diff options
Diffstat (limited to 'src/cmd/compile/internal/ssa/phiopt.go')
-rw-r--r-- | src/cmd/compile/internal/ssa/phiopt.go | 325 |
1 files changed, 325 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/phiopt.go b/src/cmd/compile/internal/ssa/phiopt.go new file mode 100644 index 0000000..037845e --- /dev/null +++ b/src/cmd/compile/internal/ssa/phiopt.go @@ -0,0 +1,325 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package ssa + +// phiopt eliminates boolean Phis based on the previous if. +// +// Main use case is to transform: +// +// x := false +// if b { +// x = true +// } +// +// into x = b. +// +// In SSA code this appears as +// +// b0 +// If b -> b1 b2 +// b1 +// Plain -> b2 +// b2 +// x = (OpPhi (ConstBool [true]) (ConstBool [false])) +// +// In this case we can replace x with a copy of b. +func phiopt(f *Func) { + sdom := f.Sdom() + for _, b := range f.Blocks { + if len(b.Preds) != 2 || len(b.Values) == 0 { + // TODO: handle more than 2 predecessors, e.g. a || b || c. + continue + } + + pb0, b0 := b, b.Preds[0].b + for len(b0.Succs) == 1 && len(b0.Preds) == 1 { + pb0, b0 = b0, b0.Preds[0].b + } + if b0.Kind != BlockIf { + continue + } + pb1, b1 := b, b.Preds[1].b + for len(b1.Succs) == 1 && len(b1.Preds) == 1 { + pb1, b1 = b1, b1.Preds[0].b + } + if b1 != b0 { + continue + } + // b0 is the if block giving the boolean value. + // reverse is the predecessor from which the truth value comes. + var reverse int + if b0.Succs[0].b == pb0 && b0.Succs[1].b == pb1 { + reverse = 0 + } else if b0.Succs[0].b == pb1 && b0.Succs[1].b == pb0 { + reverse = 1 + } else { + b.Fatalf("invalid predecessors\n") + } + + for _, v := range b.Values { + if v.Op != OpPhi { + continue + } + + // Look for conversions from bool to 0/1. + if v.Type.IsInteger() { + phioptint(v, b0, reverse) + } + + if !v.Type.IsBoolean() { + continue + } + + // Replaces + // if a { x = true } else { x = false } with x = a + // and + // if a { x = false } else { x = true } with x = !a + if v.Args[0].Op == OpConstBool && v.Args[1].Op == OpConstBool { + if v.Args[reverse].AuxInt != v.Args[1-reverse].AuxInt { + ops := [2]Op{OpNot, OpCopy} + v.reset(ops[v.Args[reverse].AuxInt]) + v.AddArg(b0.Controls[0]) + if f.pass.debug > 0 { + f.Warnl(b.Pos, "converted OpPhi to %v", v.Op) + } + continue + } + } + + // Replaces + // if a { x = true } else { x = value } with x = a || value. + // Requires that value dominates x, meaning that regardless of a, + // value is always computed. This guarantees that the side effects + // of value are not seen if a is false. + if v.Args[reverse].Op == OpConstBool && v.Args[reverse].AuxInt == 1 { + if tmp := v.Args[1-reverse]; sdom.IsAncestorEq(tmp.Block, b) { + v.reset(OpOrB) + v.SetArgs2(b0.Controls[0], tmp) + if f.pass.debug > 0 { + f.Warnl(b.Pos, "converted OpPhi to %v", v.Op) + } + continue + } + } + + // Replaces + // if a { x = value } else { x = false } with x = a && value. + // Requires that value dominates x, meaning that regardless of a, + // value is always computed. This guarantees that the side effects + // of value are not seen if a is false. + if v.Args[1-reverse].Op == OpConstBool && v.Args[1-reverse].AuxInt == 0 { + if tmp := v.Args[reverse]; sdom.IsAncestorEq(tmp.Block, b) { + v.reset(OpAndB) + v.SetArgs2(b0.Controls[0], tmp) + if f.pass.debug > 0 { + f.Warnl(b.Pos, "converted OpPhi to %v", v.Op) + } + continue + } + } + } + } + // strengthen phi optimization. + // Main use case is to transform: + // x := false + // if c { + // x = true + // ... + // } + // into + // x := c + // if x { ... } + // + // For example, in SSA code a case appears as + // b0 + // If c -> b, sb0 + // sb0 + // If d -> sd0, sd1 + // sd1 + // ... + // sd0 + // Plain -> b + // b + // x = (OpPhi (ConstBool [true]) (ConstBool [false])) + // + // In this case we can also replace x with a copy of c. + // + // The optimization idea: + // 1. block b has a phi value x, x = OpPhi (ConstBool [true]) (ConstBool [false]), + // and len(b.Preds) is equal to 2. + // 2. find the common dominator(b0) of the predecessors(pb0, pb1) of block b, and the + // dominator(b0) is a If block. + // Special case: one of the predecessors(pb0 or pb1) is the dominator(b0). + // 3. the successors(sb0, sb1) of the dominator need to dominate the predecessors(pb0, pb1) + // of block b respectively. + // 4. replace this boolean Phi based on dominator block. + // + // b0(pb0) b0(pb1) b0 + // | \ / | / \ + // | sb1 sb0 | sb0 sb1 + // | ... ... | ... ... + // | pb1 pb0 | pb0 pb1 + // | / \ | \ / + // b b b + // + var lca *lcaRange + for _, b := range f.Blocks { + if len(b.Preds) != 2 || len(b.Values) == 0 { + // TODO: handle more than 2 predecessors, e.g. a || b || c. + continue + } + + for _, v := range b.Values { + // find a phi value v = OpPhi (ConstBool [true]) (ConstBool [false]). + // TODO: v = OpPhi (ConstBool [true]) (Arg <bool> {value}) + if v.Op != OpPhi { + continue + } + if v.Args[0].Op != OpConstBool || v.Args[1].Op != OpConstBool { + continue + } + if v.Args[0].AuxInt == v.Args[1].AuxInt { + continue + } + + pb0 := b.Preds[0].b + pb1 := b.Preds[1].b + if pb0.Kind == BlockIf && pb0 == sdom.Parent(b) { + // special case: pb0 is the dominator block b0. + // b0(pb0) + // | \ + // | sb1 + // | ... + // | pb1 + // | / + // b + // if another successor sb1 of b0(pb0) dominates pb1, do replace. + ei := b.Preds[0].i + sb1 := pb0.Succs[1-ei].b + if sdom.IsAncestorEq(sb1, pb1) { + convertPhi(pb0, v, ei) + break + } + } else if pb1.Kind == BlockIf && pb1 == sdom.Parent(b) { + // special case: pb1 is the dominator block b0. + // b0(pb1) + // / | + // sb0 | + // ... | + // pb0 | + // \ | + // b + // if another successor sb0 of b0(pb0) dominates pb0, do replace. + ei := b.Preds[1].i + sb0 := pb1.Succs[1-ei].b + if sdom.IsAncestorEq(sb0, pb0) { + convertPhi(pb1, v, 1-ei) + break + } + } else { + // b0 + // / \ + // sb0 sb1 + // ... ... + // pb0 pb1 + // \ / + // b + // + // Build data structure for fast least-common-ancestor queries. + if lca == nil { + lca = makeLCArange(f) + } + b0 := lca.find(pb0, pb1) + if b0.Kind != BlockIf { + break + } + sb0 := b0.Succs[0].b + sb1 := b0.Succs[1].b + var reverse int + if sdom.IsAncestorEq(sb0, pb0) && sdom.IsAncestorEq(sb1, pb1) { + reverse = 0 + } else if sdom.IsAncestorEq(sb1, pb0) && sdom.IsAncestorEq(sb0, pb1) { + reverse = 1 + } else { + break + } + if len(sb0.Preds) != 1 || len(sb1.Preds) != 1 { + // we can not replace phi value x in the following case. + // if gp == nil || sp < lo { x = true} + // if a || b { x = true } + // so the if statement can only have one condition. + break + } + convertPhi(b0, v, reverse) + } + } + } +} + +func phioptint(v *Value, b0 *Block, reverse int) { + a0 := v.Args[0] + a1 := v.Args[1] + if a0.Op != a1.Op { + return + } + + switch a0.Op { + case OpConst8, OpConst16, OpConst32, OpConst64: + default: + return + } + + negate := false + switch { + case a0.AuxInt == 0 && a1.AuxInt == 1: + negate = true + case a0.AuxInt == 1 && a1.AuxInt == 0: + default: + return + } + + if reverse == 1 { + negate = !negate + } + + a := b0.Controls[0] + if negate { + a = v.Block.NewValue1(v.Pos, OpNot, a.Type, a) + } + v.AddArg(a) + + cvt := v.Block.NewValue1(v.Pos, OpCvtBoolToUint8, v.Block.Func.Config.Types.UInt8, a) + switch v.Type.Size() { + case 1: + v.reset(OpCopy) + case 2: + v.reset(OpZeroExt8to16) + case 4: + v.reset(OpZeroExt8to32) + case 8: + v.reset(OpZeroExt8to64) + default: + v.Fatalf("bad int size %d", v.Type.Size()) + } + v.AddArg(cvt) + + f := b0.Func + if f.pass.debug > 0 { + f.Warnl(v.Block.Pos, "converted OpPhi bool -> int%d", v.Type.Size()*8) + } +} + +// b is the If block giving the boolean value. +// v is the phi value v = (OpPhi (ConstBool [true]) (ConstBool [false])). +// reverse is the predecessor from which the truth value comes. +func convertPhi(b *Block, v *Value, reverse int) { + f := b.Func + ops := [2]Op{OpNot, OpCopy} + v.reset(ops[v.Args[reverse].AuxInt]) + v.AddArg(b.Controls[0]) + if f.pass.debug > 0 { + f.Warnl(b.Pos, "converted OpPhi to %v", v.Op) + } +} |