diff options
Diffstat (limited to 'src/cmd/link/internal/ld/dwarf.go')
-rw-r--r-- | src/cmd/link/internal/ld/dwarf.go | 2328 |
1 files changed, 2328 insertions, 0 deletions
diff --git a/src/cmd/link/internal/ld/dwarf.go b/src/cmd/link/internal/ld/dwarf.go new file mode 100644 index 0000000..feea864 --- /dev/null +++ b/src/cmd/link/internal/ld/dwarf.go @@ -0,0 +1,2328 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// TODO/NICETOHAVE: +// - eliminate DW_CLS_ if not used +// - package info in compilation units +// - assign types to their packages +// - gdb uses c syntax, meaning clumsy quoting is needed for go identifiers. eg +// ptype struct '[]uint8' and qualifiers need to be quoted away +// - file:line info for variables +// - make strings a typedef so prettyprinters can see the underlying string type + +package ld + +import ( + "cmd/internal/dwarf" + "cmd/internal/obj" + "cmd/internal/objabi" + "cmd/internal/src" + "cmd/internal/sys" + "cmd/link/internal/loader" + "cmd/link/internal/sym" + "fmt" + "internal/buildcfg" + "log" + "path" + "runtime" + "sort" + "strings" + "sync" +) + +// dwctxt is a wrapper intended to satisfy the method set of +// dwarf.Context, so that functions like dwarf.PutAttrs will work with +// DIEs that use loader.Sym as opposed to *sym.Symbol. It is also +// being used as a place to store tables/maps that are useful as part +// of type conversion (this is just a convenience; it would be easy to +// split these things out into another type if need be). +type dwctxt struct { + linkctxt *Link + ldr *loader.Loader + arch *sys.Arch + + // This maps type name string (e.g. "uintptr") to loader symbol for + // the DWARF DIE for that type (e.g. "go:info.type.uintptr") + tmap map[string]loader.Sym + + // This maps loader symbol for the DWARF DIE symbol generated for + // a type (e.g. "go:info.uintptr") to the type symbol itself + // ("type:uintptr"). + // FIXME: try converting this map (and the next one) to a single + // array indexed by loader.Sym -- this may perform better. + rtmap map[loader.Sym]loader.Sym + + // This maps Go type symbol (e.g. "type:XXX") to loader symbol for + // the typedef DIE for that type (e.g. "go:info.XXX..def") + tdmap map[loader.Sym]loader.Sym + + // Cache these type symbols, so as to avoid repeatedly looking them up + typeRuntimeEface loader.Sym + typeRuntimeIface loader.Sym + uintptrInfoSym loader.Sym + + // Used at various points in that parallel portion of DWARF gen to + // protect against conflicting updates to globals (such as "gdbscript") + dwmu *sync.Mutex +} + +// dwSym wraps a loader.Sym; this type is meant to obey the interface +// rules for dwarf.Sym from the cmd/internal/dwarf package. DwDie and +// DwAttr objects contain references to symbols via this type. +type dwSym loader.Sym + +func (s dwSym) Length(dwarfContext interface{}) int64 { + l := dwarfContext.(dwctxt).ldr + return int64(len(l.Data(loader.Sym(s)))) +} + +func (c dwctxt) PtrSize() int { + return c.arch.PtrSize +} + +func (c dwctxt) AddInt(s dwarf.Sym, size int, i int64) { + ds := loader.Sym(s.(dwSym)) + dsu := c.ldr.MakeSymbolUpdater(ds) + dsu.AddUintXX(c.arch, uint64(i), size) +} + +func (c dwctxt) AddBytes(s dwarf.Sym, b []byte) { + ds := loader.Sym(s.(dwSym)) + dsu := c.ldr.MakeSymbolUpdater(ds) + dsu.AddBytes(b) +} + +func (c dwctxt) AddString(s dwarf.Sym, v string) { + ds := loader.Sym(s.(dwSym)) + dsu := c.ldr.MakeSymbolUpdater(ds) + dsu.Addstring(v) +} + +func (c dwctxt) AddAddress(s dwarf.Sym, data interface{}, value int64) { + ds := loader.Sym(s.(dwSym)) + dsu := c.ldr.MakeSymbolUpdater(ds) + if value != 0 { + value -= dsu.Value() + } + tgtds := loader.Sym(data.(dwSym)) + dsu.AddAddrPlus(c.arch, tgtds, value) +} + +func (c dwctxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) { + ds := loader.Sym(s.(dwSym)) + dsu := c.ldr.MakeSymbolUpdater(ds) + if value != 0 { + value -= dsu.Value() + } + tgtds := loader.Sym(data.(dwSym)) + dsu.AddCURelativeAddrPlus(c.arch, tgtds, value) +} + +func (c dwctxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) { + ds := loader.Sym(s.(dwSym)) + dsu := c.ldr.MakeSymbolUpdater(ds) + tds := loader.Sym(t.(dwSym)) + switch size { + default: + c.linkctxt.Errorf(ds, "invalid size %d in adddwarfref\n", size) + case c.arch.PtrSize, 4: + } + dsu.AddSymRef(c.arch, tds, ofs, objabi.R_ADDROFF, size) +} + +func (c dwctxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) { + size := 4 + if isDwarf64(c.linkctxt) { + size = 8 + } + ds := loader.Sym(s.(dwSym)) + dsu := c.ldr.MakeSymbolUpdater(ds) + tds := loader.Sym(t.(dwSym)) + switch size { + default: + c.linkctxt.Errorf(ds, "invalid size %d in adddwarfref\n", size) + case c.arch.PtrSize, 4: + } + dsu.AddSymRef(c.arch, tds, ofs, objabi.R_DWARFSECREF, size) +} + +func (c dwctxt) Logf(format string, args ...interface{}) { + c.linkctxt.Logf(format, args...) +} + +// At the moment these interfaces are only used in the compiler. + +func (c dwctxt) AddFileRef(s dwarf.Sym, f interface{}) { + panic("should be used only in the compiler") +} + +func (c dwctxt) CurrentOffset(s dwarf.Sym) int64 { + panic("should be used only in the compiler") +} + +func (c dwctxt) RecordDclReference(s dwarf.Sym, t dwarf.Sym, dclIdx int, inlIndex int) { + panic("should be used only in the compiler") +} + +func (c dwctxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) { + panic("should be used only in the compiler") +} + +func isDwarf64(ctxt *Link) bool { + return ctxt.HeadType == objabi.Haix +} + +// https://sourceware.org/gdb/onlinedocs/gdb/dotdebug_005fgdb_005fscripts-section.html +// Each entry inside .debug_gdb_scripts section begins with a non-null prefix +// byte that specifies the kind of entry. The following entries are supported: +const ( + GdbScriptPythonFileId = 1 + GdbScriptSchemeFileId = 3 + GdbScriptPythonTextId = 4 + GdbScriptSchemeTextId = 6 +) + +var gdbscript string + +// dwarfSecInfo holds information about a DWARF output section, +// specifically a section symbol and a list of symbols contained in +// that section. On the syms list, the first symbol will always be the +// section symbol, then any remaining symbols (if any) will be +// sub-symbols in that section. Note that for some sections (eg: +// .debug_abbrev), the section symbol is all there is (all content is +// contained in it). For other sections (eg: .debug_info), the section +// symbol is empty and all the content is in the sub-symbols. Finally +// there are some sections (eg: .debug_ranges) where it is a mix (both +// the section symbol and the sub-symbols have content) +type dwarfSecInfo struct { + syms []loader.Sym +} + +// secSym returns the section symbol for the section. +func (dsi *dwarfSecInfo) secSym() loader.Sym { + if len(dsi.syms) == 0 { + return 0 + } + return dsi.syms[0] +} + +// subSyms returns a list of sub-symbols for the section. +func (dsi *dwarfSecInfo) subSyms() []loader.Sym { + if len(dsi.syms) == 0 { + return []loader.Sym{} + } + return dsi.syms[1:] +} + +// dwarfp stores the collected DWARF symbols created during +// dwarf generation. +var dwarfp []dwarfSecInfo + +func (d *dwctxt) writeabbrev() dwarfSecInfo { + abrvs := d.ldr.CreateSymForUpdate(".debug_abbrev", 0) + abrvs.SetType(sym.SDWARFSECT) + abrvs.AddBytes(dwarf.GetAbbrev()) + return dwarfSecInfo{syms: []loader.Sym{abrvs.Sym()}} +} + +var dwtypes dwarf.DWDie + +// newattr attaches a new attribute to the specified DIE. +// +// FIXME: at the moment attributes are stored in a linked list in a +// fairly space-inefficient way -- it might be better to instead look +// up all attrs in a single large table, then store indices into the +// table in the DIE. This would allow us to common up storage for +// attributes that are shared by many DIEs (ex: byte size of N). +func newattr(die *dwarf.DWDie, attr uint16, cls int, value int64, data interface{}) { + a := new(dwarf.DWAttr) + a.Link = die.Attr + die.Attr = a + a.Atr = attr + a.Cls = uint8(cls) + a.Value = value + a.Data = data +} + +// Each DIE (except the root ones) has at least 1 attribute: its +// name. getattr moves the desired one to the front so +// frequently searched ones are found faster. +func getattr(die *dwarf.DWDie, attr uint16) *dwarf.DWAttr { + if die.Attr.Atr == attr { + return die.Attr + } + + a := die.Attr + b := a.Link + for b != nil { + if b.Atr == attr { + a.Link = b.Link + b.Link = die.Attr + die.Attr = b + return b + } + + a = b + b = b.Link + } + + return nil +} + +// Every DIE manufactured by the linker has at least an AT_name +// attribute (but it will only be written out if it is listed in the abbrev). +// The compiler does create nameless DWARF DIEs (ex: concrete subprogram +// instance). +// FIXME: it would be more efficient to bulk-allocate DIEs. +func (d *dwctxt) newdie(parent *dwarf.DWDie, abbrev int, name string) *dwarf.DWDie { + die := new(dwarf.DWDie) + die.Abbrev = abbrev + die.Link = parent.Child + parent.Child = die + + newattr(die, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len(name)), name) + + // Sanity check: all DIEs created in the linker should be named. + if name == "" { + panic("nameless DWARF DIE") + } + + var st sym.SymKind + switch abbrev { + case dwarf.DW_ABRV_FUNCTYPEPARAM, dwarf.DW_ABRV_DOTDOTDOT, dwarf.DW_ABRV_STRUCTFIELD, dwarf.DW_ABRV_ARRAYRANGE: + // There are no relocations against these dies, and their names + // are not unique, so don't create a symbol. + return die + case dwarf.DW_ABRV_COMPUNIT, dwarf.DW_ABRV_COMPUNIT_TEXTLESS: + // Avoid collisions with "real" symbol names. + name = fmt.Sprintf(".pkg.%s.%d", name, len(d.linkctxt.compUnits)) + st = sym.SDWARFCUINFO + case dwarf.DW_ABRV_VARIABLE: + st = sym.SDWARFVAR + default: + // Everything else is assigned a type of SDWARFTYPE. that + // this also includes loose ends such as STRUCT_FIELD. + st = sym.SDWARFTYPE + } + ds := d.ldr.LookupOrCreateSym(dwarf.InfoPrefix+name, 0) + dsu := d.ldr.MakeSymbolUpdater(ds) + dsu.SetType(st) + d.ldr.SetAttrNotInSymbolTable(ds, true) + d.ldr.SetAttrReachable(ds, true) + die.Sym = dwSym(ds) + if abbrev >= dwarf.DW_ABRV_NULLTYPE && abbrev <= dwarf.DW_ABRV_TYPEDECL { + d.tmap[name] = ds + } + + return die +} + +func walktypedef(die *dwarf.DWDie) *dwarf.DWDie { + if die == nil { + return nil + } + // Resolve typedef if present. + if die.Abbrev == dwarf.DW_ABRV_TYPEDECL { + for attr := die.Attr; attr != nil; attr = attr.Link { + if attr.Atr == dwarf.DW_AT_type && attr.Cls == dwarf.DW_CLS_REFERENCE && attr.Data != nil { + return attr.Data.(*dwarf.DWDie) + } + } + } + + return die +} + +func (d *dwctxt) walksymtypedef(symIdx loader.Sym) loader.Sym { + + // We're being given the loader symbol for the type DIE, e.g. + // "go:info.type.uintptr". Map that first to the type symbol (e.g. + // "type:uintptr") and then to the typedef DIE for the type. + // FIXME: this seems clunky, maybe there is a better way to do this. + + if ts, ok := d.rtmap[symIdx]; ok { + if def, ok := d.tdmap[ts]; ok { + return def + } + d.linkctxt.Errorf(ts, "internal error: no entry for sym %d in tdmap\n", ts) + return 0 + } + d.linkctxt.Errorf(symIdx, "internal error: no entry for sym %d in rtmap\n", symIdx) + return 0 +} + +// Find child by AT_name using hashtable if available or linear scan +// if not. +func findchild(die *dwarf.DWDie, name string) *dwarf.DWDie { + var prev *dwarf.DWDie + for ; die != prev; prev, die = die, walktypedef(die) { + for a := die.Child; a != nil; a = a.Link { + if name == getattr(a, dwarf.DW_AT_name).Data { + return a + } + } + continue + } + return nil +} + +// find looks up the loader symbol for the DWARF DIE generated for the +// type with the specified name. +func (d *dwctxt) find(name string) loader.Sym { + return d.tmap[name] +} + +func (d *dwctxt) mustFind(name string) loader.Sym { + r := d.find(name) + if r == 0 { + Exitf("dwarf find: cannot find %s", name) + } + return r +} + +func (d *dwctxt) adddwarfref(sb *loader.SymbolBuilder, t loader.Sym, size int) { + switch size { + default: + d.linkctxt.Errorf(sb.Sym(), "invalid size %d in adddwarfref\n", size) + case d.arch.PtrSize, 4: + } + sb.AddSymRef(d.arch, t, 0, objabi.R_DWARFSECREF, size) +} + +func (d *dwctxt) newrefattr(die *dwarf.DWDie, attr uint16, ref loader.Sym) { + if ref == 0 { + return + } + newattr(die, attr, dwarf.DW_CLS_REFERENCE, 0, dwSym(ref)) +} + +func (d *dwctxt) dtolsym(s dwarf.Sym) loader.Sym { + if s == nil { + return 0 + } + dws := loader.Sym(s.(dwSym)) + return dws +} + +func (d *dwctxt) putdie(syms []loader.Sym, die *dwarf.DWDie) []loader.Sym { + s := d.dtolsym(die.Sym) + if s == 0 { + s = syms[len(syms)-1] + } else { + syms = append(syms, s) + } + sDwsym := dwSym(s) + dwarf.Uleb128put(d, sDwsym, int64(die.Abbrev)) + dwarf.PutAttrs(d, sDwsym, die.Abbrev, die.Attr) + if dwarf.HasChildren(die) { + for die := die.Child; die != nil; die = die.Link { + syms = d.putdie(syms, die) + } + dsu := d.ldr.MakeSymbolUpdater(syms[len(syms)-1]) + dsu.AddUint8(0) + } + return syms +} + +func reverselist(list **dwarf.DWDie) { + curr := *list + var prev *dwarf.DWDie + for curr != nil { + next := curr.Link + curr.Link = prev + prev = curr + curr = next + } + + *list = prev +} + +func reversetree(list **dwarf.DWDie) { + reverselist(list) + for die := *list; die != nil; die = die.Link { + if dwarf.HasChildren(die) { + reversetree(&die.Child) + } + } +} + +func newmemberoffsetattr(die *dwarf.DWDie, offs int32) { + newattr(die, dwarf.DW_AT_data_member_location, dwarf.DW_CLS_CONSTANT, int64(offs), nil) +} + +func (d *dwctxt) lookupOrDiag(n string) loader.Sym { + symIdx := d.ldr.Lookup(n, 0) + if symIdx == 0 { + Exitf("dwarf: missing type: %s", n) + } + if len(d.ldr.Data(symIdx)) == 0 { + Exitf("dwarf: missing type (no data): %s", n) + } + + return symIdx +} + +func (d *dwctxt) dotypedef(parent *dwarf.DWDie, name string, def *dwarf.DWDie) *dwarf.DWDie { + // Only emit typedefs for real names. + if strings.HasPrefix(name, "map[") { + return nil + } + if strings.HasPrefix(name, "struct {") { + return nil + } + // cmd/compile uses "noalg.struct {...}" as type name when hash and eq algorithm generation of + // this struct type is suppressed. + if strings.HasPrefix(name, "noalg.struct {") { + return nil + } + if strings.HasPrefix(name, "chan ") { + return nil + } + if name[0] == '[' || name[0] == '*' { + return nil + } + if def == nil { + Errorf(nil, "dwarf: bad def in dotypedef") + } + + // Create a new loader symbol for the typedef. We no longer + // do lookups of typedef symbols by name, so this is going + // to be an anonymous symbol (we want this for perf reasons). + tds := d.ldr.CreateExtSym("", 0) + tdsu := d.ldr.MakeSymbolUpdater(tds) + tdsu.SetType(sym.SDWARFTYPE) + def.Sym = dwSym(tds) + d.ldr.SetAttrNotInSymbolTable(tds, true) + d.ldr.SetAttrReachable(tds, true) + + // The typedef entry must be created after the def, + // so that future lookups will find the typedef instead + // of the real definition. This hooks the typedef into any + // circular definition loops, so that gdb can understand them. + die := d.newdie(parent, dwarf.DW_ABRV_TYPEDECL, name) + + d.newrefattr(die, dwarf.DW_AT_type, tds) + + return die +} + +// Define gotype, for composite ones recurse into constituents. +func (d *dwctxt) defgotype(gotype loader.Sym) loader.Sym { + if gotype == 0 { + return d.mustFind("<unspecified>") + } + + // If we already have a tdmap entry for the gotype, return it. + if ds, ok := d.tdmap[gotype]; ok { + return ds + } + + sn := d.ldr.SymName(gotype) + if !strings.HasPrefix(sn, "type:") { + d.linkctxt.Errorf(gotype, "dwarf: type name doesn't start with \"type:\"") + return d.mustFind("<unspecified>") + } + name := sn[5:] // could also decode from Type.string + + sdie := d.find(name) + if sdie != 0 { + return sdie + } + + gtdwSym := d.newtype(gotype) + d.tdmap[gotype] = loader.Sym(gtdwSym.Sym.(dwSym)) + return loader.Sym(gtdwSym.Sym.(dwSym)) +} + +func (d *dwctxt) newtype(gotype loader.Sym) *dwarf.DWDie { + sn := d.ldr.SymName(gotype) + name := sn[5:] // could also decode from Type.string + tdata := d.ldr.Data(gotype) + if len(tdata) == 0 { + d.linkctxt.Errorf(gotype, "missing type") + } + kind := decodetypeKind(d.arch, tdata) + bytesize := decodetypeSize(d.arch, tdata) + + var die, typedefdie *dwarf.DWDie + switch kind { + case objabi.KindBool: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) + newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_boolean, 0) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + + case objabi.KindInt, + objabi.KindInt8, + objabi.KindInt16, + objabi.KindInt32, + objabi.KindInt64: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) + newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_signed, 0) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + + case objabi.KindUint, + objabi.KindUint8, + objabi.KindUint16, + objabi.KindUint32, + objabi.KindUint64, + objabi.KindUintptr: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) + newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + + case objabi.KindFloat32, + objabi.KindFloat64: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) + newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_float, 0) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + + case objabi.KindComplex64, + objabi.KindComplex128: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name) + newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_complex_float, 0) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + + case objabi.KindArray: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_ARRAYTYPE, name) + typedefdie = d.dotypedef(&dwtypes, name, die) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + s := decodetypeArrayElem(d.ldr, d.arch, gotype) + d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s)) + fld := d.newdie(die, dwarf.DW_ABRV_ARRAYRANGE, "range") + + // use actual length not upper bound; correct for 0-length arrays. + newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, decodetypeArrayLen(d.ldr, d.arch, gotype), 0) + + d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym) + + case objabi.KindChan: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_CHANTYPE, name) + s := decodetypeChanElem(d.ldr, d.arch, gotype) + d.newrefattr(die, dwarf.DW_AT_go_elem, d.defgotype(s)) + // Save elem type for synthesizechantypes. We could synthesize here + // but that would change the order of DIEs we output. + d.newrefattr(die, dwarf.DW_AT_type, s) + + case objabi.KindFunc: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_FUNCTYPE, name) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + typedefdie = d.dotypedef(&dwtypes, name, die) + data := d.ldr.Data(gotype) + // FIXME: add caching or reuse reloc slice. + relocs := d.ldr.Relocs(gotype) + nfields := decodetypeFuncInCount(d.arch, data) + for i := 0; i < nfields; i++ { + s := decodetypeFuncInType(d.ldr, d.arch, gotype, &relocs, i) + sn := d.ldr.SymName(s) + fld := d.newdie(die, dwarf.DW_ABRV_FUNCTYPEPARAM, sn[5:]) + d.newrefattr(fld, dwarf.DW_AT_type, d.defgotype(s)) + } + + if decodetypeFuncDotdotdot(d.arch, data) { + d.newdie(die, dwarf.DW_ABRV_DOTDOTDOT, "...") + } + nfields = decodetypeFuncOutCount(d.arch, data) + for i := 0; i < nfields; i++ { + s := decodetypeFuncOutType(d.ldr, d.arch, gotype, &relocs, i) + sn := d.ldr.SymName(s) + fld := d.newdie(die, dwarf.DW_ABRV_FUNCTYPEPARAM, sn[5:]) + d.newrefattr(fld, dwarf.DW_AT_type, d.defptrto(d.defgotype(s))) + } + + case objabi.KindInterface: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_IFACETYPE, name) + typedefdie = d.dotypedef(&dwtypes, name, die) + data := d.ldr.Data(gotype) + nfields := int(decodetypeIfaceMethodCount(d.arch, data)) + var s loader.Sym + if nfields == 0 { + s = d.typeRuntimeEface + } else { + s = d.typeRuntimeIface + } + d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s)) + + case objabi.KindMap: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_MAPTYPE, name) + s := decodetypeMapKey(d.ldr, d.arch, gotype) + d.newrefattr(die, dwarf.DW_AT_go_key, d.defgotype(s)) + s = decodetypeMapValue(d.ldr, d.arch, gotype) + d.newrefattr(die, dwarf.DW_AT_go_elem, d.defgotype(s)) + // Save gotype for use in synthesizemaptypes. We could synthesize here, + // but that would change the order of the DIEs. + d.newrefattr(die, dwarf.DW_AT_type, gotype) + + case objabi.KindPtr: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_PTRTYPE, name) + typedefdie = d.dotypedef(&dwtypes, name, die) + s := decodetypePtrElem(d.ldr, d.arch, gotype) + d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s)) + + case objabi.KindSlice: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_SLICETYPE, name) + typedefdie = d.dotypedef(&dwtypes, name, die) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + s := decodetypeArrayElem(d.ldr, d.arch, gotype) + elem := d.defgotype(s) + d.newrefattr(die, dwarf.DW_AT_go_elem, elem) + + case objabi.KindString: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_STRINGTYPE, name) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + + case objabi.KindStruct: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_STRUCTTYPE, name) + typedefdie = d.dotypedef(&dwtypes, name, die) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0) + nfields := decodetypeStructFieldCount(d.ldr, d.arch, gotype) + for i := 0; i < nfields; i++ { + f := decodetypeStructFieldName(d.ldr, d.arch, gotype, i) + s := decodetypeStructFieldType(d.ldr, d.arch, gotype, i) + if f == "" { + sn := d.ldr.SymName(s) + f = sn[5:] // skip "type:" + } + fld := d.newdie(die, dwarf.DW_ABRV_STRUCTFIELD, f) + d.newrefattr(fld, dwarf.DW_AT_type, d.defgotype(s)) + offset := decodetypeStructFieldOffset(d.ldr, d.arch, gotype, i) + newmemberoffsetattr(fld, int32(offset)) + if decodetypeStructFieldEmbedded(d.ldr, d.arch, gotype, i) { + newattr(fld, dwarf.DW_AT_go_embedded_field, dwarf.DW_CLS_FLAG, 1, 0) + } + } + + case objabi.KindUnsafePointer: + die = d.newdie(&dwtypes, dwarf.DW_ABRV_BARE_PTRTYPE, name) + + default: + d.linkctxt.Errorf(gotype, "dwarf: definition of unknown kind %d", kind) + die = d.newdie(&dwtypes, dwarf.DW_ABRV_TYPEDECL, name) + d.newrefattr(die, dwarf.DW_AT_type, d.mustFind("<unspecified>")) + } + + newattr(die, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, int64(kind), 0) + + if d.ldr.AttrReachable(gotype) { + newattr(die, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(gotype)) + } + + // Sanity check. + if _, ok := d.rtmap[gotype]; ok { + log.Fatalf("internal error: rtmap entry already installed\n") + } + + ds := loader.Sym(die.Sym.(dwSym)) + if typedefdie != nil { + ds = loader.Sym(typedefdie.Sym.(dwSym)) + } + d.rtmap[ds] = gotype + + if _, ok := prototypedies[sn]; ok { + prototypedies[sn] = die + } + + if typedefdie != nil { + return typedefdie + } + return die +} + +func (d *dwctxt) nameFromDIESym(dwtypeDIESym loader.Sym) string { + sn := d.ldr.SymName(dwtypeDIESym) + return sn[len(dwarf.InfoPrefix):] +} + +func (d *dwctxt) defptrto(dwtype loader.Sym) loader.Sym { + + // FIXME: it would be nice if the compiler attached an aux symbol + // ref from the element type to the pointer type -- it would be + // more efficient to do it this way as opposed to via name lookups. + + ptrname := "*" + d.nameFromDIESym(dwtype) + if die := d.find(ptrname); die != 0 { + return die + } + + pdie := d.newdie(&dwtypes, dwarf.DW_ABRV_PTRTYPE, ptrname) + d.newrefattr(pdie, dwarf.DW_AT_type, dwtype) + + // The DWARF info synthesizes pointer types that don't exist at the + // language level, like *hash<...> and *bucket<...>, and the data + // pointers of slices. Link to the ones we can find. + gts := d.ldr.Lookup("type:"+ptrname, 0) + if gts != 0 && d.ldr.AttrReachable(gts) { + newattr(pdie, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(gts)) + } + + if gts != 0 { + ds := loader.Sym(pdie.Sym.(dwSym)) + d.rtmap[ds] = gts + d.tdmap[gts] = ds + } + + return d.dtolsym(pdie.Sym) +} + +// Copies src's children into dst. Copies attributes by value. +// DWAttr.data is copied as pointer only. If except is one of +// the top-level children, it will not be copied. +func (d *dwctxt) copychildrenexcept(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie, except *dwarf.DWDie) { + for src = src.Child; src != nil; src = src.Link { + if src == except { + continue + } + c := d.newdie(dst, src.Abbrev, getattr(src, dwarf.DW_AT_name).Data.(string)) + for a := src.Attr; a != nil; a = a.Link { + newattr(c, a.Atr, int(a.Cls), a.Value, a.Data) + } + d.copychildrenexcept(ctxt, c, src, nil) + } + + reverselist(&dst.Child) +} + +func (d *dwctxt) copychildren(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie) { + d.copychildrenexcept(ctxt, dst, src, nil) +} + +// Search children (assumed to have TAG_member) for the one named +// field and set its AT_type to dwtype +func (d *dwctxt) substitutetype(structdie *dwarf.DWDie, field string, dwtype loader.Sym) { + child := findchild(structdie, field) + if child == nil { + Exitf("dwarf substitutetype: %s does not have member %s", + getattr(structdie, dwarf.DW_AT_name).Data, field) + return + } + + a := getattr(child, dwarf.DW_AT_type) + if a != nil { + a.Data = dwSym(dwtype) + } else { + d.newrefattr(child, dwarf.DW_AT_type, dwtype) + } +} + +func (d *dwctxt) findprotodie(ctxt *Link, name string) *dwarf.DWDie { + die, ok := prototypedies[name] + if ok && die == nil { + d.defgotype(d.lookupOrDiag(name)) + die = prototypedies[name] + } + if die == nil { + log.Fatalf("internal error: DIE generation failed for %s\n", name) + } + return die +} + +func (d *dwctxt) synthesizestringtypes(ctxt *Link, die *dwarf.DWDie) { + prototype := walktypedef(d.findprotodie(ctxt, "type:runtime.stringStructDWARF")) + if prototype == nil { + return + } + + for ; die != nil; die = die.Link { + if die.Abbrev != dwarf.DW_ABRV_STRINGTYPE { + continue + } + d.copychildren(ctxt, die, prototype) + } +} + +func (d *dwctxt) synthesizeslicetypes(ctxt *Link, die *dwarf.DWDie) { + prototype := walktypedef(d.findprotodie(ctxt, "type:runtime.slice")) + if prototype == nil { + return + } + + for ; die != nil; die = die.Link { + if die.Abbrev != dwarf.DW_ABRV_SLICETYPE { + continue + } + d.copychildren(ctxt, die, prototype) + elem := loader.Sym(getattr(die, dwarf.DW_AT_go_elem).Data.(dwSym)) + d.substitutetype(die, "array", d.defptrto(elem)) + } +} + +func mkinternaltypename(base string, arg1 string, arg2 string) string { + if arg2 == "" { + return fmt.Sprintf("%s<%s>", base, arg1) + } + return fmt.Sprintf("%s<%s,%s>", base, arg1, arg2) +} + +// synthesizemaptypes is way too closely married to runtime/hashmap.c +const ( + MaxKeySize = 128 + MaxValSize = 128 + BucketSize = 8 +) + +func (d *dwctxt) mkinternaltype(ctxt *Link, abbrev int, typename, keyname, valname string, f func(*dwarf.DWDie)) loader.Sym { + name := mkinternaltypename(typename, keyname, valname) + symname := dwarf.InfoPrefix + name + s := d.ldr.Lookup(symname, 0) + if s != 0 && d.ldr.SymType(s) == sym.SDWARFTYPE { + return s + } + die := d.newdie(&dwtypes, abbrev, name) + f(die) + return d.dtolsym(die.Sym) +} + +func (d *dwctxt) synthesizemaptypes(ctxt *Link, die *dwarf.DWDie) { + hash := walktypedef(d.findprotodie(ctxt, "type:runtime.hmap")) + bucket := walktypedef(d.findprotodie(ctxt, "type:runtime.bmap")) + + if hash == nil { + return + } + + for ; die != nil; die = die.Link { + if die.Abbrev != dwarf.DW_ABRV_MAPTYPE { + continue + } + gotype := loader.Sym(getattr(die, dwarf.DW_AT_type).Data.(dwSym)) + keytype := decodetypeMapKey(d.ldr, d.arch, gotype) + valtype := decodetypeMapValue(d.ldr, d.arch, gotype) + keydata := d.ldr.Data(keytype) + valdata := d.ldr.Data(valtype) + keysize, valsize := decodetypeSize(d.arch, keydata), decodetypeSize(d.arch, valdata) + keytype, valtype = d.walksymtypedef(d.defgotype(keytype)), d.walksymtypedef(d.defgotype(valtype)) + + // compute size info like hashmap.c does. + indirectKey, indirectVal := false, false + if keysize > MaxKeySize { + keysize = int64(d.arch.PtrSize) + indirectKey = true + } + if valsize > MaxValSize { + valsize = int64(d.arch.PtrSize) + indirectVal = true + } + + // Construct type to represent an array of BucketSize keys + keyname := d.nameFromDIESym(keytype) + dwhks := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]key", keyname, "", func(dwhk *dwarf.DWDie) { + newattr(dwhk, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, BucketSize*keysize, 0) + t := keytype + if indirectKey { + t = d.defptrto(keytype) + } + d.newrefattr(dwhk, dwarf.DW_AT_type, t) + fld := d.newdie(dwhk, dwarf.DW_ABRV_ARRAYRANGE, "size") + newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, BucketSize, 0) + d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym) + }) + + // Construct type to represent an array of BucketSize values + valname := d.nameFromDIESym(valtype) + dwhvs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]val", valname, "", func(dwhv *dwarf.DWDie) { + newattr(dwhv, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, BucketSize*valsize, 0) + t := valtype + if indirectVal { + t = d.defptrto(valtype) + } + d.newrefattr(dwhv, dwarf.DW_AT_type, t) + fld := d.newdie(dwhv, dwarf.DW_ABRV_ARRAYRANGE, "size") + newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, BucketSize, 0) + d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym) + }) + + // Construct bucket<K,V> + dwhbs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "bucket", keyname, valname, func(dwhb *dwarf.DWDie) { + // Copy over all fields except the field "data" from the generic + // bucket. "data" will be replaced with keys/values below. + d.copychildrenexcept(ctxt, dwhb, bucket, findchild(bucket, "data")) + + fld := d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "keys") + d.newrefattr(fld, dwarf.DW_AT_type, dwhks) + newmemberoffsetattr(fld, BucketSize) + fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "values") + d.newrefattr(fld, dwarf.DW_AT_type, dwhvs) + newmemberoffsetattr(fld, BucketSize+BucketSize*int32(keysize)) + fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "overflow") + d.newrefattr(fld, dwarf.DW_AT_type, d.defptrto(d.dtolsym(dwhb.Sym))) + newmemberoffsetattr(fld, BucketSize+BucketSize*(int32(keysize)+int32(valsize))) + if d.arch.RegSize > d.arch.PtrSize { + fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "pad") + d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym) + newmemberoffsetattr(fld, BucketSize+BucketSize*(int32(keysize)+int32(valsize))+int32(d.arch.PtrSize)) + } + + newattr(dwhb, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, BucketSize+BucketSize*keysize+BucketSize*valsize+int64(d.arch.RegSize), 0) + }) + + // Construct hash<K,V> + dwhs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hash", keyname, valname, func(dwh *dwarf.DWDie) { + d.copychildren(ctxt, dwh, hash) + d.substitutetype(dwh, "buckets", d.defptrto(dwhbs)) + d.substitutetype(dwh, "oldbuckets", d.defptrto(dwhbs)) + newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hash, dwarf.DW_AT_byte_size).Value, nil) + }) + + // make map type a pointer to hash<K,V> + d.newrefattr(die, dwarf.DW_AT_type, d.defptrto(dwhs)) + } +} + +func (d *dwctxt) synthesizechantypes(ctxt *Link, die *dwarf.DWDie) { + sudog := walktypedef(d.findprotodie(ctxt, "type:runtime.sudog")) + waitq := walktypedef(d.findprotodie(ctxt, "type:runtime.waitq")) + hchan := walktypedef(d.findprotodie(ctxt, "type:runtime.hchan")) + if sudog == nil || waitq == nil || hchan == nil { + return + } + + sudogsize := int(getattr(sudog, dwarf.DW_AT_byte_size).Value) + + for ; die != nil; die = die.Link { + if die.Abbrev != dwarf.DW_ABRV_CHANTYPE { + continue + } + elemgotype := loader.Sym(getattr(die, dwarf.DW_AT_type).Data.(dwSym)) + tname := d.ldr.SymName(elemgotype) + elemname := tname[5:] + elemtype := d.walksymtypedef(d.defgotype(d.lookupOrDiag(tname))) + + // sudog<T> + dwss := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "sudog", elemname, "", func(dws *dwarf.DWDie) { + d.copychildren(ctxt, dws, sudog) + d.substitutetype(dws, "elem", d.defptrto(elemtype)) + newattr(dws, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(sudogsize), nil) + }) + + // waitq<T> + dwws := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "waitq", elemname, "", func(dww *dwarf.DWDie) { + + d.copychildren(ctxt, dww, waitq) + d.substitutetype(dww, "first", d.defptrto(dwss)) + d.substitutetype(dww, "last", d.defptrto(dwss)) + newattr(dww, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(waitq, dwarf.DW_AT_byte_size).Value, nil) + }) + + // hchan<T> + dwhs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hchan", elemname, "", func(dwh *dwarf.DWDie) { + d.copychildren(ctxt, dwh, hchan) + d.substitutetype(dwh, "recvq", dwws) + d.substitutetype(dwh, "sendq", dwws) + newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hchan, dwarf.DW_AT_byte_size).Value, nil) + }) + + d.newrefattr(die, dwarf.DW_AT_type, d.defptrto(dwhs)) + } +} + +// createUnitLength creates the initial length field with value v and update +// offset of unit_length if needed. +func (d *dwctxt) createUnitLength(su *loader.SymbolBuilder, v uint64) { + if isDwarf64(d.linkctxt) { + su.AddUint32(d.arch, 0xFFFFFFFF) + } + d.addDwarfAddrField(su, v) +} + +// addDwarfAddrField adds a DWARF field in DWARF 64bits or 32bits. +func (d *dwctxt) addDwarfAddrField(sb *loader.SymbolBuilder, v uint64) { + if isDwarf64(d.linkctxt) { + sb.AddUint(d.arch, v) + } else { + sb.AddUint32(d.arch, uint32(v)) + } +} + +// addDwarfAddrRef adds a DWARF pointer in DWARF 64bits or 32bits. +func (d *dwctxt) addDwarfAddrRef(sb *loader.SymbolBuilder, t loader.Sym) { + if isDwarf64(d.linkctxt) { + d.adddwarfref(sb, t, 8) + } else { + d.adddwarfref(sb, t, 4) + } +} + +// calcCompUnitRanges calculates the PC ranges of the compilation units. +func (d *dwctxt) calcCompUnitRanges() { + var prevUnit *sym.CompilationUnit + for _, s := range d.linkctxt.Textp { + sym := loader.Sym(s) + + fi := d.ldr.FuncInfo(sym) + if !fi.Valid() { + continue + } + + // Skip linker-created functions (ex: runtime.addmoduledata), since they + // don't have DWARF to begin with. + unit := d.ldr.SymUnit(sym) + if unit == nil { + continue + } + + // Update PC ranges. + // + // We don't simply compare the end of the previous + // symbol with the start of the next because there's + // often a little padding between them. Instead, we + // only create boundaries between symbols from + // different units. + sval := d.ldr.SymValue(sym) + u0val := d.ldr.SymValue(loader.Sym(unit.Textp[0])) + if prevUnit != unit { + unit.PCs = append(unit.PCs, dwarf.Range{Start: sval - u0val}) + prevUnit = unit + } + unit.PCs[len(unit.PCs)-1].End = sval - u0val + int64(len(d.ldr.Data(sym))) + } +} + +func movetomodule(ctxt *Link, parent *dwarf.DWDie) { + die := ctxt.runtimeCU.DWInfo.Child + if die == nil { + ctxt.runtimeCU.DWInfo.Child = parent.Child + return + } + for die.Link != nil { + die = die.Link + } + die.Link = parent.Child +} + +/* + * Generate a sequence of opcodes that is as short as possible. + * See section 6.2.5 + */ +const ( + LINE_BASE = -4 + LINE_RANGE = 10 + PC_RANGE = (255 - OPCODE_BASE) / LINE_RANGE + OPCODE_BASE = 11 +) + +/* + * Walk prog table, emit line program and build DIE tree. + */ + +func getCompilationDir() string { + // OSX requires this be set to something, but it's not easy to choose + // a value. Linking takes place in a temporary directory, so there's + // no point including it here. Paths in the file table are usually + // absolute, in which case debuggers will ignore this value. -trimpath + // produces relative paths, but we don't know where they start, so + // all we can do here is try not to make things worse. + return "." +} + +func (d *dwctxt) importInfoSymbol(dsym loader.Sym) { + d.ldr.SetAttrReachable(dsym, true) + d.ldr.SetAttrNotInSymbolTable(dsym, true) + dst := d.ldr.SymType(dsym) + if dst != sym.SDWARFCONST && dst != sym.SDWARFABSFCN { + log.Fatalf("error: DWARF info sym %d/%s with incorrect type %s", dsym, d.ldr.SymName(dsym), d.ldr.SymType(dsym).String()) + } + relocs := d.ldr.Relocs(dsym) + for i := 0; i < relocs.Count(); i++ { + r := relocs.At(i) + if r.Type() != objabi.R_DWARFSECREF { + continue + } + rsym := r.Sym() + // If there is an entry for the symbol in our rtmap, then it + // means we've processed the type already, and can skip this one. + if _, ok := d.rtmap[rsym]; ok { + // type already generated + continue + } + // FIXME: is there a way we could avoid materializing the + // symbol name here? + sn := d.ldr.SymName(rsym) + tn := sn[len(dwarf.InfoPrefix):] + ts := d.ldr.Lookup("type:"+tn, 0) + d.defgotype(ts) + } +} + +func expandFile(fname string) string { + if strings.HasPrefix(fname, src.FileSymPrefix) { + fname = fname[len(src.FileSymPrefix):] + } + return expandGoroot(fname) +} + +// writeDirFileTables emits the portion of the DWARF line table +// prologue containing the include directories and file names, +// described in section 6.2.4 of the DWARF 4 standard. It walks the +// filepaths for the unit to discover any common directories, which +// are emitted to the directory table first, then the file table is +// emitted after that. +func (d *dwctxt) writeDirFileTables(unit *sym.CompilationUnit, lsu *loader.SymbolBuilder) { + type fileDir struct { + base string + dir int + } + dirNums := make(map[string]int) + dirs := []string{""} + files := []fileDir{} + + // Preprocess files to collect directories. This assumes that the + // file table is already de-duped. + for i, name := range unit.FileTable { + name := expandFile(name) + if len(name) == 0 { + // Can't have empty filenames, and having a unique + // filename is quite useful for debugging. + name = fmt.Sprintf("<missing>_%d", i) + } + // Note the use of "path" here and not "filepath". The compiler + // hard-codes to use "/" in DWARF paths (even for Windows), so we + // want to maintain that here. + file := path.Base(name) + dir := path.Dir(name) + dirIdx, ok := dirNums[dir] + if !ok && dir != "." { + dirIdx = len(dirNums) + 1 + dirNums[dir] = dirIdx + dirs = append(dirs, dir) + } + files = append(files, fileDir{base: file, dir: dirIdx}) + + // We can't use something that may be dead-code + // eliminated from a binary here. proc.go contains + // main and the scheduler, so it's not going anywhere. + if i := strings.Index(name, "runtime/proc.go"); i >= 0 && unit.Lib.Pkg == "runtime" { + d.dwmu.Lock() + if gdbscript == "" { + k := strings.Index(name, "runtime/proc.go") + gdbscript = name[:k] + "runtime/runtime-gdb.py" + } + d.dwmu.Unlock() + } + } + + // Emit directory section. This is a series of nul terminated + // strings, followed by a single zero byte. + lsDwsym := dwSym(lsu.Sym()) + for k := 1; k < len(dirs); k++ { + d.AddString(lsDwsym, dirs[k]) + } + lsu.AddUint8(0) // terminator + + // Emit file section. + for k := 0; k < len(files); k++ { + d.AddString(lsDwsym, files[k].base) + dwarf.Uleb128put(d, lsDwsym, int64(files[k].dir)) + lsu.AddUint8(0) // mtime + lsu.AddUint8(0) // length + } + lsu.AddUint8(0) // terminator +} + +// writelines collects up and chains together the symbols needed to +// form the DWARF line table for the specified compilation unit, +// returning a list of symbols. The returned list will include an +// initial symbol containing the line table header and prologue (with +// file table), then a series of compiler-emitted line table symbols +// (one per live function), and finally an epilog symbol containing an +// end-of-sequence operator. The prologue and epilog symbols are passed +// in (having been created earlier); here we add content to them. +func (d *dwctxt) writelines(unit *sym.CompilationUnit, lineProlog loader.Sym) []loader.Sym { + is_stmt := uint8(1) // initially = recommended default_is_stmt = 1, tracks is_stmt toggles. + + unitstart := int64(-1) + headerstart := int64(-1) + headerend := int64(-1) + + syms := make([]loader.Sym, 0, len(unit.Textp)+2) + syms = append(syms, lineProlog) + lsu := d.ldr.MakeSymbolUpdater(lineProlog) + lsDwsym := dwSym(lineProlog) + newattr(unit.DWInfo, dwarf.DW_AT_stmt_list, dwarf.DW_CLS_PTR, 0, lsDwsym) + + // Write .debug_line Line Number Program Header (sec 6.2.4) + // Fields marked with (*) must be changed for 64-bit dwarf + unitLengthOffset := lsu.Size() + d.createUnitLength(lsu, 0) // unit_length (*), filled in at end + unitstart = lsu.Size() + lsu.AddUint16(d.arch, 2) // dwarf version (appendix F) -- version 3 is incompatible w/ XCode 9.0's dsymutil, latest supported on OSX 10.12 as of 2018-05 + headerLengthOffset := lsu.Size() + d.addDwarfAddrField(lsu, 0) // header_length (*), filled in at end + headerstart = lsu.Size() + + // cpos == unitstart + 4 + 2 + 4 + lsu.AddUint8(1) // minimum_instruction_length + lsu.AddUint8(is_stmt) // default_is_stmt + lsu.AddUint8(LINE_BASE & 0xFF) // line_base + lsu.AddUint8(LINE_RANGE) // line_range + lsu.AddUint8(OPCODE_BASE) // opcode_base + lsu.AddUint8(0) // standard_opcode_lengths[1] + lsu.AddUint8(1) // standard_opcode_lengths[2] + lsu.AddUint8(1) // standard_opcode_lengths[3] + lsu.AddUint8(1) // standard_opcode_lengths[4] + lsu.AddUint8(1) // standard_opcode_lengths[5] + lsu.AddUint8(0) // standard_opcode_lengths[6] + lsu.AddUint8(0) // standard_opcode_lengths[7] + lsu.AddUint8(0) // standard_opcode_lengths[8] + lsu.AddUint8(1) // standard_opcode_lengths[9] + lsu.AddUint8(0) // standard_opcode_lengths[10] + + // Call helper to emit dir and file sections. + d.writeDirFileTables(unit, lsu) + + // capture length at end of file names. + headerend = lsu.Size() + unitlen := lsu.Size() - unitstart + + // Output the state machine for each function remaining. + for _, s := range unit.Textp { + fnSym := loader.Sym(s) + _, _, _, lines := d.ldr.GetFuncDwarfAuxSyms(fnSym) + + // Chain the line symbol onto the list. + if lines != 0 { + syms = append(syms, lines) + unitlen += int64(len(d.ldr.Data(lines))) + } + } + + if d.linkctxt.HeadType == objabi.Haix { + addDwsectCUSize(".debug_line", unit.Lib.Pkg, uint64(unitlen)) + } + + if isDwarf64(d.linkctxt) { + lsu.SetUint(d.arch, unitLengthOffset+4, uint64(unitlen)) // +4 because of 0xFFFFFFFF + lsu.SetUint(d.arch, headerLengthOffset, uint64(headerend-headerstart)) + } else { + lsu.SetUint32(d.arch, unitLengthOffset, uint32(unitlen)) + lsu.SetUint32(d.arch, headerLengthOffset, uint32(headerend-headerstart)) + } + + return syms +} + +// writepcranges generates the DW_AT_ranges table for compilation unit +// "unit", and returns a collection of ranges symbols (one for the +// compilation unit DIE itself and the remainder from functions in the unit). +func (d *dwctxt) writepcranges(unit *sym.CompilationUnit, base loader.Sym, pcs []dwarf.Range, rangeProlog loader.Sym) []loader.Sym { + + syms := make([]loader.Sym, 0, len(unit.RangeSyms)+1) + syms = append(syms, rangeProlog) + rsu := d.ldr.MakeSymbolUpdater(rangeProlog) + rDwSym := dwSym(rangeProlog) + + // Create PC ranges for the compilation unit DIE. + newattr(unit.DWInfo, dwarf.DW_AT_ranges, dwarf.DW_CLS_PTR, rsu.Size(), rDwSym) + newattr(unit.DWInfo, dwarf.DW_AT_low_pc, dwarf.DW_CLS_ADDRESS, 0, dwSym(base)) + dwarf.PutBasedRanges(d, rDwSym, pcs) + + // Collect up the ranges for functions in the unit. + rsize := uint64(rsu.Size()) + for _, ls := range unit.RangeSyms { + s := loader.Sym(ls) + syms = append(syms, s) + rsize += uint64(d.ldr.SymSize(s)) + } + + if d.linkctxt.HeadType == objabi.Haix { + addDwsectCUSize(".debug_ranges", unit.Lib.Pkg, rsize) + } + + return syms +} + +/* + * Emit .debug_frame + */ +const ( + dataAlignmentFactor = -4 +) + +// appendPCDeltaCFA appends per-PC CFA deltas to b and returns the final slice. +func appendPCDeltaCFA(arch *sys.Arch, b []byte, deltapc, cfa int64) []byte { + b = append(b, dwarf.DW_CFA_def_cfa_offset_sf) + b = dwarf.AppendSleb128(b, cfa/dataAlignmentFactor) + + switch { + case deltapc < 0x40: + b = append(b, uint8(dwarf.DW_CFA_advance_loc+deltapc)) + case deltapc < 0x100: + b = append(b, dwarf.DW_CFA_advance_loc1) + b = append(b, uint8(deltapc)) + case deltapc < 0x10000: + b = append(b, dwarf.DW_CFA_advance_loc2, 0, 0) + arch.ByteOrder.PutUint16(b[len(b)-2:], uint16(deltapc)) + default: + b = append(b, dwarf.DW_CFA_advance_loc4, 0, 0, 0, 0) + arch.ByteOrder.PutUint32(b[len(b)-4:], uint32(deltapc)) + } + return b +} + +func (d *dwctxt) writeframes(fs loader.Sym) dwarfSecInfo { + fsd := dwSym(fs) + fsu := d.ldr.MakeSymbolUpdater(fs) + fsu.SetType(sym.SDWARFSECT) + isdw64 := isDwarf64(d.linkctxt) + haslr := d.linkctxt.Arch.HasLR + + // Length field is 4 bytes on Dwarf32 and 12 bytes on Dwarf64 + lengthFieldSize := int64(4) + if isdw64 { + lengthFieldSize += 8 + } + + // Emit the CIE, Section 6.4.1 + cieReserve := uint32(16) + if haslr { + cieReserve = 32 + } + if isdw64 { + cieReserve += 4 // 4 bytes added for cid + } + d.createUnitLength(fsu, uint64(cieReserve)) // initial length, must be multiple of thearch.ptrsize + d.addDwarfAddrField(fsu, ^uint64(0)) // cid + fsu.AddUint8(3) // dwarf version (appendix F) + fsu.AddUint8(0) // augmentation "" + dwarf.Uleb128put(d, fsd, 1) // code_alignment_factor + dwarf.Sleb128put(d, fsd, dataAlignmentFactor) // all CFI offset calculations include multiplication with this factor + dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) // return_address_register + + fsu.AddUint8(dwarf.DW_CFA_def_cfa) // Set the current frame address.. + dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfregsp)) // ...to use the value in the platform's SP register (defined in l.go)... + if haslr { + dwarf.Uleb128put(d, fsd, int64(0)) // ...plus a 0 offset. + + fsu.AddUint8(dwarf.DW_CFA_same_value) // The platform's link register is unchanged during the prologue. + dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) + + fsu.AddUint8(dwarf.DW_CFA_val_offset) // The previous value... + dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfregsp)) // ...of the platform's SP register... + dwarf.Uleb128put(d, fsd, int64(0)) // ...is CFA+0. + } else { + dwarf.Uleb128put(d, fsd, int64(d.arch.PtrSize)) // ...plus the word size (because the call instruction implicitly adds one word to the frame). + + fsu.AddUint8(dwarf.DW_CFA_offset_extended) // The previous value... + dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) // ...of the return address... + dwarf.Uleb128put(d, fsd, int64(-d.arch.PtrSize)/dataAlignmentFactor) // ...is saved at [CFA - (PtrSize/4)]. + } + + pad := int64(cieReserve) + lengthFieldSize - int64(len(d.ldr.Data(fs))) + + if pad < 0 { + Exitf("dwarf: cieReserve too small by %d bytes.", -pad) + } + + internalExec := d.linkctxt.BuildMode == BuildModeExe && d.linkctxt.IsInternal() + addAddrPlus := loader.GenAddAddrPlusFunc(internalExec) + + fsu.AddBytes(zeros[:pad]) + + var deltaBuf []byte + pcsp := obj.NewPCIter(uint32(d.arch.MinLC)) + for _, s := range d.linkctxt.Textp { + fn := loader.Sym(s) + fi := d.ldr.FuncInfo(fn) + if !fi.Valid() { + continue + } + fpcsp := d.ldr.Pcsp(s) + + // Emit a FDE, Section 6.4.1. + // First build the section contents into a byte buffer. + deltaBuf = deltaBuf[:0] + if haslr && fi.TopFrame() { + // Mark the link register as having an undefined value. + // This stops call stack unwinders progressing any further. + // TODO: similar mark on non-LR architectures. + deltaBuf = append(deltaBuf, dwarf.DW_CFA_undefined) + deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr)) + } + + for pcsp.Init(d.linkctxt.loader.Data(fpcsp)); !pcsp.Done; pcsp.Next() { + nextpc := pcsp.NextPC + + // pciterinit goes up to the end of the function, + // but DWARF expects us to stop just before the end. + if int64(nextpc) == int64(len(d.ldr.Data(fn))) { + nextpc-- + if nextpc < pcsp.PC { + continue + } + } + + spdelta := int64(pcsp.Value) + if !haslr { + // Return address has been pushed onto stack. + spdelta += int64(d.arch.PtrSize) + } + + if haslr && !fi.TopFrame() { + // TODO(bryanpkc): This is imprecise. In general, the instruction + // that stores the return address to the stack frame is not the + // same one that allocates the frame. + if pcsp.Value > 0 { + // The return address is preserved at (CFA-frame_size) + // after a stack frame has been allocated. + deltaBuf = append(deltaBuf, dwarf.DW_CFA_offset_extended_sf) + deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr)) + deltaBuf = dwarf.AppendSleb128(deltaBuf, -spdelta/dataAlignmentFactor) + } else { + // The return address is restored into the link register + // when a stack frame has been de-allocated. + deltaBuf = append(deltaBuf, dwarf.DW_CFA_same_value) + deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr)) + } + } + + deltaBuf = appendPCDeltaCFA(d.arch, deltaBuf, int64(nextpc)-int64(pcsp.PC), spdelta) + } + pad := int(Rnd(int64(len(deltaBuf)), int64(d.arch.PtrSize))) - len(deltaBuf) + deltaBuf = append(deltaBuf, zeros[:pad]...) + + // Emit the FDE header, Section 6.4.1. + // 4 bytes: length, must be multiple of thearch.ptrsize + // 4/8 bytes: Pointer to the CIE above, at offset 0 + // ptrsize: initial location + // ptrsize: address range + + fdeLength := uint64(4 + 2*d.arch.PtrSize + len(deltaBuf)) + if isdw64 { + fdeLength += 4 // 4 bytes added for CIE pointer + } + d.createUnitLength(fsu, fdeLength) + + if d.linkctxt.LinkMode == LinkExternal { + d.addDwarfAddrRef(fsu, fs) + } else { + d.addDwarfAddrField(fsu, 0) // CIE offset + } + addAddrPlus(fsu, d.arch, s, 0) + fsu.AddUintXX(d.arch, uint64(len(d.ldr.Data(fn))), d.arch.PtrSize) // address range + fsu.AddBytes(deltaBuf) + + if d.linkctxt.HeadType == objabi.Haix { + addDwsectCUSize(".debug_frame", d.ldr.SymPkg(fn), fdeLength+uint64(lengthFieldSize)) + } + } + + return dwarfSecInfo{syms: []loader.Sym{fs}} +} + +/* + * Walk DWarfDebugInfoEntries, and emit .debug_info + */ + +const ( + COMPUNITHEADERSIZE = 4 + 2 + 4 + 1 +) + +// appendSyms appends the syms from 'src' into 'syms' and returns the +// result. This can go away once we do away with sym.LoaderSym +// entirely. +func appendSyms(syms []loader.Sym, src []sym.LoaderSym) []loader.Sym { + for _, s := range src { + syms = append(syms, loader.Sym(s)) + } + return syms +} + +func (d *dwctxt) writeUnitInfo(u *sym.CompilationUnit, abbrevsym loader.Sym, infoEpilog loader.Sym) []loader.Sym { + syms := []loader.Sym{} + if len(u.Textp) == 0 && u.DWInfo.Child == nil && len(u.VarDIEs) == 0 { + return syms + } + + compunit := u.DWInfo + s := d.dtolsym(compunit.Sym) + su := d.ldr.MakeSymbolUpdater(s) + + // Write .debug_info Compilation Unit Header (sec 7.5.1) + // Fields marked with (*) must be changed for 64-bit dwarf + // This must match COMPUNITHEADERSIZE above. + d.createUnitLength(su, 0) // unit_length (*), will be filled in later. + su.AddUint16(d.arch, 4) // dwarf version (appendix F) + + // debug_abbrev_offset (*) + d.addDwarfAddrRef(su, abbrevsym) + + su.AddUint8(uint8(d.arch.PtrSize)) // address_size + + ds := dwSym(s) + dwarf.Uleb128put(d, ds, int64(compunit.Abbrev)) + dwarf.PutAttrs(d, ds, compunit.Abbrev, compunit.Attr) + + // This is an under-estimate; more will be needed for type DIEs. + cu := make([]loader.Sym, 0, len(u.AbsFnDIEs)+len(u.FuncDIEs)) + cu = append(cu, s) + cu = appendSyms(cu, u.AbsFnDIEs) + cu = appendSyms(cu, u.FuncDIEs) + if u.Consts != 0 { + cu = append(cu, loader.Sym(u.Consts)) + } + cu = appendSyms(cu, u.VarDIEs) + var cusize int64 + for _, child := range cu { + cusize += int64(len(d.ldr.Data(child))) + } + + for die := compunit.Child; die != nil; die = die.Link { + l := len(cu) + lastSymSz := int64(len(d.ldr.Data(cu[l-1]))) + cu = d.putdie(cu, die) + if lastSymSz != int64(len(d.ldr.Data(cu[l-1]))) { + // putdie will sometimes append directly to the last symbol of the list + cusize = cusize - lastSymSz + int64(len(d.ldr.Data(cu[l-1]))) + } + for _, child := range cu[l:] { + cusize += int64(len(d.ldr.Data(child))) + } + } + + culu := d.ldr.MakeSymbolUpdater(infoEpilog) + culu.AddUint8(0) // closes compilation unit DIE + cu = append(cu, infoEpilog) + cusize++ + + // Save size for AIX symbol table. + if d.linkctxt.HeadType == objabi.Haix { + addDwsectCUSize(".debug_info", d.getPkgFromCUSym(s), uint64(cusize)) + } + if isDwarf64(d.linkctxt) { + cusize -= 12 // exclude the length field. + su.SetUint(d.arch, 4, uint64(cusize)) // 4 because of 0XFFFFFFFF + } else { + cusize -= 4 // exclude the length field. + su.SetUint32(d.arch, 0, uint32(cusize)) + } + return append(syms, cu...) +} + +func (d *dwctxt) writegdbscript() dwarfSecInfo { + // TODO (aix): make it available + if d.linkctxt.HeadType == objabi.Haix { + return dwarfSecInfo{} + } + if d.linkctxt.LinkMode == LinkExternal && d.linkctxt.HeadType == objabi.Hwindows && d.linkctxt.BuildMode == BuildModeCArchive { + // gcc on Windows places .debug_gdb_scripts in the wrong location, which + // causes the program not to run. See https://golang.org/issue/20183 + // Non c-archives can avoid this issue via a linker script + // (see fix near writeGDBLinkerScript). + // c-archive users would need to specify the linker script manually. + // For UX it's better not to deal with this. + return dwarfSecInfo{} + } + if gdbscript == "" { + return dwarfSecInfo{} + } + + gs := d.ldr.CreateSymForUpdate(".debug_gdb_scripts", 0) + gs.SetType(sym.SDWARFSECT) + + gs.AddUint8(GdbScriptPythonFileId) + gs.Addstring(gdbscript) + return dwarfSecInfo{syms: []loader.Sym{gs.Sym()}} +} + +// FIXME: might be worth looking replacing this map with a function +// that switches based on symbol instead. + +var prototypedies map[string]*dwarf.DWDie + +func dwarfEnabled(ctxt *Link) bool { + if *FlagW { // disable dwarf + return false + } + if *FlagS && ctxt.HeadType != objabi.Hdarwin { + return false + } + if ctxt.HeadType == objabi.Hplan9 || ctxt.HeadType == objabi.Hjs { + return false + } + + if ctxt.LinkMode == LinkExternal { + switch { + case ctxt.IsELF: + case ctxt.HeadType == objabi.Hdarwin: + case ctxt.HeadType == objabi.Hwindows: + case ctxt.HeadType == objabi.Haix: + res, err := dwarf.IsDWARFEnabledOnAIXLd(ctxt.extld()) + if err != nil { + Exitf("%v", err) + } + return res + default: + return false + } + } + + return true +} + +// mkBuiltinType populates the dwctxt2 sym lookup maps for the +// newly created builtin type DIE 'typeDie'. +func (d *dwctxt) mkBuiltinType(ctxt *Link, abrv int, tname string) *dwarf.DWDie { + // create type DIE + die := d.newdie(&dwtypes, abrv, tname) + + // Look up type symbol. + gotype := d.lookupOrDiag("type:" + tname) + + // Map from die sym to type sym + ds := loader.Sym(die.Sym.(dwSym)) + d.rtmap[ds] = gotype + + // Map from type to def sym + d.tdmap[gotype] = ds + + return die +} + +// dwarfVisitFunction takes a function (text) symbol and processes the +// subprogram DIE for the function and picks up any other DIEs +// (absfns, types) that it references. +func (d *dwctxt) dwarfVisitFunction(fnSym loader.Sym, unit *sym.CompilationUnit) { + // The DWARF subprogram DIE symbol is listed as an aux sym + // of the text (fcn) symbol, so ask the loader to retrieve it, + // as well as the associated range symbol. + infosym, _, rangesym, _ := d.ldr.GetFuncDwarfAuxSyms(fnSym) + if infosym == 0 { + return + } + d.ldr.SetAttrNotInSymbolTable(infosym, true) + d.ldr.SetAttrReachable(infosym, true) + unit.FuncDIEs = append(unit.FuncDIEs, sym.LoaderSym(infosym)) + if rangesym != 0 { + d.ldr.SetAttrNotInSymbolTable(rangesym, true) + d.ldr.SetAttrReachable(rangesym, true) + unit.RangeSyms = append(unit.RangeSyms, sym.LoaderSym(rangesym)) + } + + // Walk the relocations of the subprogram DIE symbol to discover + // references to abstract function DIEs, Go type DIES, and + // (via R_USETYPE relocs) types that were originally assigned to + // locals/params but were optimized away. + drelocs := d.ldr.Relocs(infosym) + for ri := 0; ri < drelocs.Count(); ri++ { + r := drelocs.At(ri) + // Look for "use type" relocs. + if r.Type() == objabi.R_USETYPE { + d.defgotype(r.Sym()) + continue + } + if r.Type() != objabi.R_DWARFSECREF { + continue + } + + rsym := r.Sym() + rst := d.ldr.SymType(rsym) + + // Look for abstract function references. + if rst == sym.SDWARFABSFCN { + if !d.ldr.AttrOnList(rsym) { + // abstract function + d.ldr.SetAttrOnList(rsym, true) + unit.AbsFnDIEs = append(unit.AbsFnDIEs, sym.LoaderSym(rsym)) + d.importInfoSymbol(rsym) + } + continue + } + + // Look for type references. + if rst != sym.SDWARFTYPE && rst != sym.Sxxx { + continue + } + if _, ok := d.rtmap[rsym]; ok { + // type already generated + continue + } + + rsn := d.ldr.SymName(rsym) + tn := rsn[len(dwarf.InfoPrefix):] + ts := d.ldr.Lookup("type:"+tn, 0) + d.defgotype(ts) + } +} + +// dwarfGenerateDebugInfo generated debug info entries for all types, +// variables and functions in the program. +// Along with dwarfGenerateDebugSyms they are the two main entry points into +// dwarf generation: dwarfGenerateDebugInfo does all the work that should be +// done before symbol names are mangled while dwarfGenerateDebugSyms does +// all the work that can only be done after addresses have been assigned to +// text symbols. +func dwarfGenerateDebugInfo(ctxt *Link) { + if !dwarfEnabled(ctxt) { + return + } + + d := &dwctxt{ + linkctxt: ctxt, + ldr: ctxt.loader, + arch: ctxt.Arch, + tmap: make(map[string]loader.Sym), + tdmap: make(map[loader.Sym]loader.Sym), + rtmap: make(map[loader.Sym]loader.Sym), + } + d.typeRuntimeEface = d.lookupOrDiag("type:runtime.eface") + d.typeRuntimeIface = d.lookupOrDiag("type:runtime.iface") + + if ctxt.HeadType == objabi.Haix { + // Initial map used to store package size for each DWARF section. + dwsectCUSize = make(map[string]uint64) + } + + // For ctxt.Diagnostic messages. + newattr(&dwtypes, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len("dwtypes")), "dwtypes") + + // Unspecified type. There are no references to this in the symbol table. + d.newdie(&dwtypes, dwarf.DW_ABRV_NULLTYPE, "<unspecified>") + + // Some types that must exist to define other ones (uintptr in particular + // is needed for array size) + d.mkBuiltinType(ctxt, dwarf.DW_ABRV_BARE_PTRTYPE, "unsafe.Pointer") + die := d.mkBuiltinType(ctxt, dwarf.DW_ABRV_BASETYPE, "uintptr") + newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0) + newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(d.arch.PtrSize), 0) + newattr(die, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, objabi.KindUintptr, 0) + newattr(die, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_ADDRESS, 0, dwSym(d.lookupOrDiag("type:uintptr"))) + + d.uintptrInfoSym = d.mustFind("uintptr") + + // Prototypes needed for type synthesis. + prototypedies = map[string]*dwarf.DWDie{ + "type:runtime.stringStructDWARF": nil, + "type:runtime.slice": nil, + "type:runtime.hmap": nil, + "type:runtime.bmap": nil, + "type:runtime.sudog": nil, + "type:runtime.waitq": nil, + "type:runtime.hchan": nil, + } + + // Needed by the prettyprinter code for interface inspection. + for _, typ := range []string{ + "type:runtime._type", + "type:runtime.arraytype", + "type:runtime.chantype", + "type:runtime.functype", + "type:runtime.maptype", + "type:runtime.ptrtype", + "type:runtime.slicetype", + "type:runtime.structtype", + "type:runtime.interfacetype", + "type:runtime.itab", + "type:runtime.imethod"} { + d.defgotype(d.lookupOrDiag(typ)) + } + + // fake root DIE for compile unit DIEs + var dwroot dwarf.DWDie + flagVariants := make(map[string]bool) + + for _, lib := range ctxt.Library { + + consts := d.ldr.Lookup(dwarf.ConstInfoPrefix+lib.Pkg, 0) + for _, unit := range lib.Units { + // We drop the constants into the first CU. + if consts != 0 { + unit.Consts = sym.LoaderSym(consts) + d.importInfoSymbol(consts) + consts = 0 + } + ctxt.compUnits = append(ctxt.compUnits, unit) + + // We need at least one runtime unit. + if unit.Lib.Pkg == "runtime" { + ctxt.runtimeCU = unit + } + + cuabrv := dwarf.DW_ABRV_COMPUNIT + if len(unit.Textp) == 0 { + cuabrv = dwarf.DW_ABRV_COMPUNIT_TEXTLESS + } + unit.DWInfo = d.newdie(&dwroot, cuabrv, unit.Lib.Pkg) + newattr(unit.DWInfo, dwarf.DW_AT_language, dwarf.DW_CLS_CONSTANT, int64(dwarf.DW_LANG_Go), 0) + // OS X linker requires compilation dir or absolute path in comp unit name to output debug info. + compDir := getCompilationDir() + // TODO: Make this be the actual compilation directory, not + // the linker directory. If we move CU construction into the + // compiler, this should happen naturally. + newattr(unit.DWInfo, dwarf.DW_AT_comp_dir, dwarf.DW_CLS_STRING, int64(len(compDir)), compDir) + + var peData []byte + if producerExtra := d.ldr.Lookup(dwarf.CUInfoPrefix+"producer."+unit.Lib.Pkg, 0); producerExtra != 0 { + peData = d.ldr.Data(producerExtra) + } + producer := "Go cmd/compile " + buildcfg.Version + if len(peData) > 0 { + // We put a semicolon before the flags to clearly + // separate them from the version, which can be long + // and have lots of weird things in it in development + // versions. We promise not to put a semicolon in the + // version, so it should be safe for readers to scan + // forward to the semicolon. + producer += "; " + string(peData) + flagVariants[string(peData)] = true + } else { + flagVariants[""] = true + } + + newattr(unit.DWInfo, dwarf.DW_AT_producer, dwarf.DW_CLS_STRING, int64(len(producer)), producer) + + var pkgname string + if pnSymIdx := d.ldr.Lookup(dwarf.CUInfoPrefix+"packagename."+unit.Lib.Pkg, 0); pnSymIdx != 0 { + pnsData := d.ldr.Data(pnSymIdx) + pkgname = string(pnsData) + } + newattr(unit.DWInfo, dwarf.DW_AT_go_package_name, dwarf.DW_CLS_STRING, int64(len(pkgname)), pkgname) + + // Scan all functions in this compilation unit, create + // DIEs for all referenced types, find all referenced + // abstract functions, visit range symbols. Note that + // Textp has been dead-code-eliminated already. + for _, s := range unit.Textp { + d.dwarfVisitFunction(loader.Sym(s), unit) + } + } + } + + // Fix for 31034: if the objects feeding into this link were compiled + // with different sets of flags, then don't issue an error if + // the -strictdups checks fail. + if checkStrictDups > 1 && len(flagVariants) > 1 { + checkStrictDups = 1 + } + + // Make a pass through all data symbols, looking for those + // corresponding to reachable, Go-generated, user-visible + // global variables. For each global of this sort, locate + // the corresponding compiler-generated DIE symbol and tack + // it onto the list associated with the unit. + // Also looks for dictionary symbols and generates DIE symbols for each + // type they reference. + for idx := loader.Sym(1); idx < loader.Sym(d.ldr.NDef()); idx++ { + if !d.ldr.AttrReachable(idx) || + d.ldr.AttrNotInSymbolTable(idx) || + d.ldr.SymVersion(idx) >= sym.SymVerStatic { + continue + } + t := d.ldr.SymType(idx) + switch t { + case sym.SRODATA, sym.SDATA, sym.SNOPTRDATA, sym.STYPE, sym.SBSS, sym.SNOPTRBSS, sym.STLSBSS: + // ok + default: + continue + } + // Skip things with no type, unless it's a dictionary + gt := d.ldr.SymGoType(idx) + if gt == 0 { + if t == sym.SRODATA { + if d.ldr.IsDict(idx) { + // This is a dictionary, make sure that all types referenced by this dictionary are reachable + relocs := d.ldr.Relocs(idx) + for i := 0; i < relocs.Count(); i++ { + reloc := relocs.At(i) + if reloc.Type() == objabi.R_USEIFACE { + d.defgotype(reloc.Sym()) + } + } + } + } + continue + } + // Skip file local symbols (this includes static tmps, stack + // object symbols, and local symbols in assembler src files). + if d.ldr.IsFileLocal(idx) { + continue + } + sn := d.ldr.SymName(idx) + if sn == "" { + // skip aux symbols + continue + } + + // Find compiler-generated DWARF info sym for global in question, + // and tack it onto the appropriate unit. Note that there are + // circumstances under which we can't find the compiler-generated + // symbol-- this typically happens as a result of compiler options + // (e.g. compile package X with "-dwarf=0"). + + // FIXME: use an aux sym or a relocation here instead of a + // name lookup. + varDIE := d.ldr.Lookup(dwarf.InfoPrefix+sn, 0) + if varDIE != 0 { + unit := d.ldr.SymUnit(idx) + d.defgotype(gt) + unit.VarDIEs = append(unit.VarDIEs, sym.LoaderSym(varDIE)) + } + } + + d.synthesizestringtypes(ctxt, dwtypes.Child) + d.synthesizeslicetypes(ctxt, dwtypes.Child) + d.synthesizemaptypes(ctxt, dwtypes.Child) + d.synthesizechantypes(ctxt, dwtypes.Child) +} + +// dwarfGenerateDebugSyms constructs debug_line, debug_frame, and +// debug_loc. It also writes out the debug_info section using symbols +// generated in dwarfGenerateDebugInfo2. +func dwarfGenerateDebugSyms(ctxt *Link) { + if !dwarfEnabled(ctxt) { + return + } + d := &dwctxt{ + linkctxt: ctxt, + ldr: ctxt.loader, + arch: ctxt.Arch, + dwmu: new(sync.Mutex), + } + d.dwarfGenerateDebugSyms() +} + +// dwUnitSyms stores input and output symbols for DWARF generation +// for a given compilation unit. +type dwUnitSyms struct { + // Inputs for a given unit. + lineProlog loader.Sym + rangeProlog loader.Sym + infoEpilog loader.Sym + + // Outputs for a given unit. + linesyms []loader.Sym + infosyms []loader.Sym + locsyms []loader.Sym + rangessyms []loader.Sym +} + +// dwUnitPortion assembles the DWARF content for a given compilation +// unit: debug_info, debug_lines, debug_ranges, debug_loc (debug_frame +// is handled elsewere). Order is important; the calls to writelines +// and writepcranges below make updates to the compilation unit DIE, +// hence they have to happen before the call to writeUnitInfo. +func (d *dwctxt) dwUnitPortion(u *sym.CompilationUnit, abbrevsym loader.Sym, us *dwUnitSyms) { + if u.DWInfo.Abbrev != dwarf.DW_ABRV_COMPUNIT_TEXTLESS { + us.linesyms = d.writelines(u, us.lineProlog) + base := loader.Sym(u.Textp[0]) + us.rangessyms = d.writepcranges(u, base, u.PCs, us.rangeProlog) + us.locsyms = d.collectUnitLocs(u) + } + us.infosyms = d.writeUnitInfo(u, abbrevsym, us.infoEpilog) +} + +func (d *dwctxt) dwarfGenerateDebugSyms() { + abbrevSec := d.writeabbrev() + dwarfp = append(dwarfp, abbrevSec) + d.calcCompUnitRanges() + sort.Sort(compilationUnitByStartPC(d.linkctxt.compUnits)) + + // newdie adds DIEs to the *beginning* of the parent's DIE list. + // Now that we're done creating DIEs, reverse the trees so DIEs + // appear in the order they were created. + for _, u := range d.linkctxt.compUnits { + reversetree(&u.DWInfo.Child) + } + reversetree(&dwtypes.Child) + movetomodule(d.linkctxt, &dwtypes) + + mkSecSym := func(name string) loader.Sym { + s := d.ldr.CreateSymForUpdate(name, 0) + s.SetType(sym.SDWARFSECT) + s.SetReachable(true) + return s.Sym() + } + mkAnonSym := func(kind sym.SymKind) loader.Sym { + s := d.ldr.MakeSymbolUpdater(d.ldr.CreateExtSym("", 0)) + s.SetType(kind) + s.SetReachable(true) + return s.Sym() + } + + // Create the section symbols. + frameSym := mkSecSym(".debug_frame") + locSym := mkSecSym(".debug_loc") + lineSym := mkSecSym(".debug_line") + rangesSym := mkSecSym(".debug_ranges") + infoSym := mkSecSym(".debug_info") + + // Create the section objects + lineSec := dwarfSecInfo{syms: []loader.Sym{lineSym}} + locSec := dwarfSecInfo{syms: []loader.Sym{locSym}} + rangesSec := dwarfSecInfo{syms: []loader.Sym{rangesSym}} + frameSec := dwarfSecInfo{syms: []loader.Sym{frameSym}} + infoSec := dwarfSecInfo{syms: []loader.Sym{infoSym}} + + // Create any new symbols that will be needed during the + // parallel portion below. + ncu := len(d.linkctxt.compUnits) + unitSyms := make([]dwUnitSyms, ncu) + for i := 0; i < ncu; i++ { + us := &unitSyms[i] + us.lineProlog = mkAnonSym(sym.SDWARFLINES) + us.rangeProlog = mkAnonSym(sym.SDWARFRANGE) + us.infoEpilog = mkAnonSym(sym.SDWARFFCN) + } + + var wg sync.WaitGroup + sema := make(chan struct{}, runtime.GOMAXPROCS(0)) + + // Kick off generation of .debug_frame, since it doesn't have + // any entanglements and can be started right away. + wg.Add(1) + go func() { + sema <- struct{}{} + defer func() { + <-sema + wg.Done() + }() + frameSec = d.writeframes(frameSym) + }() + + // Create a goroutine per comp unit to handle the generation that + // unit's portion of .debug_line, .debug_loc, .debug_ranges, and + // .debug_info. + wg.Add(len(d.linkctxt.compUnits)) + for i := 0; i < ncu; i++ { + go func(u *sym.CompilationUnit, us *dwUnitSyms) { + sema <- struct{}{} + defer func() { + <-sema + wg.Done() + }() + d.dwUnitPortion(u, abbrevSec.secSym(), us) + }(d.linkctxt.compUnits[i], &unitSyms[i]) + } + wg.Wait() + + markReachable := func(syms []loader.Sym) []loader.Sym { + for _, s := range syms { + d.ldr.SetAttrNotInSymbolTable(s, true) + d.ldr.SetAttrReachable(s, true) + } + return syms + } + + // Stitch together the results. + for i := 0; i < ncu; i++ { + r := &unitSyms[i] + lineSec.syms = append(lineSec.syms, markReachable(r.linesyms)...) + infoSec.syms = append(infoSec.syms, markReachable(r.infosyms)...) + locSec.syms = append(locSec.syms, markReachable(r.locsyms)...) + rangesSec.syms = append(rangesSec.syms, markReachable(r.rangessyms)...) + } + dwarfp = append(dwarfp, lineSec) + dwarfp = append(dwarfp, frameSec) + gdbScriptSec := d.writegdbscript() + if gdbScriptSec.secSym() != 0 { + dwarfp = append(dwarfp, gdbScriptSec) + } + dwarfp = append(dwarfp, infoSec) + if len(locSec.syms) > 1 { + dwarfp = append(dwarfp, locSec) + } + dwarfp = append(dwarfp, rangesSec) + + // Check to make sure we haven't listed any symbols more than once + // in the info section. This used to be done by setting and + // checking the OnList attribute in "putdie", but that strategy + // was not friendly for concurrency. + seen := loader.MakeBitmap(d.ldr.NSym()) + for _, s := range infoSec.syms { + if seen.Has(s) { + log.Fatalf("symbol %s listed multiple times", d.ldr.SymName(s)) + } + seen.Set(s) + } +} + +func (d *dwctxt) collectUnitLocs(u *sym.CompilationUnit) []loader.Sym { + syms := []loader.Sym{} + for _, fn := range u.FuncDIEs { + relocs := d.ldr.Relocs(loader.Sym(fn)) + for i := 0; i < relocs.Count(); i++ { + reloc := relocs.At(i) + if reloc.Type() != objabi.R_DWARFSECREF { + continue + } + rsym := reloc.Sym() + if d.ldr.SymType(rsym) == sym.SDWARFLOC { + syms = append(syms, rsym) + // One location list entry per function, but many relocations to it. Don't duplicate. + break + } + } + } + return syms +} + +/* + * Elf. + */ +func dwarfaddshstrings(ctxt *Link, shstrtab *loader.SymbolBuilder) { + if *FlagW { // disable dwarf + return + } + + secs := []string{"abbrev", "frame", "info", "loc", "line", "gdb_scripts", "ranges"} + for _, sec := range secs { + shstrtab.Addstring(".debug_" + sec) + if ctxt.IsExternal() { + shstrtab.Addstring(elfRelType + ".debug_" + sec) + } else { + shstrtab.Addstring(".zdebug_" + sec) + } + } +} + +func dwarfaddelfsectionsyms(ctxt *Link) { + if *FlagW { // disable dwarf + return + } + if ctxt.LinkMode != LinkExternal { + return + } + + ldr := ctxt.loader + for _, si := range dwarfp { + s := si.secSym() + sect := ldr.SymSect(si.secSym()) + putelfsectionsym(ctxt, ctxt.Out, s, sect.Elfsect.(*ElfShdr).shnum) + } +} + +// dwarfcompress compresses the DWARF sections. Relocations are applied +// on the fly. After this, dwarfp will contain a different (new) set of +// symbols, and sections may have been replaced. +func dwarfcompress(ctxt *Link) { + // compressedSect is a helper type for parallelizing compression. + type compressedSect struct { + index int + compressed []byte + syms []loader.Sym + } + + supported := ctxt.IsELF || ctxt.IsWindows() || ctxt.IsDarwin() + if !ctxt.compressDWARF || !supported || ctxt.IsExternal() { + return + } + + var compressedCount int + resChannel := make(chan compressedSect) + for i := range dwarfp { + go func(resIndex int, syms []loader.Sym) { + resChannel <- compressedSect{resIndex, compressSyms(ctxt, syms), syms} + }(compressedCount, dwarfp[i].syms) + compressedCount++ + } + res := make([]compressedSect, compressedCount) + for ; compressedCount > 0; compressedCount-- { + r := <-resChannel + res[r.index] = r + } + + ldr := ctxt.loader + var newDwarfp []dwarfSecInfo + Segdwarf.Sections = Segdwarf.Sections[:0] + for _, z := range res { + s := z.syms[0] + if z.compressed == nil { + // Compression didn't help. + ds := dwarfSecInfo{syms: z.syms} + newDwarfp = append(newDwarfp, ds) + Segdwarf.Sections = append(Segdwarf.Sections, ldr.SymSect(s)) + } else { + var compressedSegName string + if ctxt.IsELF { + compressedSegName = ldr.SymSect(s).Name + } else { + compressedSegName = ".zdebug_" + ldr.SymSect(s).Name[len(".debug_"):] + } + sect := addsection(ctxt.loader, ctxt.Arch, &Segdwarf, compressedSegName, 04) + sect.Align = int32(ctxt.Arch.Alignment) + sect.Length = uint64(len(z.compressed)) + sect.Compressed = true + newSym := ldr.MakeSymbolBuilder(compressedSegName) + ldr.SetAttrReachable(s, true) + newSym.SetData(z.compressed) + newSym.SetSize(int64(len(z.compressed))) + ldr.SetSymSect(newSym.Sym(), sect) + ds := dwarfSecInfo{syms: []loader.Sym{newSym.Sym()}} + newDwarfp = append(newDwarfp, ds) + + // compressed symbols are no longer needed. + for _, s := range z.syms { + ldr.SetAttrReachable(s, false) + ldr.FreeSym(s) + } + } + } + dwarfp = newDwarfp + + // Re-compute the locations of the compressed DWARF symbols + // and sections, since the layout of these within the file is + // based on Section.Vaddr and Symbol.Value. + pos := Segdwarf.Vaddr + var prevSect *sym.Section + for _, si := range dwarfp { + for _, s := range si.syms { + ldr.SetSymValue(s, int64(pos)) + sect := ldr.SymSect(s) + if sect != prevSect { + sect.Vaddr = uint64(pos) + prevSect = sect + } + if ldr.SubSym(s) != 0 { + log.Fatalf("%s: unexpected sub-symbols", ldr.SymName(s)) + } + pos += uint64(ldr.SymSize(s)) + if ctxt.IsWindows() { + pos = uint64(Rnd(int64(pos), PEFILEALIGN)) + } + } + } + Segdwarf.Length = pos - Segdwarf.Vaddr +} + +type compilationUnitByStartPC []*sym.CompilationUnit + +func (v compilationUnitByStartPC) Len() int { return len(v) } +func (v compilationUnitByStartPC) Swap(i, j int) { v[i], v[j] = v[j], v[i] } + +func (v compilationUnitByStartPC) Less(i, j int) bool { + switch { + case len(v[i].Textp) == 0 && len(v[j].Textp) == 0: + return v[i].Lib.Pkg < v[j].Lib.Pkg + case len(v[i].Textp) != 0 && len(v[j].Textp) == 0: + return true + case len(v[i].Textp) == 0 && len(v[j].Textp) != 0: + return false + default: + return v[i].PCs[0].Start < v[j].PCs[0].Start + } +} + +// getPkgFromCUSym returns the package name for the compilation unit +// represented by s. +// The prefix dwarf.InfoPrefix+".pkg." needs to be removed in order to get +// the package name. +func (d *dwctxt) getPkgFromCUSym(s loader.Sym) string { + return strings.TrimPrefix(d.ldr.SymName(s), dwarf.InfoPrefix+".pkg.") +} + +// On AIX, the symbol table needs to know where are the compilation units parts +// for a specific package in each .dw section. +// dwsectCUSize map will save the size of a compilation unit for +// the corresponding .dw section. +// This size can later be retrieved with the index "sectionName.pkgName". +var dwsectCUSizeMu sync.Mutex +var dwsectCUSize map[string]uint64 + +// getDwsectCUSize retrieves the corresponding package size inside the current section. +func getDwsectCUSize(sname string, pkgname string) uint64 { + return dwsectCUSize[sname+"."+pkgname] +} + +func addDwsectCUSize(sname string, pkgname string, size uint64) { + dwsectCUSizeMu.Lock() + defer dwsectCUSizeMu.Unlock() + dwsectCUSize[sname+"."+pkgname] += size +} |