summaryrefslogtreecommitdiffstats
path: root/src/crypto/internal/nistec/p224_sqrt.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/internal/nistec/p224_sqrt.go')
-rw-r--r--src/crypto/internal/nistec/p224_sqrt.go132
1 files changed, 132 insertions, 0 deletions
diff --git a/src/crypto/internal/nistec/p224_sqrt.go b/src/crypto/internal/nistec/p224_sqrt.go
new file mode 100644
index 0000000..0c77579
--- /dev/null
+++ b/src/crypto/internal/nistec/p224_sqrt.go
@@ -0,0 +1,132 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package nistec
+
+import (
+ "crypto/internal/nistec/fiat"
+ "sync"
+)
+
+var p224GG *[96]fiat.P224Element
+var p224GGOnce sync.Once
+
+// p224SqrtCandidate sets r to a square root candidate for x. r and x must not overlap.
+func p224SqrtCandidate(r, x *fiat.P224Element) {
+ // Since p = 1 mod 4, we can't use the exponentiation by (p + 1) / 4 like
+ // for the other primes. Instead, implement a variation of Tonelli–Shanks.
+ // The constant-time implementation is adapted from Thomas Pornin's ecGFp5.
+ //
+ // https://github.com/pornin/ecgfp5/blob/82325b965/rust/src/field.rs#L337-L385
+
+ // p = q*2^n + 1 with q odd -> q = 2^128 - 1 and n = 96
+ // g^(2^n) = 1 -> g = 11 ^ q (where 11 is the smallest non-square)
+ // GG[j] = g^(2^j) for j = 0 to n-1
+
+ p224GGOnce.Do(func() {
+ p224GG = new([96]fiat.P224Element)
+ for i := range p224GG {
+ if i == 0 {
+ p224GG[i].SetBytes([]byte{0x6a, 0x0f, 0xec, 0x67,
+ 0x85, 0x98, 0xa7, 0x92, 0x0c, 0x55, 0xb2, 0xd4,
+ 0x0b, 0x2d, 0x6f, 0xfb, 0xbe, 0xa3, 0xd8, 0xce,
+ 0xf3, 0xfb, 0x36, 0x32, 0xdc, 0x69, 0x1b, 0x74})
+ } else {
+ p224GG[i].Square(&p224GG[i-1])
+ }
+ }
+ })
+
+ // r <- x^((q+1)/2) = x^(2^127)
+ // v <- x^q = x^(2^128-1)
+
+ // Compute x^(2^127-1) first.
+ //
+ // The sequence of 10 multiplications and 126 squarings is derived from the
+ // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
+ //
+ // _10 = 2*1
+ // _11 = 1 + _10
+ // _110 = 2*_11
+ // _111 = 1 + _110
+ // _111000 = _111 << 3
+ // _111111 = _111 + _111000
+ // _1111110 = 2*_111111
+ // _1111111 = 1 + _1111110
+ // x12 = _1111110 << 5 + _111111
+ // x24 = x12 << 12 + x12
+ // i36 = x24 << 7
+ // x31 = _1111111 + i36
+ // x48 = i36 << 17 + x24
+ // x96 = x48 << 48 + x48
+ // return x96 << 31 + x31
+ //
+ var t0 = new(fiat.P224Element)
+ var t1 = new(fiat.P224Element)
+
+ r.Square(x)
+ r.Mul(x, r)
+ r.Square(r)
+ r.Mul(x, r)
+ t0.Square(r)
+ for s := 1; s < 3; s++ {
+ t0.Square(t0)
+ }
+ t0.Mul(r, t0)
+ t1.Square(t0)
+ r.Mul(x, t1)
+ for s := 0; s < 5; s++ {
+ t1.Square(t1)
+ }
+ t0.Mul(t0, t1)
+ t1.Square(t0)
+ for s := 1; s < 12; s++ {
+ t1.Square(t1)
+ }
+ t0.Mul(t0, t1)
+ t1.Square(t0)
+ for s := 1; s < 7; s++ {
+ t1.Square(t1)
+ }
+ r.Mul(r, t1)
+ for s := 0; s < 17; s++ {
+ t1.Square(t1)
+ }
+ t0.Mul(t0, t1)
+ t1.Square(t0)
+ for s := 1; s < 48; s++ {
+ t1.Square(t1)
+ }
+ t0.Mul(t0, t1)
+ for s := 0; s < 31; s++ {
+ t0.Square(t0)
+ }
+ r.Mul(r, t0)
+
+ // v = x^(2^127-1)^2 * x
+ v := new(fiat.P224Element).Square(r)
+ v.Mul(v, x)
+
+ // r = x^(2^127-1) * x
+ r.Mul(r, x)
+
+ // for i = n-1 down to 1:
+ // w = v^(2^(i-1))
+ // if w == -1 then:
+ // v <- v*GG[n-i]
+ // r <- r*GG[n-i-1]
+
+ var p224MinusOne = new(fiat.P224Element).Sub(
+ new(fiat.P224Element), new(fiat.P224Element).One())
+
+ for i := 96 - 1; i >= 1; i-- {
+ w := new(fiat.P224Element).Set(v)
+ for j := 0; j < i-1; j++ {
+ w.Square(w)
+ }
+ cond := w.Equal(p224MinusOne)
+ v.Select(t0.Mul(v, &p224GG[96-i]), v, cond)
+ r.Select(t0.Mul(r, &p224GG[96-i-1]), r, cond)
+ }
+}