diff options
Diffstat (limited to 'src/crypto/ecdsa/ecdsa.go')
-rw-r--r-- | src/crypto/ecdsa/ecdsa.go | 660 |
1 files changed, 660 insertions, 0 deletions
diff --git a/src/crypto/ecdsa/ecdsa.go b/src/crypto/ecdsa/ecdsa.go new file mode 100644 index 0000000..03a9a72 --- /dev/null +++ b/src/crypto/ecdsa/ecdsa.go @@ -0,0 +1,660 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as +// defined in FIPS 186-4 and SEC 1, Version 2.0. +// +// Signatures generated by this package are not deterministic, but entropy is +// mixed with the private key and the message, achieving the same level of +// security in case of randomness source failure. +package ecdsa + +// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm. +// That standard is not freely available, which is a problem in an open source +// implementation, because not only the implementer, but also any maintainer, +// contributor, reviewer, auditor, and learner needs access to it. Instead, this +// package references and follows the equivalent [SEC 1, Version 2.0]. +// +// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf +// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf + +import ( + "bytes" + "crypto" + "crypto/aes" + "crypto/cipher" + "crypto/ecdh" + "crypto/elliptic" + "crypto/internal/bigmod" + "crypto/internal/boring" + "crypto/internal/boring/bbig" + "crypto/internal/nistec" + "crypto/internal/randutil" + "crypto/sha512" + "crypto/subtle" + "errors" + "io" + "math/big" + "sync" + + "golang.org/x/crypto/cryptobyte" + "golang.org/x/crypto/cryptobyte/asn1" +) + +// PublicKey represents an ECDSA public key. +type PublicKey struct { + elliptic.Curve + X, Y *big.Int +} + +// Any methods implemented on PublicKey might need to also be implemented on +// PrivateKey, as the latter embeds the former and will expose its methods. + +// ECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is +// invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the +// Curve is not supported by crypto/ecdh. +func (k *PublicKey) ECDH() (*ecdh.PublicKey, error) { + c := curveToECDH(k.Curve) + if c == nil { + return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh") + } + if !k.Curve.IsOnCurve(k.X, k.Y) { + return nil, errors.New("ecdsa: invalid public key") + } + return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y)) +} + +// Equal reports whether pub and x have the same value. +// +// Two keys are only considered to have the same value if they have the same Curve value. +// Note that for example elliptic.P256() and elliptic.P256().Params() are different +// values, as the latter is a generic not constant time implementation. +func (pub *PublicKey) Equal(x crypto.PublicKey) bool { + xx, ok := x.(*PublicKey) + if !ok { + return false + } + return bigIntEqual(pub.X, xx.X) && bigIntEqual(pub.Y, xx.Y) && + // Standard library Curve implementations are singletons, so this check + // will work for those. Other Curves might be equivalent even if not + // singletons, but there is no definitive way to check for that, and + // better to err on the side of safety. + pub.Curve == xx.Curve +} + +// PrivateKey represents an ECDSA private key. +type PrivateKey struct { + PublicKey + D *big.Int +} + +// ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is +// invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the +// Curve is not supported by crypto/ecdh. +func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) { + c := curveToECDH(k.Curve) + if c == nil { + return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh") + } + size := (k.Curve.Params().N.BitLen() + 7) / 8 + if k.D.BitLen() > size*8 { + return nil, errors.New("ecdsa: invalid private key") + } + return c.NewPrivateKey(k.D.FillBytes(make([]byte, size))) +} + +func curveToECDH(c elliptic.Curve) ecdh.Curve { + switch c { + case elliptic.P256(): + return ecdh.P256() + case elliptic.P384(): + return ecdh.P384() + case elliptic.P521(): + return ecdh.P521() + default: + return nil + } +} + +// Public returns the public key corresponding to priv. +func (priv *PrivateKey) Public() crypto.PublicKey { + return &priv.PublicKey +} + +// Equal reports whether priv and x have the same value. +// +// See PublicKey.Equal for details on how Curve is compared. +func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { + xx, ok := x.(*PrivateKey) + if !ok { + return false + } + return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D) +} + +// bigIntEqual reports whether a and b are equal leaking only their bit length +// through timing side-channels. +func bigIntEqual(a, b *big.Int) bool { + return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1 +} + +// Sign signs digest with priv, reading randomness from rand. The opts argument +// is not currently used but, in keeping with the crypto.Signer interface, +// should be the hash function used to digest the message. +// +// This method implements crypto.Signer, which is an interface to support keys +// where the private part is kept in, for example, a hardware module. Common +// uses can use the SignASN1 function in this package directly. +func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { + return SignASN1(rand, priv, digest) +} + +// GenerateKey generates a public and private key pair. +func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { + randutil.MaybeReadByte(rand) + + if boring.Enabled && rand == boring.RandReader { + x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name) + if err != nil { + return nil, err + } + return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil + } + boring.UnreachableExceptTests() + + switch c.Params() { + case elliptic.P224().Params(): + return generateNISTEC(p224(), rand) + case elliptic.P256().Params(): + return generateNISTEC(p256(), rand) + case elliptic.P384().Params(): + return generateNISTEC(p384(), rand) + case elliptic.P521().Params(): + return generateNISTEC(p521(), rand) + default: + return generateLegacy(c, rand) + } +} + +func generateNISTEC[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (*PrivateKey, error) { + k, Q, err := randomPoint(c, rand) + if err != nil { + return nil, err + } + + priv := new(PrivateKey) + priv.PublicKey.Curve = c.curve + priv.D = new(big.Int).SetBytes(k.Bytes(c.N)) + priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q) + if err != nil { + return nil, err + } + return priv, nil +} + +// randomPoint returns a random scalar and the corresponding point using the +// procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling). +func randomPoint[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (k *bigmod.Nat, p Point, err error) { + k = bigmod.NewNat() + for { + b := make([]byte, c.N.Size()) + if _, err = io.ReadFull(rand, b); err != nil { + return + } + + // Mask off any excess bits to increase the chance of hitting a value in + // (0, N). These are the most dangerous lines in the package and maybe in + // the library: a single bit of bias in the selection of nonces would likely + // lead to key recovery, but no tests would fail. Look but DO NOT TOUCH. + if excess := len(b)*8 - c.N.BitLen(); excess > 0 { + // Just to be safe, assert that this only happens for the one curve that + // doesn't have a round number of bits. + if excess != 0 && c.curve.Params().Name != "P-521" { + panic("ecdsa: internal error: unexpectedly masking off bits") + } + b[0] >>= excess + } + + // FIPS 186-4 makes us check k <= N - 2 and then add one. + // Checking 0 < k <= N - 1 is strictly equivalent. + // None of this matters anyway because the chance of selecting + // zero is cryptographically negligible. + if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 { + break + } + + if testingOnlyRejectionSamplingLooped != nil { + testingOnlyRejectionSamplingLooped() + } + } + + p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N)) + return +} + +// testingOnlyRejectionSamplingLooped is called when rejection sampling in +// randomPoint rejects a candidate for being higher than the modulus. +var testingOnlyRejectionSamplingLooped func() + +// errNoAsm is returned by signAsm and verifyAsm when the assembly +// implementation is not available. +var errNoAsm = errors.New("no assembly implementation available") + +// SignASN1 signs a hash (which should be the result of hashing a larger message) +// using the private key, priv. If the hash is longer than the bit-length of the +// private key's curve order, the hash will be truncated to that length. It +// returns the ASN.1 encoded signature. +func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) { + randutil.MaybeReadByte(rand) + + if boring.Enabled && rand == boring.RandReader { + b, err := boringPrivateKey(priv) + if err != nil { + return nil, err + } + return boring.SignMarshalECDSA(b, hash) + } + boring.UnreachableExceptTests() + + csprng, err := mixedCSPRNG(rand, priv, hash) + if err != nil { + return nil, err + } + + if sig, err := signAsm(priv, csprng, hash); err != errNoAsm { + return sig, err + } + + switch priv.Curve.Params() { + case elliptic.P224().Params(): + return signNISTEC(p224(), priv, csprng, hash) + case elliptic.P256().Params(): + return signNISTEC(p256(), priv, csprng, hash) + case elliptic.P384().Params(): + return signNISTEC(p384(), priv, csprng, hash) + case elliptic.P521().Params(): + return signNISTEC(p521(), priv, csprng, hash) + default: + return signLegacy(priv, csprng, hash) + } +} + +func signNISTEC[Point nistPoint[Point]](c *nistCurve[Point], priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) { + // SEC 1, Version 2.0, Section 4.1.3 + + k, R, err := randomPoint(c, csprng) + if err != nil { + return nil, err + } + + // kInv = k⁻¹ + kInv := bigmod.NewNat() + inverse(c, kInv, k) + + Rx, err := R.BytesX() + if err != nil { + return nil, err + } + r, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N) + if err != nil { + return nil, err + } + + // The spec wants us to retry here, but the chance of hitting this condition + // on a large prime-order group like the NIST curves we support is + // cryptographically negligible. If we hit it, something is awfully wrong. + if r.IsZero() == 1 { + return nil, errors.New("ecdsa: internal error: r is zero") + } + + e := bigmod.NewNat() + hashToNat(c, e, hash) + + s, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N) + if err != nil { + return nil, err + } + s.Mul(r, c.N) + s.Add(e, c.N) + s.Mul(kInv, c.N) + + // Again, the chance of this happening is cryptographically negligible. + if s.IsZero() == 1 { + return nil, errors.New("ecdsa: internal error: s is zero") + } + + return encodeSignature(r.Bytes(c.N), s.Bytes(c.N)) +} + +func encodeSignature(r, s []byte) ([]byte, error) { + var b cryptobyte.Builder + b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { + addASN1IntBytes(b, r) + addASN1IntBytes(b, s) + }) + return b.Bytes() +} + +// addASN1IntBytes encodes in ASN.1 a positive integer represented as +// a big-endian byte slice with zero or more leading zeroes. +func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) { + for len(bytes) > 0 && bytes[0] == 0 { + bytes = bytes[1:] + } + if len(bytes) == 0 { + b.SetError(errors.New("invalid integer")) + return + } + b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) { + if bytes[0]&0x80 != 0 { + c.AddUint8(0) + } + c.AddBytes(bytes) + }) +} + +// inverse sets kInv to the inverse of k modulo the order of the curve. +func inverse[Point nistPoint[Point]](c *nistCurve[Point], kInv, k *bigmod.Nat) { + if c.curve.Params().Name == "P-256" { + kBytes, err := nistec.P256OrdInverse(k.Bytes(c.N)) + // Some platforms don't implement P256OrdInverse, and always return an error. + if err == nil { + _, err := kInv.SetBytes(kBytes, c.N) + if err != nil { + panic("ecdsa: internal error: P256OrdInverse produced an invalid value") + } + return + } + } + + // Calculate the inverse of s in GF(N) using Fermat's method + // (exponentiation modulo P - 2, per Euler's theorem) + kInv.Exp(k, c.nMinus2, c.N) +} + +// hashToNat sets e to the left-most bits of hash, according to +// SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3. +func hashToNat[Point nistPoint[Point]](c *nistCurve[Point], e *bigmod.Nat, hash []byte) { + // ECDSA asks us to take the left-most log2(N) bits of hash, and use them as + // an integer modulo N. This is the absolute worst of all worlds: we still + // have to reduce, because the result might still overflow N, but to take + // the left-most bits for P-521 we have to do a right shift. + if size := c.N.Size(); len(hash) >= size { + hash = hash[:size] + if excess := len(hash)*8 - c.N.BitLen(); excess > 0 { + hash = bytes.Clone(hash) + for i := len(hash) - 1; i >= 0; i-- { + hash[i] >>= excess + if i > 0 { + hash[i] |= hash[i-1] << (8 - excess) + } + } + } + } + _, err := e.SetOverflowingBytes(hash, c.N) + if err != nil { + panic("ecdsa: internal error: truncated hash is too long") + } +} + +// mixedCSPRNG returns a CSPRNG that mixes entropy from rand with the message +// and the private key, to protect the key in case rand fails. This is +// equivalent in security to RFC 6979 deterministic nonce generation, but still +// produces randomized signatures. +func mixedCSPRNG(rand io.Reader, priv *PrivateKey, hash []byte) (io.Reader, error) { + // This implementation derives the nonce from an AES-CTR CSPRNG keyed by: + // + // SHA2-512(priv.D || entropy || hash)[:32] + // + // The CSPRNG key is indifferentiable from a random oracle as shown in + // [Coron], the AES-CTR stream is indifferentiable from a random oracle + // under standard cryptographic assumptions (see [Larsson] for examples). + // + // [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf + // [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf + + // Get 256 bits of entropy from rand. + entropy := make([]byte, 32) + if _, err := io.ReadFull(rand, entropy); err != nil { + return nil, err + } + + // Initialize an SHA-512 hash context; digest... + md := sha512.New() + md.Write(priv.D.Bytes()) // the private key, + md.Write(entropy) // the entropy, + md.Write(hash) // and the input hash; + key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), + // which is an indifferentiable MAC. + + // Create an AES-CTR instance to use as a CSPRNG. + block, err := aes.NewCipher(key) + if err != nil { + return nil, err + } + + // Create a CSPRNG that xors a stream of zeros with + // the output of the AES-CTR instance. + const aesIV = "IV for ECDSA CTR" + return &cipher.StreamReader{ + R: zeroReader, + S: cipher.NewCTR(block, []byte(aesIV)), + }, nil +} + +type zr struct{} + +var zeroReader = zr{} + +// Read replaces the contents of dst with zeros. It is safe for concurrent use. +func (zr) Read(dst []byte) (n int, err error) { + for i := range dst { + dst[i] = 0 + } + return len(dst), nil +} + +// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the +// public key, pub. Its return value records whether the signature is valid. +func VerifyASN1(pub *PublicKey, hash, sig []byte) bool { + if boring.Enabled { + key, err := boringPublicKey(pub) + if err != nil { + return false + } + return boring.VerifyECDSA(key, hash, sig) + } + boring.UnreachableExceptTests() + + if err := verifyAsm(pub, hash, sig); err != errNoAsm { + return err == nil + } + + switch pub.Curve.Params() { + case elliptic.P224().Params(): + return verifyNISTEC(p224(), pub, hash, sig) + case elliptic.P256().Params(): + return verifyNISTEC(p256(), pub, hash, sig) + case elliptic.P384().Params(): + return verifyNISTEC(p384(), pub, hash, sig) + case elliptic.P521().Params(): + return verifyNISTEC(p521(), pub, hash, sig) + default: + return verifyLegacy(pub, hash, sig) + } +} + +func verifyNISTEC[Point nistPoint[Point]](c *nistCurve[Point], pub *PublicKey, hash, sig []byte) bool { + rBytes, sBytes, err := parseSignature(sig) + if err != nil { + return false + } + + Q, err := c.pointFromAffine(pub.X, pub.Y) + if err != nil { + return false + } + + // SEC 1, Version 2.0, Section 4.1.4 + + r, err := bigmod.NewNat().SetBytes(rBytes, c.N) + if err != nil || r.IsZero() == 1 { + return false + } + s, err := bigmod.NewNat().SetBytes(sBytes, c.N) + if err != nil || s.IsZero() == 1 { + return false + } + + e := bigmod.NewNat() + hashToNat(c, e, hash) + + // w = s⁻¹ + w := bigmod.NewNat() + inverse(c, w, s) + + // p₁ = [e * s⁻¹]G + p1, err := c.newPoint().ScalarBaseMult(e.Mul(w, c.N).Bytes(c.N)) + if err != nil { + return false + } + // p₂ = [r * s⁻¹]Q + p2, err := Q.ScalarMult(Q, w.Mul(r, c.N).Bytes(c.N)) + if err != nil { + return false + } + // BytesX returns an error for the point at infinity. + Rx, err := p1.Add(p1, p2).BytesX() + if err != nil { + return false + } + + v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N) + if err != nil { + return false + } + + return v.Equal(r) == 1 +} + +func parseSignature(sig []byte) (r, s []byte, err error) { + var inner cryptobyte.String + input := cryptobyte.String(sig) + if !input.ReadASN1(&inner, asn1.SEQUENCE) || + !input.Empty() || + !inner.ReadASN1Integer(&r) || + !inner.ReadASN1Integer(&s) || + !inner.Empty() { + return nil, nil, errors.New("invalid ASN.1") + } + return r, s, nil +} + +type nistCurve[Point nistPoint[Point]] struct { + newPoint func() Point + curve elliptic.Curve + N *bigmod.Modulus + nMinus2 []byte +} + +// nistPoint is a generic constraint for the nistec Point types. +type nistPoint[T any] interface { + Bytes() []byte + BytesX() ([]byte, error) + SetBytes([]byte) (T, error) + Add(T, T) T + ScalarMult(T, []byte) (T, error) + ScalarBaseMult([]byte) (T, error) +} + +// pointFromAffine is used to convert the PublicKey to a nistec Point. +func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) { + bitSize := curve.curve.Params().BitSize + // Reject values that would not get correctly encoded. + if x.Sign() < 0 || y.Sign() < 0 { + return p, errors.New("negative coordinate") + } + if x.BitLen() > bitSize || y.BitLen() > bitSize { + return p, errors.New("overflowing coordinate") + } + // Encode the coordinates and let SetBytes reject invalid points. + byteLen := (bitSize + 7) / 8 + buf := make([]byte, 1+2*byteLen) + buf[0] = 4 // uncompressed point + x.FillBytes(buf[1 : 1+byteLen]) + y.FillBytes(buf[1+byteLen : 1+2*byteLen]) + return curve.newPoint().SetBytes(buf) +} + +// pointToAffine is used to convert a nistec Point to a PublicKey. +func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int, err error) { + out := p.Bytes() + if len(out) == 1 && out[0] == 0 { + // This is the encoding of the point at infinity. + return nil, nil, errors.New("ecdsa: public key point is the infinity") + } + byteLen := (curve.curve.Params().BitSize + 7) / 8 + x = new(big.Int).SetBytes(out[1 : 1+byteLen]) + y = new(big.Int).SetBytes(out[1+byteLen:]) + return x, y, nil +} + +var p224Once sync.Once +var _p224 *nistCurve[*nistec.P224Point] + +func p224() *nistCurve[*nistec.P224Point] { + p224Once.Do(func() { + _p224 = &nistCurve[*nistec.P224Point]{ + newPoint: func() *nistec.P224Point { return nistec.NewP224Point() }, + } + precomputeParams(_p224, elliptic.P224()) + }) + return _p224 +} + +var p256Once sync.Once +var _p256 *nistCurve[*nistec.P256Point] + +func p256() *nistCurve[*nistec.P256Point] { + p256Once.Do(func() { + _p256 = &nistCurve[*nistec.P256Point]{ + newPoint: func() *nistec.P256Point { return nistec.NewP256Point() }, + } + precomputeParams(_p256, elliptic.P256()) + }) + return _p256 +} + +var p384Once sync.Once +var _p384 *nistCurve[*nistec.P384Point] + +func p384() *nistCurve[*nistec.P384Point] { + p384Once.Do(func() { + _p384 = &nistCurve[*nistec.P384Point]{ + newPoint: func() *nistec.P384Point { return nistec.NewP384Point() }, + } + precomputeParams(_p384, elliptic.P384()) + }) + return _p384 +} + +var p521Once sync.Once +var _p521 *nistCurve[*nistec.P521Point] + +func p521() *nistCurve[*nistec.P521Point] { + p521Once.Do(func() { + _p521 = &nistCurve[*nistec.P521Point]{ + newPoint: func() *nistec.P521Point { return nistec.NewP521Point() }, + } + precomputeParams(_p521, elliptic.P521()) + }) + return _p521 +} + +func precomputeParams[Point nistPoint[Point]](c *nistCurve[Point], curve elliptic.Curve) { + params := curve.Params() + c.curve = curve + c.N = bigmod.NewModulusFromBig(params.N) + c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes() +} |