diff options
Diffstat (limited to 'src/compress/flate/deflatefast.go')
-rw-r--r-- | src/compress/flate/deflatefast.go | 309 |
1 files changed, 309 insertions, 0 deletions
diff --git a/src/compress/flate/deflatefast.go b/src/compress/flate/deflatefast.go new file mode 100644 index 0000000..6aa439f --- /dev/null +++ b/src/compress/flate/deflatefast.go @@ -0,0 +1,309 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package flate + +import "math" + +// This encoding algorithm, which prioritizes speed over output size, is +// based on Snappy's LZ77-style encoder: github.com/golang/snappy + +const ( + tableBits = 14 // Bits used in the table. + tableSize = 1 << tableBits // Size of the table. + tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. + tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32. + + // Reset the buffer offset when reaching this. + // Offsets are stored between blocks as int32 values. + // Since the offset we are checking against is at the beginning + // of the buffer, we need to subtract the current and input + // buffer to not risk overflowing the int32. + bufferReset = math.MaxInt32 - maxStoreBlockSize*2 +) + +func load32(b []byte, i int32) uint32 { + b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line. + return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 +} + +func load64(b []byte, i int32) uint64 { + b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line. + return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | + uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 +} + +func hash(u uint32) uint32 { + return (u * 0x1e35a7bd) >> tableShift +} + +// These constants are defined by the Snappy implementation so that its +// assembly implementation can fast-path some 16-bytes-at-a-time copies. They +// aren't necessary in the pure Go implementation, as we don't use those same +// optimizations, but using the same thresholds doesn't really hurt. +const ( + inputMargin = 16 - 1 + minNonLiteralBlockSize = 1 + 1 + inputMargin +) + +type tableEntry struct { + val uint32 // Value at destination + offset int32 +} + +// deflateFast maintains the table for matches, +// and the previous byte block for cross block matching. +type deflateFast struct { + table [tableSize]tableEntry + prev []byte // Previous block, zero length if unknown. + cur int32 // Current match offset. +} + +func newDeflateFast() *deflateFast { + return &deflateFast{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)} +} + +// encode encodes a block given in src and appends tokens +// to dst and returns the result. +func (e *deflateFast) encode(dst []token, src []byte) []token { + // Ensure that e.cur doesn't wrap. + if e.cur >= bufferReset { + e.shiftOffsets() + } + + // This check isn't in the Snappy implementation, but there, the caller + // instead of the callee handles this case. + if len(src) < minNonLiteralBlockSize { + e.cur += maxStoreBlockSize + e.prev = e.prev[:0] + return emitLiteral(dst, src) + } + + // sLimit is when to stop looking for offset/length copies. The inputMargin + // lets us use a fast path for emitLiteral in the main loop, while we are + // looking for copies. + sLimit := int32(len(src) - inputMargin) + + // nextEmit is where in src the next emitLiteral should start from. + nextEmit := int32(0) + s := int32(0) + cv := load32(src, s) + nextHash := hash(cv) + + for { + // Copied from the C++ snappy implementation: + // + // Heuristic match skipping: If 32 bytes are scanned with no matches + // found, start looking only at every other byte. If 32 more bytes are + // scanned (or skipped), look at every third byte, etc.. When a match + // is found, immediately go back to looking at every byte. This is a + // small loss (~5% performance, ~0.1% density) for compressible data + // due to more bookkeeping, but for non-compressible data (such as + // JPEG) it's a huge win since the compressor quickly "realizes" the + // data is incompressible and doesn't bother looking for matches + // everywhere. + // + // The "skip" variable keeps track of how many bytes there are since + // the last match; dividing it by 32 (ie. right-shifting by five) gives + // the number of bytes to move ahead for each iteration. + skip := int32(32) + + nextS := s + var candidate tableEntry + for { + s = nextS + bytesBetweenHashLookups := skip >> 5 + nextS = s + bytesBetweenHashLookups + skip += bytesBetweenHashLookups + if nextS > sLimit { + goto emitRemainder + } + candidate = e.table[nextHash&tableMask] + now := load32(src, nextS) + e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv} + nextHash = hash(now) + + offset := s - (candidate.offset - e.cur) + if offset > maxMatchOffset || cv != candidate.val { + // Out of range or not matched. + cv = now + continue + } + break + } + + // A 4-byte match has been found. We'll later see if more than 4 bytes + // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit + // them as literal bytes. + dst = emitLiteral(dst, src[nextEmit:s]) + + // Call emitCopy, and then see if another emitCopy could be our next + // move. Repeat until we find no match for the input immediately after + // what was consumed by the last emitCopy call. + // + // If we exit this loop normally then we need to call emitLiteral next, + // though we don't yet know how big the literal will be. We handle that + // by proceeding to the next iteration of the main loop. We also can + // exit this loop via goto if we get close to exhausting the input. + for { + // Invariant: we have a 4-byte match at s, and no need to emit any + // literal bytes prior to s. + + // Extend the 4-byte match as long as possible. + // + s += 4 + t := candidate.offset - e.cur + 4 + l := e.matchLen(s, t, src) + + // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset) + dst = append(dst, matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))) + s += l + nextEmit = s + if s >= sLimit { + goto emitRemainder + } + + // We could immediately start working at s now, but to improve + // compression we first update the hash table at s-1 and at s. If + // another emitCopy is not our next move, also calculate nextHash + // at s+1. At least on GOARCH=amd64, these three hash calculations + // are faster as one load64 call (with some shifts) instead of + // three load32 calls. + x := load64(src, s-1) + prevHash := hash(uint32(x)) + e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)} + x >>= 8 + currHash := hash(uint32(x)) + candidate = e.table[currHash&tableMask] + e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)} + + offset := s - (candidate.offset - e.cur) + if offset > maxMatchOffset || uint32(x) != candidate.val { + cv = uint32(x >> 8) + nextHash = hash(cv) + s++ + break + } + } + } + +emitRemainder: + if int(nextEmit) < len(src) { + dst = emitLiteral(dst, src[nextEmit:]) + } + e.cur += int32(len(src)) + e.prev = e.prev[:len(src)] + copy(e.prev, src) + return dst +} + +func emitLiteral(dst []token, lit []byte) []token { + for _, v := range lit { + dst = append(dst, literalToken(uint32(v))) + } + return dst +} + +// matchLen returns the match length between src[s:] and src[t:]. +// t can be negative to indicate the match is starting in e.prev. +// We assume that src[s-4:s] and src[t-4:t] already match. +func (e *deflateFast) matchLen(s, t int32, src []byte) int32 { + s1 := int(s) + maxMatchLength - 4 + if s1 > len(src) { + s1 = len(src) + } + + // If we are inside the current block + if t >= 0 { + b := src[t:] + a := src[s:s1] + b = b[:len(a)] + // Extend the match to be as long as possible. + for i := range a { + if a[i] != b[i] { + return int32(i) + } + } + return int32(len(a)) + } + + // We found a match in the previous block. + tp := int32(len(e.prev)) + t + if tp < 0 { + return 0 + } + + // Extend the match to be as long as possible. + a := src[s:s1] + b := e.prev[tp:] + if len(b) > len(a) { + b = b[:len(a)] + } + a = a[:len(b)] + for i := range b { + if a[i] != b[i] { + return int32(i) + } + } + + // If we reached our limit, we matched everything we are + // allowed to in the previous block and we return. + n := int32(len(b)) + if int(s+n) == s1 { + return n + } + + // Continue looking for more matches in the current block. + a = src[s+n : s1] + b = src[:len(a)] + for i := range a { + if a[i] != b[i] { + return int32(i) + n + } + } + return int32(len(a)) + n +} + +// Reset resets the encoding history. +// This ensures that no matches are made to the previous block. +func (e *deflateFast) reset() { + e.prev = e.prev[:0] + // Bump the offset, so all matches will fail distance check. + // Nothing should be >= e.cur in the table. + e.cur += maxMatchOffset + + // Protect against e.cur wraparound. + if e.cur >= bufferReset { + e.shiftOffsets() + } +} + +// shiftOffsets will shift down all match offset. +// This is only called in rare situations to prevent integer overflow. +// +// See https://golang.org/issue/18636 and https://github.com/golang/go/issues/34121. +func (e *deflateFast) shiftOffsets() { + if len(e.prev) == 0 { + // We have no history; just clear the table. + for i := range e.table[:] { + e.table[i] = tableEntry{} + } + e.cur = maxMatchOffset + 1 + return + } + + // Shift down everything in the table that isn't already too far away. + for i := range e.table[:] { + v := e.table[i].offset - e.cur + maxMatchOffset + 1 + if v < 0 { + // We want to reset e.cur to maxMatchOffset + 1, so we need to shift + // all table entries down by (e.cur - (maxMatchOffset + 1)). + // Because we ignore matches > maxMatchOffset, we can cap + // any negative offsets at 0. + v = 0 + } + e.table[i].offset = v + } + e.cur = maxMatchOffset + 1 +} |