diff options
Diffstat (limited to 'src/crypto/internal/nistec/p224_sqrt.go')
-rw-r--r-- | src/crypto/internal/nistec/p224_sqrt.go | 132 |
1 files changed, 132 insertions, 0 deletions
diff --git a/src/crypto/internal/nistec/p224_sqrt.go b/src/crypto/internal/nistec/p224_sqrt.go new file mode 100644 index 0000000..0c77579 --- /dev/null +++ b/src/crypto/internal/nistec/p224_sqrt.go @@ -0,0 +1,132 @@ +// Copyright 2022 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package nistec + +import ( + "crypto/internal/nistec/fiat" + "sync" +) + +var p224GG *[96]fiat.P224Element +var p224GGOnce sync.Once + +// p224SqrtCandidate sets r to a square root candidate for x. r and x must not overlap. +func p224SqrtCandidate(r, x *fiat.P224Element) { + // Since p = 1 mod 4, we can't use the exponentiation by (p + 1) / 4 like + // for the other primes. Instead, implement a variation of Tonelli–Shanks. + // The constant-time implementation is adapted from Thomas Pornin's ecGFp5. + // + // https://github.com/pornin/ecgfp5/blob/82325b965/rust/src/field.rs#L337-L385 + + // p = q*2^n + 1 with q odd -> q = 2^128 - 1 and n = 96 + // g^(2^n) = 1 -> g = 11 ^ q (where 11 is the smallest non-square) + // GG[j] = g^(2^j) for j = 0 to n-1 + + p224GGOnce.Do(func() { + p224GG = new([96]fiat.P224Element) + for i := range p224GG { + if i == 0 { + p224GG[i].SetBytes([]byte{0x6a, 0x0f, 0xec, 0x67, + 0x85, 0x98, 0xa7, 0x92, 0x0c, 0x55, 0xb2, 0xd4, + 0x0b, 0x2d, 0x6f, 0xfb, 0xbe, 0xa3, 0xd8, 0xce, + 0xf3, 0xfb, 0x36, 0x32, 0xdc, 0x69, 0x1b, 0x74}) + } else { + p224GG[i].Square(&p224GG[i-1]) + } + } + }) + + // r <- x^((q+1)/2) = x^(2^127) + // v <- x^q = x^(2^128-1) + + // Compute x^(2^127-1) first. + // + // The sequence of 10 multiplications and 126 squarings is derived from the + // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0. + // + // _10 = 2*1 + // _11 = 1 + _10 + // _110 = 2*_11 + // _111 = 1 + _110 + // _111000 = _111 << 3 + // _111111 = _111 + _111000 + // _1111110 = 2*_111111 + // _1111111 = 1 + _1111110 + // x12 = _1111110 << 5 + _111111 + // x24 = x12 << 12 + x12 + // i36 = x24 << 7 + // x31 = _1111111 + i36 + // x48 = i36 << 17 + x24 + // x96 = x48 << 48 + x48 + // return x96 << 31 + x31 + // + var t0 = new(fiat.P224Element) + var t1 = new(fiat.P224Element) + + r.Square(x) + r.Mul(x, r) + r.Square(r) + r.Mul(x, r) + t0.Square(r) + for s := 1; s < 3; s++ { + t0.Square(t0) + } + t0.Mul(r, t0) + t1.Square(t0) + r.Mul(x, t1) + for s := 0; s < 5; s++ { + t1.Square(t1) + } + t0.Mul(t0, t1) + t1.Square(t0) + for s := 1; s < 12; s++ { + t1.Square(t1) + } + t0.Mul(t0, t1) + t1.Square(t0) + for s := 1; s < 7; s++ { + t1.Square(t1) + } + r.Mul(r, t1) + for s := 0; s < 17; s++ { + t1.Square(t1) + } + t0.Mul(t0, t1) + t1.Square(t0) + for s := 1; s < 48; s++ { + t1.Square(t1) + } + t0.Mul(t0, t1) + for s := 0; s < 31; s++ { + t0.Square(t0) + } + r.Mul(r, t0) + + // v = x^(2^127-1)^2 * x + v := new(fiat.P224Element).Square(r) + v.Mul(v, x) + + // r = x^(2^127-1) * x + r.Mul(r, x) + + // for i = n-1 down to 1: + // w = v^(2^(i-1)) + // if w == -1 then: + // v <- v*GG[n-i] + // r <- r*GG[n-i-1] + + var p224MinusOne = new(fiat.P224Element).Sub( + new(fiat.P224Element), new(fiat.P224Element).One()) + + for i := 96 - 1; i >= 1; i-- { + w := new(fiat.P224Element).Set(v) + for j := 0; j < i-1; j++ { + w.Square(w) + } + cond := w.Equal(p224MinusOne) + v.Select(t0.Mul(v, &p224GG[96-i]), v, cond) + r.Select(t0.Mul(r, &p224GG[96-i-1]), r, cond) + } +} |