expr.(*syntax.Name); ok {
+ obj = p.info.Uses[name]
+ inst = p.info.Instances[name]
+ }
+ return
+}
+
+// isPkgQual reports whether the given selector expression is a
+// package-qualified identifier.
+func isPkgQual(info *types2.Info, sel *syntax.SelectorExpr) bool {
+ if name, ok := sel.X.(*syntax.Name); ok {
+ _, isPkgName := info.Uses[name].(*types2.PkgName)
+ return isPkgName
+ }
+ return false
+}
+
+// isNil reports whether expr is a (possibly parenthesized) reference
+// to the predeclared nil value.
+func isNil(p *pkgWriter, expr syntax.Expr) bool {
+ tv := p.typeAndValue(expr)
+ return tv.IsNil()
+}
+
+// recvBase returns the base type for the given receiver parameter.
+func recvBase(recv *types2.Var) *types2.Named {
+ typ := recv.Type()
+ if ptr, ok := typ.(*types2.Pointer); ok {
+ typ = ptr.Elem()
+ }
+ return typ.(*types2.Named)
+}
+
+// namesAsExpr returns a list of names as a syntax.Expr.
+func namesAsExpr(names []*syntax.Name) syntax.Expr {
+ if len(names) == 1 {
+ return names[0]
+ }
+
+ exprs := make([]syntax.Expr, len(names))
+ for i, name := range names {
+ exprs[i] = name
+ }
+ return &syntax.ListExpr{ElemList: exprs}
+}
+
+// fieldIndex returns the index of the struct field named by key.
+func fieldIndex(info *types2.Info, str *types2.Struct, key *syntax.Name) int {
+ field := info.Uses[key].(*types2.Var)
+
+ for i := 0; i < str.NumFields(); i++ {
+ if str.Field(i) == field {
+ return i
+ }
+ }
+
+ panic(fmt.Sprintf("%s: %v is not a field of %v", key.Pos(), field, str))
+}
+
+// objTypeParams returns the type parameters on the given object.
+func objTypeParams(obj types2.Object) *types2.TypeParamList {
+ switch obj := obj.(type) {
+ case *types2.Func:
+ sig := obj.Type().(*types2.Signature)
+ if sig.Recv() != nil {
+ return sig.RecvTypeParams()
+ }
+ return sig.TypeParams()
+ case *types2.TypeName:
+ if !obj.IsAlias() {
+ return obj.Type().(*types2.Named).TypeParams()
+ }
+ }
+ return nil
+}
+
+// splitNamed decomposes a use of a defined type into its original
+// type definition and the type arguments used to instantiate it.
+func splitNamed(typ *types2.Named) (*types2.TypeName, *types2.TypeList) {
+ base.Assertf(typ.TypeParams().Len() == typ.TypeArgs().Len(), "use of uninstantiated type: %v", typ)
+
+ orig := typ.Origin()
+ base.Assertf(orig.TypeArgs() == nil, "origin %v of %v has type arguments", orig, typ)
+ base.Assertf(typ.Obj() == orig.Obj(), "%v has object %v, but %v has object %v", typ, typ.Obj(), orig, orig.Obj())
+
+ return typ.Obj(), typ.TypeArgs()
+}
+
+func asPragmaFlag(p syntax.Pragma) ir.PragmaFlag {
+ if p == nil {
+ return 0
+ }
+ return p.(*pragmas).Flag
+}
+
+// isPtrTo reports whether from is the type *to.
+func isPtrTo(from, to types2.Type) bool {
+ ptr, ok := from.(*types2.Pointer)
+ return ok && types2.Identical(ptr.Elem(), to)
+}