diff options
Diffstat (limited to 'src/crypto/elliptic/params.go')
-rw-r--r-- | src/crypto/elliptic/params.go | 333 |
1 files changed, 333 insertions, 0 deletions
diff --git a/src/crypto/elliptic/params.go b/src/crypto/elliptic/params.go new file mode 100644 index 0000000..c4e9784 --- /dev/null +++ b/src/crypto/elliptic/params.go @@ -0,0 +1,333 @@ +// Copyright 2021 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package elliptic + +import "math/big" + +// CurveParams contains the parameters of an elliptic curve and also provides +// a generic, non-constant time implementation of Curve. +// +// Note: Custom curves (those not returned by P224(), P256(), P384(), and P521()) +// are not guaranteed to provide any security property. +type CurveParams struct { + P *big.Int // the order of the underlying field + N *big.Int // the order of the base point + B *big.Int // the constant of the curve equation + Gx, Gy *big.Int // (x,y) of the base point + BitSize int // the size of the underlying field + Name string // the canonical name of the curve +} + +func (curve *CurveParams) Params() *CurveParams { + return curve +} + +// CurveParams operates, internally, on Jacobian coordinates. For a given +// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) +// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole +// calculation can be performed within the transform (as in ScalarMult and +// ScalarBaseMult). But even for Add and Double, it's faster to apply and +// reverse the transform than to operate in affine coordinates. + +// polynomial returns x³ - 3x + b. +func (curve *CurveParams) polynomial(x *big.Int) *big.Int { + x3 := new(big.Int).Mul(x, x) + x3.Mul(x3, x) + + threeX := new(big.Int).Lsh(x, 1) + threeX.Add(threeX, x) + + x3.Sub(x3, threeX) + x3.Add(x3, curve.B) + x3.Mod(x3, curve.P) + + return x3 +} + +// IsOnCurve implements Curve.IsOnCurve. +// +// Note: the CurveParams methods are not guaranteed to +// provide any security property. For ECDH, use the crypto/ecdh package. +// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly +// from P224(), P256(), P384(), or P521(). +func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve); ok { + return specific.IsOnCurve(x, y) + } + + if x.Sign() < 0 || x.Cmp(curve.P) >= 0 || + y.Sign() < 0 || y.Cmp(curve.P) >= 0 { + return false + } + + // y² = x³ - 3x + b + y2 := new(big.Int).Mul(y, y) + y2.Mod(y2, curve.P) + + return curve.polynomial(x).Cmp(y2) == 0 +} + +// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and +// y are zero, it assumes that they represent the point at infinity because (0, +// 0) is not on the any of the curves handled here. +func zForAffine(x, y *big.Int) *big.Int { + z := new(big.Int) + if x.Sign() != 0 || y.Sign() != 0 { + z.SetInt64(1) + } + return z +} + +// affineFromJacobian reverses the Jacobian transform. See the comment at the +// top of the file. If the point is ∞ it returns 0, 0. +func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { + if z.Sign() == 0 { + return new(big.Int), new(big.Int) + } + + zinv := new(big.Int).ModInverse(z, curve.P) + zinvsq := new(big.Int).Mul(zinv, zinv) + + xOut = new(big.Int).Mul(x, zinvsq) + xOut.Mod(xOut, curve.P) + zinvsq.Mul(zinvsq, zinv) + yOut = new(big.Int).Mul(y, zinvsq) + yOut.Mod(yOut, curve.P) + return +} + +// Add implements Curve.Add. +// +// Note: the CurveParams methods are not guaranteed to +// provide any security property. For ECDH, use the crypto/ecdh package. +// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly +// from P224(), P256(), P384(), or P521(). +func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve); ok { + return specific.Add(x1, y1, x2, y2) + } + panicIfNotOnCurve(curve, x1, y1) + panicIfNotOnCurve(curve, x2, y2) + + z1 := zForAffine(x1, y1) + z2 := zForAffine(x2, y2) + return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2)) +} + +// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and +// (x2, y2, z2) and returns their sum, also in Jacobian form. +func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { + // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl + x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int) + if z1.Sign() == 0 { + x3.Set(x2) + y3.Set(y2) + z3.Set(z2) + return x3, y3, z3 + } + if z2.Sign() == 0 { + x3.Set(x1) + y3.Set(y1) + z3.Set(z1) + return x3, y3, z3 + } + + z1z1 := new(big.Int).Mul(z1, z1) + z1z1.Mod(z1z1, curve.P) + z2z2 := new(big.Int).Mul(z2, z2) + z2z2.Mod(z2z2, curve.P) + + u1 := new(big.Int).Mul(x1, z2z2) + u1.Mod(u1, curve.P) + u2 := new(big.Int).Mul(x2, z1z1) + u2.Mod(u2, curve.P) + h := new(big.Int).Sub(u2, u1) + xEqual := h.Sign() == 0 + if h.Sign() == -1 { + h.Add(h, curve.P) + } + i := new(big.Int).Lsh(h, 1) + i.Mul(i, i) + j := new(big.Int).Mul(h, i) + + s1 := new(big.Int).Mul(y1, z2) + s1.Mul(s1, z2z2) + s1.Mod(s1, curve.P) + s2 := new(big.Int).Mul(y2, z1) + s2.Mul(s2, z1z1) + s2.Mod(s2, curve.P) + r := new(big.Int).Sub(s2, s1) + if r.Sign() == -1 { + r.Add(r, curve.P) + } + yEqual := r.Sign() == 0 + if xEqual && yEqual { + return curve.doubleJacobian(x1, y1, z1) + } + r.Lsh(r, 1) + v := new(big.Int).Mul(u1, i) + + x3.Set(r) + x3.Mul(x3, x3) + x3.Sub(x3, j) + x3.Sub(x3, v) + x3.Sub(x3, v) + x3.Mod(x3, curve.P) + + y3.Set(r) + v.Sub(v, x3) + y3.Mul(y3, v) + s1.Mul(s1, j) + s1.Lsh(s1, 1) + y3.Sub(y3, s1) + y3.Mod(y3, curve.P) + + z3.Add(z1, z2) + z3.Mul(z3, z3) + z3.Sub(z3, z1z1) + z3.Sub(z3, z2z2) + z3.Mul(z3, h) + z3.Mod(z3, curve.P) + + return x3, y3, z3 +} + +// Double implements Curve.Double. +// +// Note: the CurveParams methods are not guaranteed to +// provide any security property. For ECDH, use the crypto/ecdh package. +// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly +// from P224(), P256(), P384(), or P521(). +func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve); ok { + return specific.Double(x1, y1) + } + panicIfNotOnCurve(curve, x1, y1) + + z1 := zForAffine(x1, y1) + return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) +} + +// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and +// returns its double, also in Jacobian form. +func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { + // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b + delta := new(big.Int).Mul(z, z) + delta.Mod(delta, curve.P) + gamma := new(big.Int).Mul(y, y) + gamma.Mod(gamma, curve.P) + alpha := new(big.Int).Sub(x, delta) + if alpha.Sign() == -1 { + alpha.Add(alpha, curve.P) + } + alpha2 := new(big.Int).Add(x, delta) + alpha.Mul(alpha, alpha2) + alpha2.Set(alpha) + alpha.Lsh(alpha, 1) + alpha.Add(alpha, alpha2) + + beta := alpha2.Mul(x, gamma) + + x3 := new(big.Int).Mul(alpha, alpha) + beta8 := new(big.Int).Lsh(beta, 3) + beta8.Mod(beta8, curve.P) + x3.Sub(x3, beta8) + if x3.Sign() == -1 { + x3.Add(x3, curve.P) + } + x3.Mod(x3, curve.P) + + z3 := new(big.Int).Add(y, z) + z3.Mul(z3, z3) + z3.Sub(z3, gamma) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Sub(z3, delta) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Mod(z3, curve.P) + + beta.Lsh(beta, 2) + beta.Sub(beta, x3) + if beta.Sign() == -1 { + beta.Add(beta, curve.P) + } + y3 := alpha.Mul(alpha, beta) + + gamma.Mul(gamma, gamma) + gamma.Lsh(gamma, 3) + gamma.Mod(gamma, curve.P) + + y3.Sub(y3, gamma) + if y3.Sign() == -1 { + y3.Add(y3, curve.P) + } + y3.Mod(y3, curve.P) + + return x3, y3, z3 +} + +// ScalarMult implements Curve.ScalarMult. +// +// Note: the CurveParams methods are not guaranteed to +// provide any security property. For ECDH, use the crypto/ecdh package. +// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly +// from P224(), P256(), P384(), or P521(). +func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve); ok { + return specific.ScalarMult(Bx, By, k) + } + panicIfNotOnCurve(curve, Bx, By) + + Bz := new(big.Int).SetInt64(1) + x, y, z := new(big.Int), new(big.Int), new(big.Int) + + for _, byte := range k { + for bitNum := 0; bitNum < 8; bitNum++ { + x, y, z = curve.doubleJacobian(x, y, z) + if byte&0x80 == 0x80 { + x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) + } + byte <<= 1 + } + } + + return curve.affineFromJacobian(x, y, z) +} + +// ScalarBaseMult implements Curve.ScalarBaseMult. +// +// Note: the CurveParams methods are not guaranteed to +// provide any security property. For ECDH, use the crypto/ecdh package. +// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly +// from P224(), P256(), P384(), or P521(). +func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve); ok { + return specific.ScalarBaseMult(k) + } + + return curve.ScalarMult(curve.Gx, curve.Gy, k) +} + +func matchesSpecificCurve(params *CurveParams) (Curve, bool) { + for _, c := range []Curve{p224, p256, p384, p521} { + if params == c.Params() { + return c, true + } + } + return nil, false +} |