summaryrefslogtreecommitdiffstats
path: root/src/crypto/ecdsa/ecdsa.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/ecdsa/ecdsa.go')
-rw-r--r--src/crypto/ecdsa/ecdsa.go660
1 files changed, 660 insertions, 0 deletions
diff --git a/src/crypto/ecdsa/ecdsa.go b/src/crypto/ecdsa/ecdsa.go
new file mode 100644
index 0000000..03a9a72
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa.go
@@ -0,0 +1,660 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
+// defined in FIPS 186-4 and SEC 1, Version 2.0.
+//
+// Signatures generated by this package are not deterministic, but entropy is
+// mixed with the private key and the message, achieving the same level of
+// security in case of randomness source failure.
+package ecdsa
+
+// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
+// That standard is not freely available, which is a problem in an open source
+// implementation, because not only the implementer, but also any maintainer,
+// contributor, reviewer, auditor, and learner needs access to it. Instead, this
+// package references and follows the equivalent [SEC 1, Version 2.0].
+//
+// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
+// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf
+
+import (
+ "bytes"
+ "crypto"
+ "crypto/aes"
+ "crypto/cipher"
+ "crypto/ecdh"
+ "crypto/elliptic"
+ "crypto/internal/bigmod"
+ "crypto/internal/boring"
+ "crypto/internal/boring/bbig"
+ "crypto/internal/nistec"
+ "crypto/internal/randutil"
+ "crypto/sha512"
+ "crypto/subtle"
+ "errors"
+ "io"
+ "math/big"
+ "sync"
+
+ "golang.org/x/crypto/cryptobyte"
+ "golang.org/x/crypto/cryptobyte/asn1"
+)
+
+// PublicKey represents an ECDSA public key.
+type PublicKey struct {
+ elliptic.Curve
+ X, Y *big.Int
+}
+
+// Any methods implemented on PublicKey might need to also be implemented on
+// PrivateKey, as the latter embeds the former and will expose its methods.
+
+// ECDH returns k as a [ecdh.PublicKey]. It returns an error if the key is
+// invalid according to the definition of [ecdh.Curve.NewPublicKey], or if the
+// Curve is not supported by crypto/ecdh.
+func (k *PublicKey) ECDH() (*ecdh.PublicKey, error) {
+ c := curveToECDH(k.Curve)
+ if c == nil {
+ return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
+ }
+ if !k.Curve.IsOnCurve(k.X, k.Y) {
+ return nil, errors.New("ecdsa: invalid public key")
+ }
+ return c.NewPublicKey(elliptic.Marshal(k.Curve, k.X, k.Y))
+}
+
+// Equal reports whether pub and x have the same value.
+//
+// Two keys are only considered to have the same value if they have the same Curve value.
+// Note that for example elliptic.P256() and elliptic.P256().Params() are different
+// values, as the latter is a generic not constant time implementation.
+func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
+ xx, ok := x.(*PublicKey)
+ if !ok {
+ return false
+ }
+ return bigIntEqual(pub.X, xx.X) && bigIntEqual(pub.Y, xx.Y) &&
+ // Standard library Curve implementations are singletons, so this check
+ // will work for those. Other Curves might be equivalent even if not
+ // singletons, but there is no definitive way to check for that, and
+ // better to err on the side of safety.
+ pub.Curve == xx.Curve
+}
+
+// PrivateKey represents an ECDSA private key.
+type PrivateKey struct {
+ PublicKey
+ D *big.Int
+}
+
+// ECDH returns k as a [ecdh.PrivateKey]. It returns an error if the key is
+// invalid according to the definition of [ecdh.Curve.NewPrivateKey], or if the
+// Curve is not supported by crypto/ecdh.
+func (k *PrivateKey) ECDH() (*ecdh.PrivateKey, error) {
+ c := curveToECDH(k.Curve)
+ if c == nil {
+ return nil, errors.New("ecdsa: unsupported curve by crypto/ecdh")
+ }
+ size := (k.Curve.Params().N.BitLen() + 7) / 8
+ if k.D.BitLen() > size*8 {
+ return nil, errors.New("ecdsa: invalid private key")
+ }
+ return c.NewPrivateKey(k.D.FillBytes(make([]byte, size)))
+}
+
+func curveToECDH(c elliptic.Curve) ecdh.Curve {
+ switch c {
+ case elliptic.P256():
+ return ecdh.P256()
+ case elliptic.P384():
+ return ecdh.P384()
+ case elliptic.P521():
+ return ecdh.P521()
+ default:
+ return nil
+ }
+}
+
+// Public returns the public key corresponding to priv.
+func (priv *PrivateKey) Public() crypto.PublicKey {
+ return &priv.PublicKey
+}
+
+// Equal reports whether priv and x have the same value.
+//
+// See PublicKey.Equal for details on how Curve is compared.
+func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
+ xx, ok := x.(*PrivateKey)
+ if !ok {
+ return false
+ }
+ return priv.PublicKey.Equal(&xx.PublicKey) && bigIntEqual(priv.D, xx.D)
+}
+
+// bigIntEqual reports whether a and b are equal leaking only their bit length
+// through timing side-channels.
+func bigIntEqual(a, b *big.Int) bool {
+ return subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1
+}
+
+// Sign signs digest with priv, reading randomness from rand. The opts argument
+// is not currently used but, in keeping with the crypto.Signer interface,
+// should be the hash function used to digest the message.
+//
+// This method implements crypto.Signer, which is an interface to support keys
+// where the private part is kept in, for example, a hardware module. Common
+// uses can use the SignASN1 function in this package directly.
+func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
+ return SignASN1(rand, priv, digest)
+}
+
+// GenerateKey generates a public and private key pair.
+func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
+ randutil.MaybeReadByte(rand)
+
+ if boring.Enabled && rand == boring.RandReader {
+ x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name)
+ if err != nil {
+ return nil, err
+ }
+ return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil
+ }
+ boring.UnreachableExceptTests()
+
+ switch c.Params() {
+ case elliptic.P224().Params():
+ return generateNISTEC(p224(), rand)
+ case elliptic.P256().Params():
+ return generateNISTEC(p256(), rand)
+ case elliptic.P384().Params():
+ return generateNISTEC(p384(), rand)
+ case elliptic.P521().Params():
+ return generateNISTEC(p521(), rand)
+ default:
+ return generateLegacy(c, rand)
+ }
+}
+
+func generateNISTEC[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (*PrivateKey, error) {
+ k, Q, err := randomPoint(c, rand)
+ if err != nil {
+ return nil, err
+ }
+
+ priv := new(PrivateKey)
+ priv.PublicKey.Curve = c.curve
+ priv.D = new(big.Int).SetBytes(k.Bytes(c.N))
+ priv.PublicKey.X, priv.PublicKey.Y, err = c.pointToAffine(Q)
+ if err != nil {
+ return nil, err
+ }
+ return priv, nil
+}
+
+// randomPoint returns a random scalar and the corresponding point using the
+// procedure given in FIPS 186-4, Appendix B.5.2 (rejection sampling).
+func randomPoint[Point nistPoint[Point]](c *nistCurve[Point], rand io.Reader) (k *bigmod.Nat, p Point, err error) {
+ k = bigmod.NewNat()
+ for {
+ b := make([]byte, c.N.Size())
+ if _, err = io.ReadFull(rand, b); err != nil {
+ return
+ }
+
+ // Mask off any excess bits to increase the chance of hitting a value in
+ // (0, N). These are the most dangerous lines in the package and maybe in
+ // the library: a single bit of bias in the selection of nonces would likely
+ // lead to key recovery, but no tests would fail. Look but DO NOT TOUCH.
+ if excess := len(b)*8 - c.N.BitLen(); excess > 0 {
+ // Just to be safe, assert that this only happens for the one curve that
+ // doesn't have a round number of bits.
+ if excess != 0 && c.curve.Params().Name != "P-521" {
+ panic("ecdsa: internal error: unexpectedly masking off bits")
+ }
+ b[0] >>= excess
+ }
+
+ // FIPS 186-4 makes us check k <= N - 2 and then add one.
+ // Checking 0 < k <= N - 1 is strictly equivalent.
+ // None of this matters anyway because the chance of selecting
+ // zero is cryptographically negligible.
+ if _, err = k.SetBytes(b, c.N); err == nil && k.IsZero() == 0 {
+ break
+ }
+
+ if testingOnlyRejectionSamplingLooped != nil {
+ testingOnlyRejectionSamplingLooped()
+ }
+ }
+
+ p, err = c.newPoint().ScalarBaseMult(k.Bytes(c.N))
+ return
+}
+
+// testingOnlyRejectionSamplingLooped is called when rejection sampling in
+// randomPoint rejects a candidate for being higher than the modulus.
+var testingOnlyRejectionSamplingLooped func()
+
+// errNoAsm is returned by signAsm and verifyAsm when the assembly
+// implementation is not available.
+var errNoAsm = errors.New("no assembly implementation available")
+
+// SignASN1 signs a hash (which should be the result of hashing a larger message)
+// using the private key, priv. If the hash is longer than the bit-length of the
+// private key's curve order, the hash will be truncated to that length. It
+// returns the ASN.1 encoded signature.
+func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
+ randutil.MaybeReadByte(rand)
+
+ if boring.Enabled && rand == boring.RandReader {
+ b, err := boringPrivateKey(priv)
+ if err != nil {
+ return nil, err
+ }
+ return boring.SignMarshalECDSA(b, hash)
+ }
+ boring.UnreachableExceptTests()
+
+ csprng, err := mixedCSPRNG(rand, priv, hash)
+ if err != nil {
+ return nil, err
+ }
+
+ if sig, err := signAsm(priv, csprng, hash); err != errNoAsm {
+ return sig, err
+ }
+
+ switch priv.Curve.Params() {
+ case elliptic.P224().Params():
+ return signNISTEC(p224(), priv, csprng, hash)
+ case elliptic.P256().Params():
+ return signNISTEC(p256(), priv, csprng, hash)
+ case elliptic.P384().Params():
+ return signNISTEC(p384(), priv, csprng, hash)
+ case elliptic.P521().Params():
+ return signNISTEC(p521(), priv, csprng, hash)
+ default:
+ return signLegacy(priv, csprng, hash)
+ }
+}
+
+func signNISTEC[Point nistPoint[Point]](c *nistCurve[Point], priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
+ // SEC 1, Version 2.0, Section 4.1.3
+
+ k, R, err := randomPoint(c, csprng)
+ if err != nil {
+ return nil, err
+ }
+
+ // kInv = k⁻¹
+ kInv := bigmod.NewNat()
+ inverse(c, kInv, k)
+
+ Rx, err := R.BytesX()
+ if err != nil {
+ return nil, err
+ }
+ r, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
+ if err != nil {
+ return nil, err
+ }
+
+ // The spec wants us to retry here, but the chance of hitting this condition
+ // on a large prime-order group like the NIST curves we support is
+ // cryptographically negligible. If we hit it, something is awfully wrong.
+ if r.IsZero() == 1 {
+ return nil, errors.New("ecdsa: internal error: r is zero")
+ }
+
+ e := bigmod.NewNat()
+ hashToNat(c, e, hash)
+
+ s, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), c.N)
+ if err != nil {
+ return nil, err
+ }
+ s.Mul(r, c.N)
+ s.Add(e, c.N)
+ s.Mul(kInv, c.N)
+
+ // Again, the chance of this happening is cryptographically negligible.
+ if s.IsZero() == 1 {
+ return nil, errors.New("ecdsa: internal error: s is zero")
+ }
+
+ return encodeSignature(r.Bytes(c.N), s.Bytes(c.N))
+}
+
+func encodeSignature(r, s []byte) ([]byte, error) {
+ var b cryptobyte.Builder
+ b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
+ addASN1IntBytes(b, r)
+ addASN1IntBytes(b, s)
+ })
+ return b.Bytes()
+}
+
+// addASN1IntBytes encodes in ASN.1 a positive integer represented as
+// a big-endian byte slice with zero or more leading zeroes.
+func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) {
+ for len(bytes) > 0 && bytes[0] == 0 {
+ bytes = bytes[1:]
+ }
+ if len(bytes) == 0 {
+ b.SetError(errors.New("invalid integer"))
+ return
+ }
+ b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) {
+ if bytes[0]&0x80 != 0 {
+ c.AddUint8(0)
+ }
+ c.AddBytes(bytes)
+ })
+}
+
+// inverse sets kInv to the inverse of k modulo the order of the curve.
+func inverse[Point nistPoint[Point]](c *nistCurve[Point], kInv, k *bigmod.Nat) {
+ if c.curve.Params().Name == "P-256" {
+ kBytes, err := nistec.P256OrdInverse(k.Bytes(c.N))
+ // Some platforms don't implement P256OrdInverse, and always return an error.
+ if err == nil {
+ _, err := kInv.SetBytes(kBytes, c.N)
+ if err != nil {
+ panic("ecdsa: internal error: P256OrdInverse produced an invalid value")
+ }
+ return
+ }
+ }
+
+ // Calculate the inverse of s in GF(N) using Fermat's method
+ // (exponentiation modulo P - 2, per Euler's theorem)
+ kInv.Exp(k, c.nMinus2, c.N)
+}
+
+// hashToNat sets e to the left-most bits of hash, according to
+// SEC 1, Section 4.1.3, point 5 and Section 4.1.4, point 3.
+func hashToNat[Point nistPoint[Point]](c *nistCurve[Point], e *bigmod.Nat, hash []byte) {
+ // ECDSA asks us to take the left-most log2(N) bits of hash, and use them as
+ // an integer modulo N. This is the absolute worst of all worlds: we still
+ // have to reduce, because the result might still overflow N, but to take
+ // the left-most bits for P-521 we have to do a right shift.
+ if size := c.N.Size(); len(hash) >= size {
+ hash = hash[:size]
+ if excess := len(hash)*8 - c.N.BitLen(); excess > 0 {
+ hash = bytes.Clone(hash)
+ for i := len(hash) - 1; i >= 0; i-- {
+ hash[i] >>= excess
+ if i > 0 {
+ hash[i] |= hash[i-1] << (8 - excess)
+ }
+ }
+ }
+ }
+ _, err := e.SetOverflowingBytes(hash, c.N)
+ if err != nil {
+ panic("ecdsa: internal error: truncated hash is too long")
+ }
+}
+
+// mixedCSPRNG returns a CSPRNG that mixes entropy from rand with the message
+// and the private key, to protect the key in case rand fails. This is
+// equivalent in security to RFC 6979 deterministic nonce generation, but still
+// produces randomized signatures.
+func mixedCSPRNG(rand io.Reader, priv *PrivateKey, hash []byte) (io.Reader, error) {
+ // This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
+ //
+ // SHA2-512(priv.D || entropy || hash)[:32]
+ //
+ // The CSPRNG key is indifferentiable from a random oracle as shown in
+ // [Coron], the AES-CTR stream is indifferentiable from a random oracle
+ // under standard cryptographic assumptions (see [Larsson] for examples).
+ //
+ // [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
+ // [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
+
+ // Get 256 bits of entropy from rand.
+ entropy := make([]byte, 32)
+ if _, err := io.ReadFull(rand, entropy); err != nil {
+ return nil, err
+ }
+
+ // Initialize an SHA-512 hash context; digest...
+ md := sha512.New()
+ md.Write(priv.D.Bytes()) // the private key,
+ md.Write(entropy) // the entropy,
+ md.Write(hash) // and the input hash;
+ key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
+ // which is an indifferentiable MAC.
+
+ // Create an AES-CTR instance to use as a CSPRNG.
+ block, err := aes.NewCipher(key)
+ if err != nil {
+ return nil, err
+ }
+
+ // Create a CSPRNG that xors a stream of zeros with
+ // the output of the AES-CTR instance.
+ const aesIV = "IV for ECDSA CTR"
+ return &cipher.StreamReader{
+ R: zeroReader,
+ S: cipher.NewCTR(block, []byte(aesIV)),
+ }, nil
+}
+
+type zr struct{}
+
+var zeroReader = zr{}
+
+// Read replaces the contents of dst with zeros. It is safe for concurrent use.
+func (zr) Read(dst []byte) (n int, err error) {
+ for i := range dst {
+ dst[i] = 0
+ }
+ return len(dst), nil
+}
+
+// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
+// public key, pub. Its return value records whether the signature is valid.
+func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
+ if boring.Enabled {
+ key, err := boringPublicKey(pub)
+ if err != nil {
+ return false
+ }
+ return boring.VerifyECDSA(key, hash, sig)
+ }
+ boring.UnreachableExceptTests()
+
+ if err := verifyAsm(pub, hash, sig); err != errNoAsm {
+ return err == nil
+ }
+
+ switch pub.Curve.Params() {
+ case elliptic.P224().Params():
+ return verifyNISTEC(p224(), pub, hash, sig)
+ case elliptic.P256().Params():
+ return verifyNISTEC(p256(), pub, hash, sig)
+ case elliptic.P384().Params():
+ return verifyNISTEC(p384(), pub, hash, sig)
+ case elliptic.P521().Params():
+ return verifyNISTEC(p521(), pub, hash, sig)
+ default:
+ return verifyLegacy(pub, hash, sig)
+ }
+}
+
+func verifyNISTEC[Point nistPoint[Point]](c *nistCurve[Point], pub *PublicKey, hash, sig []byte) bool {
+ rBytes, sBytes, err := parseSignature(sig)
+ if err != nil {
+ return false
+ }
+
+ Q, err := c.pointFromAffine(pub.X, pub.Y)
+ if err != nil {
+ return false
+ }
+
+ // SEC 1, Version 2.0, Section 4.1.4
+
+ r, err := bigmod.NewNat().SetBytes(rBytes, c.N)
+ if err != nil || r.IsZero() == 1 {
+ return false
+ }
+ s, err := bigmod.NewNat().SetBytes(sBytes, c.N)
+ if err != nil || s.IsZero() == 1 {
+ return false
+ }
+
+ e := bigmod.NewNat()
+ hashToNat(c, e, hash)
+
+ // w = s⁻¹
+ w := bigmod.NewNat()
+ inverse(c, w, s)
+
+ // p₁ = [e * s⁻¹]G
+ p1, err := c.newPoint().ScalarBaseMult(e.Mul(w, c.N).Bytes(c.N))
+ if err != nil {
+ return false
+ }
+ // p₂ = [r * s⁻¹]Q
+ p2, err := Q.ScalarMult(Q, w.Mul(r, c.N).Bytes(c.N))
+ if err != nil {
+ return false
+ }
+ // BytesX returns an error for the point at infinity.
+ Rx, err := p1.Add(p1, p2).BytesX()
+ if err != nil {
+ return false
+ }
+
+ v, err := bigmod.NewNat().SetOverflowingBytes(Rx, c.N)
+ if err != nil {
+ return false
+ }
+
+ return v.Equal(r) == 1
+}
+
+func parseSignature(sig []byte) (r, s []byte, err error) {
+ var inner cryptobyte.String
+ input := cryptobyte.String(sig)
+ if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
+ !input.Empty() ||
+ !inner.ReadASN1Integer(&r) ||
+ !inner.ReadASN1Integer(&s) ||
+ !inner.Empty() {
+ return nil, nil, errors.New("invalid ASN.1")
+ }
+ return r, s, nil
+}
+
+type nistCurve[Point nistPoint[Point]] struct {
+ newPoint func() Point
+ curve elliptic.Curve
+ N *bigmod.Modulus
+ nMinus2 []byte
+}
+
+// nistPoint is a generic constraint for the nistec Point types.
+type nistPoint[T any] interface {
+ Bytes() []byte
+ BytesX() ([]byte, error)
+ SetBytes([]byte) (T, error)
+ Add(T, T) T
+ ScalarMult(T, []byte) (T, error)
+ ScalarBaseMult([]byte) (T, error)
+}
+
+// pointFromAffine is used to convert the PublicKey to a nistec Point.
+func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) {
+ bitSize := curve.curve.Params().BitSize
+ // Reject values that would not get correctly encoded.
+ if x.Sign() < 0 || y.Sign() < 0 {
+ return p, errors.New("negative coordinate")
+ }
+ if x.BitLen() > bitSize || y.BitLen() > bitSize {
+ return p, errors.New("overflowing coordinate")
+ }
+ // Encode the coordinates and let SetBytes reject invalid points.
+ byteLen := (bitSize + 7) / 8
+ buf := make([]byte, 1+2*byteLen)
+ buf[0] = 4 // uncompressed point
+ x.FillBytes(buf[1 : 1+byteLen])
+ y.FillBytes(buf[1+byteLen : 1+2*byteLen])
+ return curve.newPoint().SetBytes(buf)
+}
+
+// pointToAffine is used to convert a nistec Point to a PublicKey.
+func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int, err error) {
+ out := p.Bytes()
+ if len(out) == 1 && out[0] == 0 {
+ // This is the encoding of the point at infinity.
+ return nil, nil, errors.New("ecdsa: public key point is the infinity")
+ }
+ byteLen := (curve.curve.Params().BitSize + 7) / 8
+ x = new(big.Int).SetBytes(out[1 : 1+byteLen])
+ y = new(big.Int).SetBytes(out[1+byteLen:])
+ return x, y, nil
+}
+
+var p224Once sync.Once
+var _p224 *nistCurve[*nistec.P224Point]
+
+func p224() *nistCurve[*nistec.P224Point] {
+ p224Once.Do(func() {
+ _p224 = &nistCurve[*nistec.P224Point]{
+ newPoint: func() *nistec.P224Point { return nistec.NewP224Point() },
+ }
+ precomputeParams(_p224, elliptic.P224())
+ })
+ return _p224
+}
+
+var p256Once sync.Once
+var _p256 *nistCurve[*nistec.P256Point]
+
+func p256() *nistCurve[*nistec.P256Point] {
+ p256Once.Do(func() {
+ _p256 = &nistCurve[*nistec.P256Point]{
+ newPoint: func() *nistec.P256Point { return nistec.NewP256Point() },
+ }
+ precomputeParams(_p256, elliptic.P256())
+ })
+ return _p256
+}
+
+var p384Once sync.Once
+var _p384 *nistCurve[*nistec.P384Point]
+
+func p384() *nistCurve[*nistec.P384Point] {
+ p384Once.Do(func() {
+ _p384 = &nistCurve[*nistec.P384Point]{
+ newPoint: func() *nistec.P384Point { return nistec.NewP384Point() },
+ }
+ precomputeParams(_p384, elliptic.P384())
+ })
+ return _p384
+}
+
+var p521Once sync.Once
+var _p521 *nistCurve[*nistec.P521Point]
+
+func p521() *nistCurve[*nistec.P521Point] {
+ p521Once.Do(func() {
+ _p521 = &nistCurve[*nistec.P521Point]{
+ newPoint: func() *nistec.P521Point { return nistec.NewP521Point() },
+ }
+ precomputeParams(_p521, elliptic.P521())
+ })
+ return _p521
+}
+
+func precomputeParams[Point nistPoint[Point]](c *nistCurve[Point], curve elliptic.Curve) {
+ params := curve.Params()
+ c.curve = curve
+ c.N = bigmod.NewModulusFromBig(params.N)
+ c.nMinus2 = new(big.Int).Sub(params.N, big.NewInt(2)).Bytes()
+}