summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/value.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/ssa/value.go')
-rw-r--r--src/cmd/compile/internal/ssa/value.go572
1 files changed, 572 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/value.go b/src/cmd/compile/internal/ssa/value.go
new file mode 100644
index 0000000..643fa36
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/value.go
@@ -0,0 +1,572 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/types"
+ "cmd/internal/src"
+ "fmt"
+ "math"
+ "sort"
+ "strings"
+)
+
+// A Value represents a value in the SSA representation of the program.
+// The ID and Type fields must not be modified. The remainder may be modified
+// if they preserve the value of the Value (e.g. changing a (mul 2 x) to an (add x x)).
+type Value struct {
+ // A unique identifier for the value. For performance we allocate these IDs
+ // densely starting at 1. There is no guarantee that there won't be occasional holes, though.
+ ID ID
+
+ // The operation that computes this value. See op.go.
+ Op Op
+
+ // The type of this value. Normally this will be a Go type, but there
+ // are a few other pseudo-types, see ../types/type.go.
+ Type *types.Type
+
+ // Auxiliary info for this value. The type of this information depends on the opcode and type.
+ // AuxInt is used for integer values, Aux is used for other values.
+ // Floats are stored in AuxInt using math.Float64bits(f).
+ // Unused portions of AuxInt are filled by sign-extending the used portion,
+ // even if the represented value is unsigned.
+ // Users of AuxInt which interpret AuxInt as unsigned (e.g. shifts) must be careful.
+ // Use Value.AuxUnsigned to get the zero-extended value of AuxInt.
+ AuxInt int64
+ Aux Aux
+
+ // Arguments of this value
+ Args []*Value
+
+ // Containing basic block
+ Block *Block
+
+ // Source position
+ Pos src.XPos
+
+ // Use count. Each appearance in Value.Args and Block.Controls counts once.
+ Uses int32
+
+ // wasm: Value stays on the WebAssembly stack. This value will not get a "register" (WebAssembly variable)
+ // nor a slot on Go stack, and the generation of this value is delayed to its use time.
+ OnWasmStack bool
+
+ // Is this value in the per-function constant cache? If so, remove from cache before changing it or recycling it.
+ InCache bool
+
+ // Storage for the first three args
+ argstorage [3]*Value
+}
+
+// Examples:
+// Opcode aux args
+// OpAdd nil 2
+// OpConst string 0 string constant
+// OpConst int64 0 int64 constant
+// OpAddcq int64 1 amd64 op: v = arg[0] + constant
+
+// short form print. Just v#.
+func (v *Value) String() string {
+ if v == nil {
+ return "nil" // should never happen, but not panicking helps with debugging
+ }
+ return fmt.Sprintf("v%d", v.ID)
+}
+
+func (v *Value) AuxInt8() int8 {
+ if opcodeTable[v.Op].auxType != auxInt8 && opcodeTable[v.Op].auxType != auxNameOffsetInt8 {
+ v.Fatalf("op %s doesn't have an int8 aux field", v.Op)
+ }
+ return int8(v.AuxInt)
+}
+
+func (v *Value) AuxInt16() int16 {
+ if opcodeTable[v.Op].auxType != auxInt16 {
+ v.Fatalf("op %s doesn't have an int16 aux field", v.Op)
+ }
+ return int16(v.AuxInt)
+}
+
+func (v *Value) AuxInt32() int32 {
+ if opcodeTable[v.Op].auxType != auxInt32 {
+ v.Fatalf("op %s doesn't have an int32 aux field", v.Op)
+ }
+ return int32(v.AuxInt)
+}
+
+// AuxUnsigned returns v.AuxInt as an unsigned value for OpConst*.
+// v.AuxInt is always sign-extended to 64 bits, even if the
+// represented value is unsigned. This undoes that sign extension.
+func (v *Value) AuxUnsigned() uint64 {
+ c := v.AuxInt
+ switch v.Op {
+ case OpConst64:
+ return uint64(c)
+ case OpConst32:
+ return uint64(uint32(c))
+ case OpConst16:
+ return uint64(uint16(c))
+ case OpConst8:
+ return uint64(uint8(c))
+ }
+ v.Fatalf("op %s isn't OpConst*", v.Op)
+ return 0
+}
+
+func (v *Value) AuxFloat() float64 {
+ if opcodeTable[v.Op].auxType != auxFloat32 && opcodeTable[v.Op].auxType != auxFloat64 {
+ v.Fatalf("op %s doesn't have a float aux field", v.Op)
+ }
+ return math.Float64frombits(uint64(v.AuxInt))
+}
+func (v *Value) AuxValAndOff() ValAndOff {
+ if opcodeTable[v.Op].auxType != auxSymValAndOff {
+ v.Fatalf("op %s doesn't have a ValAndOff aux field", v.Op)
+ }
+ return ValAndOff(v.AuxInt)
+}
+
+func (v *Value) AuxArm64BitField() arm64BitField {
+ if opcodeTable[v.Op].auxType != auxARM64BitField {
+ v.Fatalf("op %s doesn't have a ValAndOff aux field", v.Op)
+ }
+ return arm64BitField(v.AuxInt)
+}
+
+// long form print. v# = opcode <type> [aux] args [: reg] (names)
+func (v *Value) LongString() string {
+ if v == nil {
+ return "<NIL VALUE>"
+ }
+ s := fmt.Sprintf("v%d = %s", v.ID, v.Op)
+ s += " <" + v.Type.String() + ">"
+ s += v.auxString()
+ for _, a := range v.Args {
+ s += fmt.Sprintf(" %v", a)
+ }
+ if v.Block == nil {
+ return s
+ }
+ r := v.Block.Func.RegAlloc
+ if int(v.ID) < len(r) && r[v.ID] != nil {
+ s += " : " + r[v.ID].String()
+ }
+ if reg := v.Block.Func.tempRegs[v.ID]; reg != nil {
+ s += " tmp=" + reg.String()
+ }
+ var names []string
+ for name, values := range v.Block.Func.NamedValues {
+ for _, value := range values {
+ if value == v {
+ names = append(names, name.String())
+ break // drop duplicates.
+ }
+ }
+ }
+ if len(names) != 0 {
+ sort.Strings(names) // Otherwise a source of variation in debugging output.
+ s += " (" + strings.Join(names, ", ") + ")"
+ }
+ return s
+}
+
+func (v *Value) auxString() string {
+ switch opcodeTable[v.Op].auxType {
+ case auxBool:
+ if v.AuxInt == 0 {
+ return " [false]"
+ } else {
+ return " [true]"
+ }
+ case auxInt8:
+ return fmt.Sprintf(" [%d]", v.AuxInt8())
+ case auxInt16:
+ return fmt.Sprintf(" [%d]", v.AuxInt16())
+ case auxInt32:
+ return fmt.Sprintf(" [%d]", v.AuxInt32())
+ case auxInt64, auxInt128:
+ return fmt.Sprintf(" [%d]", v.AuxInt)
+ case auxARM64BitField:
+ lsb := v.AuxArm64BitField().getARM64BFlsb()
+ width := v.AuxArm64BitField().getARM64BFwidth()
+ return fmt.Sprintf(" [lsb=%d,width=%d]", lsb, width)
+ case auxFloat32, auxFloat64:
+ return fmt.Sprintf(" [%g]", v.AuxFloat())
+ case auxString:
+ return fmt.Sprintf(" {%q}", v.Aux)
+ case auxSym, auxCall, auxTyp:
+ if v.Aux != nil {
+ return fmt.Sprintf(" {%v}", v.Aux)
+ }
+ case auxSymOff, auxCallOff, auxTypSize, auxNameOffsetInt8:
+ s := ""
+ if v.Aux != nil {
+ s = fmt.Sprintf(" {%v}", v.Aux)
+ }
+ if v.AuxInt != 0 || opcodeTable[v.Op].auxType == auxNameOffsetInt8 {
+ s += fmt.Sprintf(" [%v]", v.AuxInt)
+ }
+ return s
+ case auxSymValAndOff:
+ s := ""
+ if v.Aux != nil {
+ s = fmt.Sprintf(" {%v}", v.Aux)
+ }
+ return s + fmt.Sprintf(" [%s]", v.AuxValAndOff())
+ case auxCCop:
+ return fmt.Sprintf(" {%s}", Op(v.AuxInt))
+ case auxS390XCCMask, auxS390XRotateParams:
+ return fmt.Sprintf(" {%v}", v.Aux)
+ case auxFlagConstant:
+ return fmt.Sprintf("[%s]", flagConstant(v.AuxInt))
+ }
+ return ""
+}
+
+// If/when midstack inlining is enabled (-l=4), the compiler gets both larger and slower.
+// Not-inlining this method is a help (*Value.reset and *Block.NewValue0 are similar).
+//
+//go:noinline
+func (v *Value) AddArg(w *Value) {
+ if v.Args == nil {
+ v.resetArgs() // use argstorage
+ }
+ v.Args = append(v.Args, w)
+ w.Uses++
+}
+
+//go:noinline
+func (v *Value) AddArg2(w1, w2 *Value) {
+ if v.Args == nil {
+ v.resetArgs() // use argstorage
+ }
+ v.Args = append(v.Args, w1, w2)
+ w1.Uses++
+ w2.Uses++
+}
+
+//go:noinline
+func (v *Value) AddArg3(w1, w2, w3 *Value) {
+ if v.Args == nil {
+ v.resetArgs() // use argstorage
+ }
+ v.Args = append(v.Args, w1, w2, w3)
+ w1.Uses++
+ w2.Uses++
+ w3.Uses++
+}
+
+//go:noinline
+func (v *Value) AddArg4(w1, w2, w3, w4 *Value) {
+ v.Args = append(v.Args, w1, w2, w3, w4)
+ w1.Uses++
+ w2.Uses++
+ w3.Uses++
+ w4.Uses++
+}
+
+//go:noinline
+func (v *Value) AddArg5(w1, w2, w3, w4, w5 *Value) {
+ v.Args = append(v.Args, w1, w2, w3, w4, w5)
+ w1.Uses++
+ w2.Uses++
+ w3.Uses++
+ w4.Uses++
+ w5.Uses++
+}
+
+//go:noinline
+func (v *Value) AddArg6(w1, w2, w3, w4, w5, w6 *Value) {
+ v.Args = append(v.Args, w1, w2, w3, w4, w5, w6)
+ w1.Uses++
+ w2.Uses++
+ w3.Uses++
+ w4.Uses++
+ w5.Uses++
+ w6.Uses++
+}
+
+func (v *Value) AddArgs(a ...*Value) {
+ if v.Args == nil {
+ v.resetArgs() // use argstorage
+ }
+ v.Args = append(v.Args, a...)
+ for _, x := range a {
+ x.Uses++
+ }
+}
+func (v *Value) SetArg(i int, w *Value) {
+ v.Args[i].Uses--
+ v.Args[i] = w
+ w.Uses++
+}
+func (v *Value) SetArgs1(a *Value) {
+ v.resetArgs()
+ v.AddArg(a)
+}
+func (v *Value) SetArgs2(a, b *Value) {
+ v.resetArgs()
+ v.AddArg(a)
+ v.AddArg(b)
+}
+func (v *Value) SetArgs3(a, b, c *Value) {
+ v.resetArgs()
+ v.AddArg(a)
+ v.AddArg(b)
+ v.AddArg(c)
+}
+
+func (v *Value) resetArgs() {
+ for _, a := range v.Args {
+ a.Uses--
+ }
+ v.argstorage[0] = nil
+ v.argstorage[1] = nil
+ v.argstorage[2] = nil
+ v.Args = v.argstorage[:0]
+}
+
+// reset is called from most rewrite rules.
+// Allowing it to be inlined increases the size
+// of cmd/compile by almost 10%, and slows it down.
+//
+//go:noinline
+func (v *Value) reset(op Op) {
+ if v.InCache {
+ v.Block.Func.unCache(v)
+ }
+ v.Op = op
+ v.resetArgs()
+ v.AuxInt = 0
+ v.Aux = nil
+}
+
+// invalidateRecursively marks a value as invalid (unused)
+// and after decrementing reference counts on its Args,
+// also recursively invalidates any of those whose use
+// count goes to zero. It returns whether any of the
+// invalidated values was marked with IsStmt.
+//
+// BEWARE of doing this *before* you've applied intended
+// updates to SSA.
+func (v *Value) invalidateRecursively() bool {
+ lostStmt := v.Pos.IsStmt() == src.PosIsStmt
+ if v.InCache {
+ v.Block.Func.unCache(v)
+ }
+ v.Op = OpInvalid
+
+ for _, a := range v.Args {
+ a.Uses--
+ if a.Uses == 0 {
+ lost := a.invalidateRecursively()
+ lostStmt = lost || lostStmt
+ }
+ }
+
+ v.argstorage[0] = nil
+ v.argstorage[1] = nil
+ v.argstorage[2] = nil
+ v.Args = v.argstorage[:0]
+
+ v.AuxInt = 0
+ v.Aux = nil
+ return lostStmt
+}
+
+// copyOf is called from rewrite rules.
+// It modifies v to be (Copy a).
+//
+//go:noinline
+func (v *Value) copyOf(a *Value) {
+ if v == a {
+ return
+ }
+ if v.InCache {
+ v.Block.Func.unCache(v)
+ }
+ v.Op = OpCopy
+ v.resetArgs()
+ v.AddArg(a)
+ v.AuxInt = 0
+ v.Aux = nil
+ v.Type = a.Type
+}
+
+// copyInto makes a new value identical to v and adds it to the end of b.
+// unlike copyIntoWithXPos this does not check for v.Pos being a statement.
+func (v *Value) copyInto(b *Block) *Value {
+ c := b.NewValue0(v.Pos.WithNotStmt(), v.Op, v.Type) // Lose the position, this causes line number churn otherwise.
+ c.Aux = v.Aux
+ c.AuxInt = v.AuxInt
+ c.AddArgs(v.Args...)
+ for _, a := range v.Args {
+ if a.Type.IsMemory() {
+ v.Fatalf("can't move a value with a memory arg %s", v.LongString())
+ }
+ }
+ return c
+}
+
+// copyIntoWithXPos makes a new value identical to v and adds it to the end of b.
+// The supplied position is used as the position of the new value.
+// Because this is used for rematerialization, check for case that (rematerialized)
+// input to value with position 'pos' carried a statement mark, and that the supplied
+// position (of the instruction using the rematerialized value) is not marked, and
+// preserve that mark if its line matches the supplied position.
+func (v *Value) copyIntoWithXPos(b *Block, pos src.XPos) *Value {
+ if v.Pos.IsStmt() == src.PosIsStmt && pos.IsStmt() != src.PosIsStmt && v.Pos.SameFileAndLine(pos) {
+ pos = pos.WithIsStmt()
+ }
+ c := b.NewValue0(pos, v.Op, v.Type)
+ c.Aux = v.Aux
+ c.AuxInt = v.AuxInt
+ c.AddArgs(v.Args...)
+ for _, a := range v.Args {
+ if a.Type.IsMemory() {
+ v.Fatalf("can't move a value with a memory arg %s", v.LongString())
+ }
+ }
+ return c
+}
+
+func (v *Value) Logf(msg string, args ...interface{}) { v.Block.Logf(msg, args...) }
+func (v *Value) Log() bool { return v.Block.Log() }
+func (v *Value) Fatalf(msg string, args ...interface{}) {
+ v.Block.Func.fe.Fatalf(v.Pos, msg, args...)
+}
+
+// isGenericIntConst reports whether v is a generic integer constant.
+func (v *Value) isGenericIntConst() bool {
+ return v != nil && (v.Op == OpConst64 || v.Op == OpConst32 || v.Op == OpConst16 || v.Op == OpConst8)
+}
+
+// ResultReg returns the result register assigned to v, in cmd/internal/obj/$ARCH numbering.
+// It is similar to Reg and Reg0, except that it is usable interchangeably for all Value Ops.
+// If you know v.Op, using Reg or Reg0 (as appropriate) will be more efficient.
+func (v *Value) ResultReg() int16 {
+ reg := v.Block.Func.RegAlloc[v.ID]
+ if reg == nil {
+ v.Fatalf("nil reg for value: %s\n%s\n", v.LongString(), v.Block.Func)
+ }
+ if pair, ok := reg.(LocPair); ok {
+ reg = pair[0]
+ }
+ if reg == nil {
+ v.Fatalf("nil reg0 for value: %s\n%s\n", v.LongString(), v.Block.Func)
+ }
+ return reg.(*Register).objNum
+}
+
+// Reg returns the register assigned to v, in cmd/internal/obj/$ARCH numbering.
+func (v *Value) Reg() int16 {
+ reg := v.Block.Func.RegAlloc[v.ID]
+ if reg == nil {
+ v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func)
+ }
+ return reg.(*Register).objNum
+}
+
+// Reg0 returns the register assigned to the first output of v, in cmd/internal/obj/$ARCH numbering.
+func (v *Value) Reg0() int16 {
+ reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[0]
+ if reg == nil {
+ v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func)
+ }
+ return reg.(*Register).objNum
+}
+
+// Reg1 returns the register assigned to the second output of v, in cmd/internal/obj/$ARCH numbering.
+func (v *Value) Reg1() int16 {
+ reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[1]
+ if reg == nil {
+ v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func)
+ }
+ return reg.(*Register).objNum
+}
+
+// RegTmp returns the temporary register assigned to v, in cmd/internal/obj/$ARCH numbering.
+func (v *Value) RegTmp() int16 {
+ reg := v.Block.Func.tempRegs[v.ID]
+ if reg == nil {
+ v.Fatalf("nil tmp register for value: %s\n%s\n", v.LongString(), v.Block.Func)
+ }
+ return reg.objNum
+}
+
+func (v *Value) RegName() string {
+ reg := v.Block.Func.RegAlloc[v.ID]
+ if reg == nil {
+ v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func)
+ }
+ return reg.(*Register).name
+}
+
+// MemoryArg returns the memory argument for the Value.
+// The returned value, if non-nil, will be memory-typed (or a tuple with a memory-typed second part).
+// Otherwise, nil is returned.
+func (v *Value) MemoryArg() *Value {
+ if v.Op == OpPhi {
+ v.Fatalf("MemoryArg on Phi")
+ }
+ na := len(v.Args)
+ if na == 0 {
+ return nil
+ }
+ if m := v.Args[na-1]; m.Type.IsMemory() {
+ return m
+ }
+ return nil
+}
+
+// LackingPos indicates whether v is a value that is unlikely to have a correct
+// position assigned to it. Ignoring such values leads to more user-friendly positions
+// assigned to nearby values and the blocks containing them.
+func (v *Value) LackingPos() bool {
+ // The exact definition of LackingPos is somewhat heuristically defined and may change
+ // in the future, for example if some of these operations are generated more carefully
+ // with respect to their source position.
+ return v.Op == OpVarDef || v.Op == OpVarLive || v.Op == OpPhi ||
+ (v.Op == OpFwdRef || v.Op == OpCopy) && v.Type == types.TypeMem
+}
+
+// removeable reports whether the value v can be removed from the SSA graph entirely
+// if its use count drops to 0.
+func (v *Value) removeable() bool {
+ if v.Type.IsVoid() {
+ // Void ops, like nil pointer checks, must stay.
+ return false
+ }
+ if v.Type.IsMemory() {
+ // We don't need to preserve all memory ops, but we do need
+ // to keep calls at least (because they might have
+ // synchronization operations we can't see).
+ return false
+ }
+ if v.Op.HasSideEffects() {
+ // These are mostly synchronization operations.
+ return false
+ }
+ return true
+}
+
+// TODO(mdempsky): Shouldn't be necessary; see discussion at golang.org/cl/275756
+func (*Value) CanBeAnSSAAux() {}
+
+// AutoVar returns a *Name and int64 representing the auto variable and offset within it
+// where v should be spilled.
+func AutoVar(v *Value) (*ir.Name, int64) {
+ if loc, ok := v.Block.Func.RegAlloc[v.ID].(LocalSlot); ok {
+ if v.Type.Size() > loc.Type.Size() {
+ v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
+ }
+ return loc.N, loc.Off
+ }
+ // Assume it is a register, return its spill slot, which needs to be live
+ nameOff := v.Aux.(*AuxNameOffset)
+ return nameOff.Name, nameOff.Offset
+}