summaryrefslogtreecommitdiffstats
path: root/src/crypto/internal/nistec/p256_asm.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/internal/nistec/p256_asm.go')
-rw-r--r--src/crypto/internal/nistec/p256_asm.go744
1 files changed, 744 insertions, 0 deletions
diff --git a/src/crypto/internal/nistec/p256_asm.go b/src/crypto/internal/nistec/p256_asm.go
new file mode 100644
index 0000000..99a22b8
--- /dev/null
+++ b/src/crypto/internal/nistec/p256_asm.go
@@ -0,0 +1,744 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file contains the Go wrapper for the constant-time, 64-bit assembly
+// implementation of P256. The optimizations performed here are described in
+// detail in:
+// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
+// 256-bit primes"
+// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
+// https://eprint.iacr.org/2013/816.pdf
+
+//go:build amd64 || arm64 || ppc64le || s390x
+
+package nistec
+
+import (
+ _ "embed"
+ "encoding/binary"
+ "errors"
+ "math/bits"
+ "runtime"
+ "unsafe"
+)
+
+// p256Element is a P-256 base field element in [0, P-1] in the Montgomery
+// domain (with R 2²⁵⁶) as four limbs in little-endian order value.
+type p256Element [4]uint64
+
+// p256One is one in the Montgomery domain.
+var p256One = p256Element{0x0000000000000001, 0xffffffff00000000,
+ 0xffffffffffffffff, 0x00000000fffffffe}
+
+var p256Zero = p256Element{}
+
+// p256P is 2²⁵⁶ - 2²²⁴ + 2¹⁹² + 2⁹⁶ - 1 in the Montgomery domain.
+var p256P = p256Element{0xffffffffffffffff, 0x00000000ffffffff,
+ 0x0000000000000000, 0xffffffff00000001}
+
+// P256Point is a P-256 point. The zero value should not be assumed to be valid
+// (although it is in this implementation).
+type P256Point struct {
+ // (X:Y:Z) are Jacobian coordinates where x = X/Z² and y = Y/Z³. The point
+ // at infinity can be represented by any set of coordinates with Z = 0.
+ x, y, z p256Element
+}
+
+// NewP256Point returns a new P256Point representing the point at infinity.
+func NewP256Point() *P256Point {
+ return &P256Point{
+ x: p256One, y: p256One, z: p256Zero,
+ }
+}
+
+// SetGenerator sets p to the canonical generator and returns p.
+func (p *P256Point) SetGenerator() *P256Point {
+ p.x = p256Element{0x79e730d418a9143c, 0x75ba95fc5fedb601,
+ 0x79fb732b77622510, 0x18905f76a53755c6}
+ p.y = p256Element{0xddf25357ce95560a, 0x8b4ab8e4ba19e45c,
+ 0xd2e88688dd21f325, 0x8571ff1825885d85}
+ p.z = p256One
+ return p
+}
+
+// Set sets p = q and returns p.
+func (p *P256Point) Set(q *P256Point) *P256Point {
+ p.x, p.y, p.z = q.x, q.y, q.z
+ return p
+}
+
+const p256ElementLength = 32
+const p256UncompressedLength = 1 + 2*p256ElementLength
+const p256CompressedLength = 1 + p256ElementLength
+
+// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
+// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
+// the curve, it returns nil and an error, and the receiver is unchanged.
+// Otherwise, it returns p.
+func (p *P256Point) SetBytes(b []byte) (*P256Point, error) {
+ // p256Mul operates in the Montgomery domain with R = 2²⁵⁶ mod p. Thus rr
+ // here is R in the Montgomery domain, or R×R mod p. See comment in
+ // P256OrdInverse about how this is used.
+ rr := p256Element{0x0000000000000003, 0xfffffffbffffffff,
+ 0xfffffffffffffffe, 0x00000004fffffffd}
+
+ switch {
+ // Point at infinity.
+ case len(b) == 1 && b[0] == 0:
+ return p.Set(NewP256Point()), nil
+
+ // Uncompressed form.
+ case len(b) == p256UncompressedLength && b[0] == 4:
+ var r P256Point
+ p256BigToLittle(&r.x, (*[32]byte)(b[1:33]))
+ p256BigToLittle(&r.y, (*[32]byte)(b[33:65]))
+ if p256LessThanP(&r.x) == 0 || p256LessThanP(&r.y) == 0 {
+ return nil, errors.New("invalid P256 element encoding")
+ }
+ p256Mul(&r.x, &r.x, &rr)
+ p256Mul(&r.y, &r.y, &rr)
+ if err := p256CheckOnCurve(&r.x, &r.y); err != nil {
+ return nil, err
+ }
+ r.z = p256One
+ return p.Set(&r), nil
+
+ // Compressed form.
+ case len(b) == p256CompressedLength && (b[0] == 2 || b[0] == 3):
+ var r P256Point
+ p256BigToLittle(&r.x, (*[32]byte)(b[1:33]))
+ if p256LessThanP(&r.x) == 0 {
+ return nil, errors.New("invalid P256 element encoding")
+ }
+ p256Mul(&r.x, &r.x, &rr)
+
+ // y² = x³ - 3x + b
+ p256Polynomial(&r.y, &r.x)
+ if !p256Sqrt(&r.y, &r.y) {
+ return nil, errors.New("invalid P256 compressed point encoding")
+ }
+
+ // Select the positive or negative root, as indicated by the least
+ // significant bit, based on the encoding type byte.
+ yy := new(p256Element)
+ p256FromMont(yy, &r.y)
+ cond := int(yy[0]&1) ^ int(b[0]&1)
+ p256NegCond(&r.y, cond)
+
+ r.z = p256One
+ return p.Set(&r), nil
+
+ default:
+ return nil, errors.New("invalid P256 point encoding")
+ }
+}
+
+// p256Polynomial sets y2 to x³ - 3x + b, and returns y2.
+func p256Polynomial(y2, x *p256Element) *p256Element {
+ x3 := new(p256Element)
+ p256Sqr(x3, x, 1)
+ p256Mul(x3, x3, x)
+
+ threeX := new(p256Element)
+ p256Add(threeX, x, x)
+ p256Add(threeX, threeX, x)
+ p256NegCond(threeX, 1)
+
+ p256B := &p256Element{0xd89cdf6229c4bddf, 0xacf005cd78843090,
+ 0xe5a220abf7212ed6, 0xdc30061d04874834}
+
+ p256Add(x3, x3, threeX)
+ p256Add(x3, x3, p256B)
+
+ *y2 = *x3
+ return y2
+}
+
+func p256CheckOnCurve(x, y *p256Element) error {
+ // y² = x³ - 3x + b
+ rhs := p256Polynomial(new(p256Element), x)
+ lhs := new(p256Element)
+ p256Sqr(lhs, y, 1)
+ if p256Equal(lhs, rhs) != 1 {
+ return errors.New("P256 point not on curve")
+ }
+ return nil
+}
+
+// p256LessThanP returns 1 if x < p, and 0 otherwise. Note that a p256Element is
+// not allowed to be equal to or greater than p, so if this function returns 0
+// then x is invalid.
+func p256LessThanP(x *p256Element) int {
+ var b uint64
+ _, b = bits.Sub64(x[0], p256P[0], b)
+ _, b = bits.Sub64(x[1], p256P[1], b)
+ _, b = bits.Sub64(x[2], p256P[2], b)
+ _, b = bits.Sub64(x[3], p256P[3], b)
+ return int(b)
+}
+
+// p256Add sets res = x + y.
+func p256Add(res, x, y *p256Element) {
+ var c, b uint64
+ t1 := make([]uint64, 4)
+ t1[0], c = bits.Add64(x[0], y[0], 0)
+ t1[1], c = bits.Add64(x[1], y[1], c)
+ t1[2], c = bits.Add64(x[2], y[2], c)
+ t1[3], c = bits.Add64(x[3], y[3], c)
+ t2 := make([]uint64, 4)
+ t2[0], b = bits.Sub64(t1[0], p256P[0], 0)
+ t2[1], b = bits.Sub64(t1[1], p256P[1], b)
+ t2[2], b = bits.Sub64(t1[2], p256P[2], b)
+ t2[3], b = bits.Sub64(t1[3], p256P[3], b)
+ // Three options:
+ // - a+b < p
+ // then c is 0, b is 1, and t1 is correct
+ // - p <= a+b < 2^256
+ // then c is 0, b is 0, and t2 is correct
+ // - 2^256 <= a+b
+ // then c is 1, b is 1, and t2 is correct
+ t2Mask := (c ^ b) - 1
+ res[0] = (t1[0] & ^t2Mask) | (t2[0] & t2Mask)
+ res[1] = (t1[1] & ^t2Mask) | (t2[1] & t2Mask)
+ res[2] = (t1[2] & ^t2Mask) | (t2[2] & t2Mask)
+ res[3] = (t1[3] & ^t2Mask) | (t2[3] & t2Mask)
+}
+
+// p256Sqrt sets e to a square root of x. If x is not a square, p256Sqrt returns
+// false and e is unchanged. e and x can overlap.
+func p256Sqrt(e, x *p256Element) (isSquare bool) {
+ t0, t1 := new(p256Element), new(p256Element)
+
+ // Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
+ //
+ // The sequence of 7 multiplications and 253 squarings is derived from the
+ // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
+ //
+ // _10 = 2*1
+ // _11 = 1 + _10
+ // _1100 = _11 << 2
+ // _1111 = _11 + _1100
+ // _11110000 = _1111 << 4
+ // _11111111 = _1111 + _11110000
+ // x16 = _11111111 << 8 + _11111111
+ // x32 = x16 << 16 + x16
+ // return ((x32 << 32 + 1) << 96 + 1) << 94
+ //
+ p256Sqr(t0, x, 1)
+ p256Mul(t0, x, t0)
+ p256Sqr(t1, t0, 2)
+ p256Mul(t0, t0, t1)
+ p256Sqr(t1, t0, 4)
+ p256Mul(t0, t0, t1)
+ p256Sqr(t1, t0, 8)
+ p256Mul(t0, t0, t1)
+ p256Sqr(t1, t0, 16)
+ p256Mul(t0, t0, t1)
+ p256Sqr(t0, t0, 32)
+ p256Mul(t0, x, t0)
+ p256Sqr(t0, t0, 96)
+ p256Mul(t0, x, t0)
+ p256Sqr(t0, t0, 94)
+
+ p256Sqr(t1, t0, 1)
+ if p256Equal(t1, x) != 1 {
+ return false
+ }
+ *e = *t0
+ return true
+}
+
+// The following assembly functions are implemented in p256_asm_*.s
+
+// Montgomery multiplication. Sets res = in1 * in2 * R⁻¹ mod p.
+//
+//go:noescape
+func p256Mul(res, in1, in2 *p256Element)
+
+// Montgomery square, repeated n times (n >= 1).
+//
+//go:noescape
+func p256Sqr(res, in *p256Element, n int)
+
+// Montgomery multiplication by R⁻¹, or 1 outside the domain.
+// Sets res = in * R⁻¹, bringing res out of the Montgomery domain.
+//
+//go:noescape
+func p256FromMont(res, in *p256Element)
+
+// If cond is not 0, sets val = -val mod p.
+//
+//go:noescape
+func p256NegCond(val *p256Element, cond int)
+
+// If cond is 0, sets res = b, otherwise sets res = a.
+//
+//go:noescape
+func p256MovCond(res, a, b *P256Point, cond int)
+
+//go:noescape
+func p256BigToLittle(res *p256Element, in *[32]byte)
+
+//go:noescape
+func p256LittleToBig(res *[32]byte, in *p256Element)
+
+//go:noescape
+func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte)
+
+//go:noescape
+func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement)
+
+// p256Table is a table of the first 16 multiples of a point. Points are stored
+// at an index offset of -1 so [8]P is at index 7, P is at 0, and [16]P is at 15.
+// [0]P is the point at infinity and it's not stored.
+type p256Table [16]P256Point
+
+// p256Select sets res to the point at index idx in the table.
+// idx must be in [0, 15]. It executes in constant time.
+//
+//go:noescape
+func p256Select(res *P256Point, table *p256Table, idx int)
+
+// p256AffinePoint is a point in affine coordinates (x, y). x and y are still
+// Montgomery domain elements. The point can't be the point at infinity.
+type p256AffinePoint struct {
+ x, y p256Element
+}
+
+// p256AffineTable is a table of the first 32 multiples of a point. Points are
+// stored at an index offset of -1 like in p256Table, and [0]P is not stored.
+type p256AffineTable [32]p256AffinePoint
+
+// p256Precomputed is a series of precomputed multiples of G, the canonical
+// generator. The first p256AffineTable contains multiples of G. The second one
+// multiples of [2⁶]G, the third one of [2¹²]G, and so on, where each successive
+// table is the previous table doubled six times. Six is the width of the
+// sliding window used in p256ScalarMult, and having each table already
+// pre-doubled lets us avoid the doublings between windows entirely. This table
+// MUST NOT be modified, as it aliases into p256PrecomputedEmbed below.
+var p256Precomputed *[43]p256AffineTable
+
+//go:embed p256_asm_table.bin
+var p256PrecomputedEmbed string
+
+func init() {
+ p256PrecomputedPtr := (*unsafe.Pointer)(unsafe.Pointer(&p256PrecomputedEmbed))
+ if runtime.GOARCH == "s390x" {
+ var newTable [43 * 32 * 2 * 4]uint64
+ for i, x := range (*[43 * 32 * 2 * 4][8]byte)(*p256PrecomputedPtr) {
+ newTable[i] = binary.LittleEndian.Uint64(x[:])
+ }
+ newTablePtr := unsafe.Pointer(&newTable)
+ p256PrecomputedPtr = &newTablePtr
+ }
+ p256Precomputed = (*[43]p256AffineTable)(*p256PrecomputedPtr)
+}
+
+// p256SelectAffine sets res to the point at index idx in the table.
+// idx must be in [0, 31]. It executes in constant time.
+//
+//go:noescape
+func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int)
+
+// Point addition with an affine point and constant time conditions.
+// If zero is 0, sets res = in2. If sel is 0, sets res = in1.
+// If sign is not 0, sets res = in1 + -in2. Otherwise, sets res = in1 + in2
+//
+//go:noescape
+func p256PointAddAffineAsm(res, in1 *P256Point, in2 *p256AffinePoint, sign, sel, zero int)
+
+// Point addition. Sets res = in1 + in2. Returns one if the two input points
+// were equal and zero otherwise. If in1 or in2 are the point at infinity, res
+// and the return value are undefined.
+//
+//go:noescape
+func p256PointAddAsm(res, in1, in2 *P256Point) int
+
+// Point doubling. Sets res = in + in. in can be the point at infinity.
+//
+//go:noescape
+func p256PointDoubleAsm(res, in *P256Point)
+
+// p256OrdElement is a P-256 scalar field element in [0, ord(G)-1] in the
+// Montgomery domain (with R 2²⁵⁶) as four uint64 limbs in little-endian order.
+type p256OrdElement [4]uint64
+
+// p256OrdReduce ensures s is in the range [0, ord(G)-1].
+func p256OrdReduce(s *p256OrdElement) {
+ // Since 2 * ord(G) > 2²⁵⁶, we can just conditionally subtract ord(G),
+ // keeping the result if it doesn't underflow.
+ t0, b := bits.Sub64(s[0], 0xf3b9cac2fc632551, 0)
+ t1, b := bits.Sub64(s[1], 0xbce6faada7179e84, b)
+ t2, b := bits.Sub64(s[2], 0xffffffffffffffff, b)
+ t3, b := bits.Sub64(s[3], 0xffffffff00000000, b)
+ tMask := b - 1 // zero if subtraction underflowed
+ s[0] ^= (t0 ^ s[0]) & tMask
+ s[1] ^= (t1 ^ s[1]) & tMask
+ s[2] ^= (t2 ^ s[2]) & tMask
+ s[3] ^= (t3 ^ s[3]) & tMask
+}
+
+// Add sets q = p1 + p2, and returns q. The points may overlap.
+func (q *P256Point) Add(r1, r2 *P256Point) *P256Point {
+ var sum, double P256Point
+ r1IsInfinity := r1.isInfinity()
+ r2IsInfinity := r2.isInfinity()
+ pointsEqual := p256PointAddAsm(&sum, r1, r2)
+ p256PointDoubleAsm(&double, r1)
+ p256MovCond(&sum, &double, &sum, pointsEqual)
+ p256MovCond(&sum, r1, &sum, r2IsInfinity)
+ p256MovCond(&sum, r2, &sum, r1IsInfinity)
+ return q.Set(&sum)
+}
+
+// Double sets q = p + p, and returns q. The points may overlap.
+func (q *P256Point) Double(p *P256Point) *P256Point {
+ var double P256Point
+ p256PointDoubleAsm(&double, p)
+ return q.Set(&double)
+}
+
+// ScalarBaseMult sets r = scalar * generator, where scalar is a 32-byte big
+// endian value, and returns r. If scalar is not 32 bytes long, ScalarBaseMult
+// returns an error and the receiver is unchanged.
+func (r *P256Point) ScalarBaseMult(scalar []byte) (*P256Point, error) {
+ if len(scalar) != 32 {
+ return nil, errors.New("invalid scalar length")
+ }
+ scalarReversed := new(p256OrdElement)
+ p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
+ p256OrdReduce(scalarReversed)
+
+ r.p256BaseMult(scalarReversed)
+ return r, nil
+}
+
+// ScalarMult sets r = scalar * q, where scalar is a 32-byte big endian value,
+// and returns r. If scalar is not 32 bytes long, ScalarBaseMult returns an
+// error and the receiver is unchanged.
+func (r *P256Point) ScalarMult(q *P256Point, scalar []byte) (*P256Point, error) {
+ if len(scalar) != 32 {
+ return nil, errors.New("invalid scalar length")
+ }
+ scalarReversed := new(p256OrdElement)
+ p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
+ p256OrdReduce(scalarReversed)
+
+ r.Set(q).p256ScalarMult(scalarReversed)
+ return r, nil
+}
+
+// uint64IsZero returns 1 if x is zero and zero otherwise.
+func uint64IsZero(x uint64) int {
+ x = ^x
+ x &= x >> 32
+ x &= x >> 16
+ x &= x >> 8
+ x &= x >> 4
+ x &= x >> 2
+ x &= x >> 1
+ return int(x & 1)
+}
+
+// p256Equal returns 1 if a and b are equal and 0 otherwise.
+func p256Equal(a, b *p256Element) int {
+ var acc uint64
+ for i := range a {
+ acc |= a[i] ^ b[i]
+ }
+ return uint64IsZero(acc)
+}
+
+// isInfinity returns 1 if p is the point at infinity and 0 otherwise.
+func (p *P256Point) isInfinity() int {
+ return p256Equal(&p.z, &p256Zero)
+}
+
+// Bytes returns the uncompressed or infinity encoding of p, as specified in
+// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
+// infinity is shorter than all other encodings.
+func (p *P256Point) Bytes() []byte {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var out [p256UncompressedLength]byte
+ return p.bytes(&out)
+}
+
+func (p *P256Point) bytes(out *[p256UncompressedLength]byte) []byte {
+ // The proper representation of the point at infinity is a single zero byte.
+ if p.isInfinity() == 1 {
+ return append(out[:0], 0)
+ }
+
+ x, y := new(p256Element), new(p256Element)
+ p.affineFromMont(x, y)
+
+ out[0] = 4 // Uncompressed form.
+ p256LittleToBig((*[32]byte)(out[1:33]), x)
+ p256LittleToBig((*[32]byte)(out[33:65]), y)
+
+ return out[:]
+}
+
+// affineFromMont sets (x, y) to the affine coordinates of p, converted out of the
+// Montgomery domain.
+func (p *P256Point) affineFromMont(x, y *p256Element) {
+ p256Inverse(y, &p.z)
+ p256Sqr(x, y, 1)
+ p256Mul(y, y, x)
+
+ p256Mul(x, &p.x, x)
+ p256Mul(y, &p.y, y)
+
+ p256FromMont(x, x)
+ p256FromMont(y, y)
+}
+
+// BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1,
+// Version 2.0, Section 2.3.5, or an error if p is the point at infinity.
+func (p *P256Point) BytesX() ([]byte, error) {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var out [p256ElementLength]byte
+ return p.bytesX(&out)
+}
+
+func (p *P256Point) bytesX(out *[p256ElementLength]byte) ([]byte, error) {
+ if p.isInfinity() == 1 {
+ return nil, errors.New("P256 point is the point at infinity")
+ }
+
+ x := new(p256Element)
+ p256Inverse(x, &p.z)
+ p256Sqr(x, x, 1)
+ p256Mul(x, &p.x, x)
+ p256FromMont(x, x)
+ p256LittleToBig((*[32]byte)(out[:]), x)
+
+ return out[:], nil
+}
+
+// BytesCompressed returns the compressed or infinity encoding of p, as
+// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
+// point at infinity is shorter than all other encodings.
+func (p *P256Point) BytesCompressed() []byte {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var out [p256CompressedLength]byte
+ return p.bytesCompressed(&out)
+}
+
+func (p *P256Point) bytesCompressed(out *[p256CompressedLength]byte) []byte {
+ if p.isInfinity() == 1 {
+ return append(out[:0], 0)
+ }
+
+ x, y := new(p256Element), new(p256Element)
+ p.affineFromMont(x, y)
+
+ out[0] = 2 | byte(y[0]&1)
+ p256LittleToBig((*[32]byte)(out[1:33]), x)
+
+ return out[:]
+}
+
+// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
+func (q *P256Point) Select(p1, p2 *P256Point, cond int) *P256Point {
+ p256MovCond(q, p1, p2, cond)
+ return q
+}
+
+// p256Inverse sets out to in⁻¹ mod p. If in is zero, out will be zero.
+func p256Inverse(out, in *p256Element) {
+ // Inversion is calculated through exponentiation by p - 2, per Fermat's
+ // little theorem.
+ //
+ // The sequence of 12 multiplications and 255 squarings is derived from the
+ // following addition chain generated with github.com/mmcloughlin/addchain
+ // v0.4.0.
+ //
+ // _10 = 2*1
+ // _11 = 1 + _10
+ // _110 = 2*_11
+ // _111 = 1 + _110
+ // _111000 = _111 << 3
+ // _111111 = _111 + _111000
+ // x12 = _111111 << 6 + _111111
+ // x15 = x12 << 3 + _111
+ // x16 = 2*x15 + 1
+ // x32 = x16 << 16 + x16
+ // i53 = x32 << 15
+ // x47 = x15 + i53
+ // i263 = ((i53 << 17 + 1) << 143 + x47) << 47
+ // return (x47 + i263) << 2 + 1
+ //
+ var z = new(p256Element)
+ var t0 = new(p256Element)
+ var t1 = new(p256Element)
+
+ p256Sqr(z, in, 1)
+ p256Mul(z, in, z)
+ p256Sqr(z, z, 1)
+ p256Mul(z, in, z)
+ p256Sqr(t0, z, 3)
+ p256Mul(t0, z, t0)
+ p256Sqr(t1, t0, 6)
+ p256Mul(t0, t0, t1)
+ p256Sqr(t0, t0, 3)
+ p256Mul(z, z, t0)
+ p256Sqr(t0, z, 1)
+ p256Mul(t0, in, t0)
+ p256Sqr(t1, t0, 16)
+ p256Mul(t0, t0, t1)
+ p256Sqr(t0, t0, 15)
+ p256Mul(z, z, t0)
+ p256Sqr(t0, t0, 17)
+ p256Mul(t0, in, t0)
+ p256Sqr(t0, t0, 143)
+ p256Mul(t0, z, t0)
+ p256Sqr(t0, t0, 47)
+ p256Mul(z, z, t0)
+ p256Sqr(z, z, 2)
+ p256Mul(out, in, z)
+}
+
+func boothW5(in uint) (int, int) {
+ var s uint = ^((in >> 5) - 1)
+ var d uint = (1 << 6) - in - 1
+ d = (d & s) | (in & (^s))
+ d = (d >> 1) + (d & 1)
+ return int(d), int(s & 1)
+}
+
+func boothW6(in uint) (int, int) {
+ var s uint = ^((in >> 6) - 1)
+ var d uint = (1 << 7) - in - 1
+ d = (d & s) | (in & (^s))
+ d = (d >> 1) + (d & 1)
+ return int(d), int(s & 1)
+}
+
+func (p *P256Point) p256BaseMult(scalar *p256OrdElement) {
+ var t0 p256AffinePoint
+
+ wvalue := (scalar[0] << 1) & 0x7f
+ sel, sign := boothW6(uint(wvalue))
+ p256SelectAffine(&t0, &p256Precomputed[0], sel)
+ p.x, p.y, p.z = t0.x, t0.y, p256One
+ p256NegCond(&p.y, sign)
+
+ index := uint(5)
+ zero := sel
+
+ for i := 1; i < 43; i++ {
+ if index < 192 {
+ wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f
+ } else {
+ wvalue = (scalar[index/64] >> (index % 64)) & 0x7f
+ }
+ index += 6
+ sel, sign = boothW6(uint(wvalue))
+ p256SelectAffine(&t0, &p256Precomputed[i], sel)
+ p256PointAddAffineAsm(p, p, &t0, sign, sel, zero)
+ zero |= sel
+ }
+
+ // If the whole scalar was zero, set to the point at infinity.
+ p256MovCond(p, p, NewP256Point(), zero)
+}
+
+func (p *P256Point) p256ScalarMult(scalar *p256OrdElement) {
+ // precomp is a table of precomputed points that stores powers of p
+ // from p^1 to p^16.
+ var precomp p256Table
+ var t0, t1, t2, t3 P256Point
+
+ // Prepare the table
+ precomp[0] = *p // 1
+
+ p256PointDoubleAsm(&t0, p)
+ p256PointDoubleAsm(&t1, &t0)
+ p256PointDoubleAsm(&t2, &t1)
+ p256PointDoubleAsm(&t3, &t2)
+ precomp[1] = t0 // 2
+ precomp[3] = t1 // 4
+ precomp[7] = t2 // 8
+ precomp[15] = t3 // 16
+
+ p256PointAddAsm(&t0, &t0, p)
+ p256PointAddAsm(&t1, &t1, p)
+ p256PointAddAsm(&t2, &t2, p)
+ precomp[2] = t0 // 3
+ precomp[4] = t1 // 5
+ precomp[8] = t2 // 9
+
+ p256PointDoubleAsm(&t0, &t0)
+ p256PointDoubleAsm(&t1, &t1)
+ precomp[5] = t0 // 6
+ precomp[9] = t1 // 10
+
+ p256PointAddAsm(&t2, &t0, p)
+ p256PointAddAsm(&t1, &t1, p)
+ precomp[6] = t2 // 7
+ precomp[10] = t1 // 11
+
+ p256PointDoubleAsm(&t0, &t0)
+ p256PointDoubleAsm(&t2, &t2)
+ precomp[11] = t0 // 12
+ precomp[13] = t2 // 14
+
+ p256PointAddAsm(&t0, &t0, p)
+ p256PointAddAsm(&t2, &t2, p)
+ precomp[12] = t0 // 13
+ precomp[14] = t2 // 15
+
+ // Start scanning the window from top bit
+ index := uint(254)
+ var sel, sign int
+
+ wvalue := (scalar[index/64] >> (index % 64)) & 0x3f
+ sel, _ = boothW5(uint(wvalue))
+
+ p256Select(p, &precomp, sel)
+ zero := sel
+
+ for index > 4 {
+ index -= 5
+ p256PointDoubleAsm(p, p)
+ p256PointDoubleAsm(p, p)
+ p256PointDoubleAsm(p, p)
+ p256PointDoubleAsm(p, p)
+ p256PointDoubleAsm(p, p)
+
+ if index < 192 {
+ wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f
+ } else {
+ wvalue = (scalar[index/64] >> (index % 64)) & 0x3f
+ }
+
+ sel, sign = boothW5(uint(wvalue))
+
+ p256Select(&t0, &precomp, sel)
+ p256NegCond(&t0.y, sign)
+ p256PointAddAsm(&t1, p, &t0)
+ p256MovCond(&t1, &t1, p, sel)
+ p256MovCond(p, &t1, &t0, zero)
+ zero |= sel
+ }
+
+ p256PointDoubleAsm(p, p)
+ p256PointDoubleAsm(p, p)
+ p256PointDoubleAsm(p, p)
+ p256PointDoubleAsm(p, p)
+ p256PointDoubleAsm(p, p)
+
+ wvalue = (scalar[0] << 1) & 0x3f
+ sel, sign = boothW5(uint(wvalue))
+
+ p256Select(&t0, &precomp, sel)
+ p256NegCond(&t0.y, sign)
+ p256PointAddAsm(&t1, p, &t0)
+ p256MovCond(&t1, &t1, p, sel)
+ p256MovCond(p, &t1, &t0, zero)
+}