diff options
Diffstat (limited to 'src/cmd/compile/internal/pkginit/initorder.go')
-rw-r--r-- | src/cmd/compile/internal/pkginit/initorder.go | 377 |
1 files changed, 377 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/pkginit/initorder.go b/src/cmd/compile/internal/pkginit/initorder.go new file mode 100644 index 0000000..426d298 --- /dev/null +++ b/src/cmd/compile/internal/pkginit/initorder.go @@ -0,0 +1,377 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package pkginit + +import ( + "container/heap" + "fmt" + "strings" + + "cmd/compile/internal/base" + "cmd/compile/internal/ir" +) + +// Package initialization +// +// Here we implement the algorithm for ordering package-level variable +// initialization. The spec is written in terms of variable +// initialization, but multiple variables initialized by a single +// assignment are handled together, so here we instead focus on +// ordering initialization assignments. Conveniently, this maps well +// to how we represent package-level initializations using the Node +// AST. +// +// Assignments are in one of three phases: NotStarted, Pending, or +// Done. For assignments in the Pending phase, we use Xoffset to +// record the number of unique variable dependencies whose +// initialization assignment is not yet Done. We also maintain a +// "blocking" map that maps assignments back to all of the assignments +// that depend on it. +// +// For example, for an initialization like: +// +// var x = f(a, b, b) +// var a, b = g() +// +// the "x = f(a, b, b)" assignment depends on two variables (a and b), +// so its Xoffset will be 2. Correspondingly, the "a, b = g()" +// assignment's "blocking" entry will have two entries back to x's +// assignment. +// +// Logically, initialization works by (1) taking all NotStarted +// assignments, calculating their dependencies, and marking them +// Pending; (2) adding all Pending assignments with Xoffset==0 to a +// "ready" priority queue (ordered by variable declaration position); +// and (3) iteratively processing the next Pending assignment from the +// queue, decreasing the Xoffset of assignments it's blocking, and +// adding them to the queue if decremented to 0. +// +// As an optimization, we actually apply each of these three steps for +// each assignment. This yields the same order, but keeps queue size +// down and thus also heap operation costs. + +// Static initialization phase. +// These values are stored in two bits in Node.flags. +const ( + InitNotStarted = iota + InitDone + InitPending +) + +type InitOrder struct { + // blocking maps initialization assignments to the assignments + // that depend on it. + blocking map[ir.Node][]ir.Node + + // ready is the queue of Pending initialization assignments + // that are ready for initialization. + ready declOrder + + order map[ir.Node]int +} + +// initOrder computes initialization order for a list l of +// package-level declarations (in declaration order) and outputs the +// corresponding list of statements to include in the init() function +// body. +func initOrder(l []ir.Node) []ir.Node { + var res ir.Nodes + o := InitOrder{ + blocking: make(map[ir.Node][]ir.Node), + order: make(map[ir.Node]int), + } + + // Process all package-level assignment in declaration order. + for _, n := range l { + switch n.Op() { + case ir.OAS, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV: + o.processAssign(n) + o.flushReady(func(n ir.Node) { res.Append(n) }) + case ir.ODCLCONST, ir.ODCLFUNC, ir.ODCLTYPE: + // nop + default: + base.Fatalf("unexpected package-level statement: %v", n) + } + } + + // Check that all assignments are now Done; if not, there must + // have been a dependency cycle. + for _, n := range l { + switch n.Op() { + case ir.OAS, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV: + if o.order[n] != orderDone { + // If there have already been errors + // printed, those errors may have + // confused us and there might not be + // a loop. Let the user fix those + // first. + base.ExitIfErrors() + + o.findInitLoopAndExit(firstLHS(n), new([]*ir.Name), new(ir.NameSet)) + base.Fatalf("initialization unfinished, but failed to identify loop") + } + } + } + + // Invariant consistency check. If this is non-zero, then we + // should have found a cycle above. + if len(o.blocking) != 0 { + base.Fatalf("expected empty map: %v", o.blocking) + } + + return res +} + +func (o *InitOrder) processAssign(n ir.Node) { + if _, ok := o.order[n]; ok { + base.Fatalf("unexpected state: %v, %v", n, o.order[n]) + } + o.order[n] = 0 + + // Compute number of variable dependencies and build the + // inverse dependency ("blocking") graph. + for dep := range collectDeps(n, true) { + defn := dep.Defn + // Skip dependencies on functions (PFUNC) and + // variables already initialized (InitDone). + if dep.Class != ir.PEXTERN || o.order[defn] == orderDone { + continue + } + o.order[n]++ + o.blocking[defn] = append(o.blocking[defn], n) + } + + if o.order[n] == 0 { + heap.Push(&o.ready, n) + } +} + +const orderDone = -1000 + +// flushReady repeatedly applies initialize to the earliest (in +// declaration order) assignment ready for initialization and updates +// the inverse dependency ("blocking") graph. +func (o *InitOrder) flushReady(initialize func(ir.Node)) { + for o.ready.Len() != 0 { + n := heap.Pop(&o.ready).(ir.Node) + if order, ok := o.order[n]; !ok || order != 0 { + base.Fatalf("unexpected state: %v, %v, %v", n, ok, order) + } + + initialize(n) + o.order[n] = orderDone + + blocked := o.blocking[n] + delete(o.blocking, n) + + for _, m := range blocked { + if o.order[m]--; o.order[m] == 0 { + heap.Push(&o.ready, m) + } + } + } +} + +// findInitLoopAndExit searches for an initialization loop involving variable +// or function n. If one is found, it reports the loop as an error and exits. +// +// path points to a slice used for tracking the sequence of +// variables/functions visited. Using a pointer to a slice allows the +// slice capacity to grow and limit reallocations. +func (o *InitOrder) findInitLoopAndExit(n *ir.Name, path *[]*ir.Name, ok *ir.NameSet) { + for i, x := range *path { + if x == n { + reportInitLoopAndExit((*path)[i:]) + return + } + } + + // There might be multiple loops involving n; by sorting + // references, we deterministically pick the one reported. + refers := collectDeps(n.Defn, false).Sorted(func(ni, nj *ir.Name) bool { + return ni.Pos().Before(nj.Pos()) + }) + + *path = append(*path, n) + for _, ref := range refers { + // Short-circuit variables that were initialized. + if ref.Class == ir.PEXTERN && o.order[ref.Defn] == orderDone || ok.Has(ref) { + continue + } + + o.findInitLoopAndExit(ref, path, ok) + } + + // n is not involved in a cycle. + // Record that fact to avoid checking it again when reached another way, + // or else this traversal will take exponential time traversing all paths + // through the part of the package's call graph implicated in the cycle. + ok.Add(n) + + *path = (*path)[:len(*path)-1] +} + +// reportInitLoopAndExit reports and initialization loop as an error +// and exits. However, if l is not actually an initialization loop, it +// simply returns instead. +func reportInitLoopAndExit(l []*ir.Name) { + // Rotate loop so that the earliest variable declaration is at + // the start. + i := -1 + for j, n := range l { + if n.Class == ir.PEXTERN && (i == -1 || n.Pos().Before(l[i].Pos())) { + i = j + } + } + if i == -1 { + // False positive: loop only involves recursive + // functions. Return so that findInitLoop can continue + // searching. + return + } + l = append(l[i:], l[:i]...) + + // TODO(mdempsky): Method values are printed as "T.m-fm" + // rather than "T.m". Figure out how to avoid that. + + var msg strings.Builder + fmt.Fprintf(&msg, "initialization loop:\n") + for _, n := range l { + fmt.Fprintf(&msg, "\t%v: %v refers to\n", ir.Line(n), n) + } + fmt.Fprintf(&msg, "\t%v: %v", ir.Line(l[0]), l[0]) + + base.ErrorfAt(l[0].Pos(), msg.String()) + base.ErrorExit() +} + +// collectDeps returns all of the package-level functions and +// variables that declaration n depends on. If transitive is true, +// then it also includes the transitive dependencies of any depended +// upon functions (but not variables). +func collectDeps(n ir.Node, transitive bool) ir.NameSet { + d := initDeps{transitive: transitive} + switch n.Op() { + case ir.OAS: + n := n.(*ir.AssignStmt) + d.inspect(n.Y) + case ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV: + n := n.(*ir.AssignListStmt) + d.inspect(n.Rhs[0]) + case ir.ODCLFUNC: + n := n.(*ir.Func) + d.inspectList(n.Body) + default: + base.Fatalf("unexpected Op: %v", n.Op()) + } + return d.seen +} + +type initDeps struct { + transitive bool + seen ir.NameSet + cvisit func(ir.Node) +} + +func (d *initDeps) cachedVisit() func(ir.Node) { + if d.cvisit == nil { + d.cvisit = d.visit // cache closure + } + return d.cvisit +} + +func (d *initDeps) inspect(n ir.Node) { ir.Visit(n, d.cachedVisit()) } +func (d *initDeps) inspectList(l ir.Nodes) { ir.VisitList(l, d.cachedVisit()) } + +// visit calls foundDep on any package-level functions or variables +// referenced by n, if any. +func (d *initDeps) visit(n ir.Node) { + switch n.Op() { + case ir.ONAME: + n := n.(*ir.Name) + switch n.Class { + case ir.PEXTERN, ir.PFUNC: + d.foundDep(n) + } + + case ir.OCLOSURE: + n := n.(*ir.ClosureExpr) + d.inspectList(n.Func.Body) + + case ir.ODOTMETH, ir.OMETHVALUE, ir.OMETHEXPR: + d.foundDep(ir.MethodExprName(n)) + } +} + +// foundDep records that we've found a dependency on n by adding it to +// seen. +func (d *initDeps) foundDep(n *ir.Name) { + // Can happen with method expressions involving interface + // types; e.g., fixedbugs/issue4495.go. + if n == nil { + return + } + + // Names without definitions aren't interesting as far as + // initialization ordering goes. + if n.Defn == nil { + return + } + + // Treat coverage counter variables effectively as invisible with + // respect to init order. If we don't do this, then the + // instrumentation vars can perturb the order of initialization + // away from the order of the original uninstrumented program. + // See issue #56293 for more details. + if n.CoverageCounter() || n.CoverageAuxVar() { + return + } + + if d.seen.Has(n) { + return + } + d.seen.Add(n) + if d.transitive && n.Class == ir.PFUNC { + d.inspectList(n.Defn.(*ir.Func).Body) + } +} + +// declOrder implements heap.Interface, ordering assignment statements +// by the position of their first LHS expression. +// +// N.B., the Pos of the first LHS expression is used because because +// an OAS node's Pos may not be unique. For example, given the +// declaration "var a, b = f(), g()", "a" must be ordered before "b", +// but both OAS nodes use the "=" token's position as their Pos. +type declOrder []ir.Node + +func (s declOrder) Len() int { return len(s) } +func (s declOrder) Less(i, j int) bool { + return firstLHS(s[i]).Pos().Before(firstLHS(s[j]).Pos()) +} +func (s declOrder) Swap(i, j int) { s[i], s[j] = s[j], s[i] } + +func (s *declOrder) Push(x interface{}) { *s = append(*s, x.(ir.Node)) } +func (s *declOrder) Pop() interface{} { + n := (*s)[len(*s)-1] + *s = (*s)[:len(*s)-1] + return n +} + +// firstLHS returns the first expression on the left-hand side of +// assignment n. +func firstLHS(n ir.Node) *ir.Name { + switch n.Op() { + case ir.OAS: + n := n.(*ir.AssignStmt) + return n.X.Name() + case ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2RECV, ir.OAS2MAPR: + n := n.(*ir.AssignListStmt) + return n.Lhs[0].Name() + } + + base.Fatalf("unexpected Op: %v", n.Op()) + return nil +} |