diff options
Diffstat (limited to 'src/debug/dwarf/entry.go')
-rw-r--r-- | src/debug/dwarf/entry.go | 1218 |
1 files changed, 1218 insertions, 0 deletions
diff --git a/src/debug/dwarf/entry.go b/src/debug/dwarf/entry.go new file mode 100644 index 0000000..5bb4297 --- /dev/null +++ b/src/debug/dwarf/entry.go @@ -0,0 +1,1218 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// DWARF debug information entry parser. +// An entry is a sequence of data items of a given format. +// The first word in the entry is an index into what DWARF +// calls the ``abbreviation table.'' An abbreviation is really +// just a type descriptor: it's an array of attribute tag/value format pairs. + +package dwarf + +import ( + "encoding/binary" + "errors" + "fmt" + "strconv" +) + +// a single entry's description: a sequence of attributes +type abbrev struct { + tag Tag + children bool + field []afield +} + +type afield struct { + attr Attr + fmt format + class Class + val int64 // for formImplicitConst +} + +// a map from entry format ids to their descriptions +type abbrevTable map[uint32]abbrev + +// parseAbbrev returns the abbreviation table that starts at byte off +// in the .debug_abbrev section. +func (d *Data) parseAbbrev(off uint64, vers int) (abbrevTable, error) { + if m, ok := d.abbrevCache[off]; ok { + return m, nil + } + + data := d.abbrev + if off > uint64(len(data)) { + data = nil + } else { + data = data[off:] + } + b := makeBuf(d, unknownFormat{}, "abbrev", 0, data) + + // Error handling is simplified by the buf getters + // returning an endless stream of 0s after an error. + m := make(abbrevTable) + for { + // Table ends with id == 0. + id := uint32(b.uint()) + if id == 0 { + break + } + + // Walk over attributes, counting. + n := 0 + b1 := b // Read from copy of b. + b1.uint() + b1.uint8() + for { + tag := b1.uint() + fmt := b1.uint() + if tag == 0 && fmt == 0 { + break + } + if format(fmt) == formImplicitConst { + b1.int() + } + n++ + } + if b1.err != nil { + return nil, b1.err + } + + // Walk over attributes again, this time writing them down. + var a abbrev + a.tag = Tag(b.uint()) + a.children = b.uint8() != 0 + a.field = make([]afield, n) + for i := range a.field { + a.field[i].attr = Attr(b.uint()) + a.field[i].fmt = format(b.uint()) + a.field[i].class = formToClass(a.field[i].fmt, a.field[i].attr, vers, &b) + if a.field[i].fmt == formImplicitConst { + a.field[i].val = b.int() + } + } + b.uint() + b.uint() + + m[id] = a + } + if b.err != nil { + return nil, b.err + } + d.abbrevCache[off] = m + return m, nil +} + +// attrIsExprloc indicates attributes that allow exprloc values that +// are encoded as block values in DWARF 2 and 3. See DWARF 4, Figure +// 20. +var attrIsExprloc = map[Attr]bool{ + AttrLocation: true, + AttrByteSize: true, + AttrBitOffset: true, + AttrBitSize: true, + AttrStringLength: true, + AttrLowerBound: true, + AttrReturnAddr: true, + AttrStrideSize: true, + AttrUpperBound: true, + AttrCount: true, + AttrDataMemberLoc: true, + AttrFrameBase: true, + AttrSegment: true, + AttrStaticLink: true, + AttrUseLocation: true, + AttrVtableElemLoc: true, + AttrAllocated: true, + AttrAssociated: true, + AttrDataLocation: true, + AttrStride: true, +} + +// attrPtrClass indicates the *ptr class of attributes that have +// encoding formSecOffset in DWARF 4 or formData* in DWARF 2 and 3. +var attrPtrClass = map[Attr]Class{ + AttrLocation: ClassLocListPtr, + AttrStmtList: ClassLinePtr, + AttrStringLength: ClassLocListPtr, + AttrReturnAddr: ClassLocListPtr, + AttrStartScope: ClassRangeListPtr, + AttrDataMemberLoc: ClassLocListPtr, + AttrFrameBase: ClassLocListPtr, + AttrMacroInfo: ClassMacPtr, + AttrSegment: ClassLocListPtr, + AttrStaticLink: ClassLocListPtr, + AttrUseLocation: ClassLocListPtr, + AttrVtableElemLoc: ClassLocListPtr, + AttrRanges: ClassRangeListPtr, + // The following are new in DWARF 5. + AttrStrOffsetsBase: ClassStrOffsetsPtr, + AttrAddrBase: ClassAddrPtr, + AttrRnglistsBase: ClassRngListsPtr, + AttrLoclistsBase: ClassLocListPtr, +} + +// formToClass returns the DWARF 4 Class for the given form. If the +// DWARF version is less then 4, it will disambiguate some forms +// depending on the attribute. +func formToClass(form format, attr Attr, vers int, b *buf) Class { + switch form { + default: + b.error("cannot determine class of unknown attribute form") + return 0 + + case formIndirect: + return ClassUnknown + + case formAddr, formAddrx, formAddrx1, formAddrx2, formAddrx3, formAddrx4: + return ClassAddress + + case formDwarfBlock1, formDwarfBlock2, formDwarfBlock4, formDwarfBlock: + // In DWARF 2 and 3, ClassExprLoc was encoded as a + // block. DWARF 4 distinguishes ClassBlock and + // ClassExprLoc, but there are no attributes that can + // be both, so we also promote ClassBlock values in + // DWARF 4 that should be ClassExprLoc in case + // producers get this wrong. + if attrIsExprloc[attr] { + return ClassExprLoc + } + return ClassBlock + + case formData1, formData2, formData4, formData8, formSdata, formUdata, formData16, formImplicitConst: + // In DWARF 2 and 3, ClassPtr was encoded as a + // constant. Unlike ClassExprLoc/ClassBlock, some + // DWARF 4 attributes need to distinguish Class*Ptr + // from ClassConstant, so we only do this promotion + // for versions 2 and 3. + if class, ok := attrPtrClass[attr]; vers < 4 && ok { + return class + } + return ClassConstant + + case formFlag, formFlagPresent: + return ClassFlag + + case formRefAddr, formRef1, formRef2, formRef4, formRef8, formRefUdata, formRefSup4, formRefSup8: + return ClassReference + + case formRefSig8: + return ClassReferenceSig + + case formString, formStrp, formStrx, formStrpSup, formLineStrp, formStrx1, formStrx2, formStrx3, formStrx4: + return ClassString + + case formSecOffset: + // DWARF 4 defines four *ptr classes, but doesn't + // distinguish them in the encoding. Disambiguate + // these classes using the attribute. + if class, ok := attrPtrClass[attr]; ok { + return class + } + return ClassUnknown + + case formExprloc: + return ClassExprLoc + + case formGnuRefAlt: + return ClassReferenceAlt + + case formGnuStrpAlt: + return ClassStringAlt + + case formLoclistx: + return ClassLocList + + case formRnglistx: + return ClassRngList + } +} + +// An entry is a sequence of attribute/value pairs. +type Entry struct { + Offset Offset // offset of Entry in DWARF info + Tag Tag // tag (kind of Entry) + Children bool // whether Entry is followed by children + Field []Field +} + +// A Field is a single attribute/value pair in an Entry. +// +// A value can be one of several "attribute classes" defined by DWARF. +// The Go types corresponding to each class are: +// +// DWARF class Go type Class +// ----------- ------- ----- +// address uint64 ClassAddress +// block []byte ClassBlock +// constant int64 ClassConstant +// flag bool ClassFlag +// reference +// to info dwarf.Offset ClassReference +// to type unit uint64 ClassReferenceSig +// string string ClassString +// exprloc []byte ClassExprLoc +// lineptr int64 ClassLinePtr +// loclistptr int64 ClassLocListPtr +// macptr int64 ClassMacPtr +// rangelistptr int64 ClassRangeListPtr +// +// For unrecognized or vendor-defined attributes, Class may be +// ClassUnknown. +type Field struct { + Attr Attr + Val any + Class Class +} + +// A Class is the DWARF 4 class of an attribute value. +// +// In general, a given attribute's value may take on one of several +// possible classes defined by DWARF, each of which leads to a +// slightly different interpretation of the attribute. +// +// DWARF version 4 distinguishes attribute value classes more finely +// than previous versions of DWARF. The reader will disambiguate +// coarser classes from earlier versions of DWARF into the appropriate +// DWARF 4 class. For example, DWARF 2 uses "constant" for constants +// as well as all types of section offsets, but the reader will +// canonicalize attributes in DWARF 2 files that refer to section +// offsets to one of the Class*Ptr classes, even though these classes +// were only defined in DWARF 3. +type Class int + +const ( + // ClassUnknown represents values of unknown DWARF class. + ClassUnknown Class = iota + + // ClassAddress represents values of type uint64 that are + // addresses on the target machine. + ClassAddress + + // ClassBlock represents values of type []byte whose + // interpretation depends on the attribute. + ClassBlock + + // ClassConstant represents values of type int64 that are + // constants. The interpretation of this constant depends on + // the attribute. + ClassConstant + + // ClassExprLoc represents values of type []byte that contain + // an encoded DWARF expression or location description. + ClassExprLoc + + // ClassFlag represents values of type bool. + ClassFlag + + // ClassLinePtr represents values that are an int64 offset + // into the "line" section. + ClassLinePtr + + // ClassLocListPtr represents values that are an int64 offset + // into the "loclist" section. + ClassLocListPtr + + // ClassMacPtr represents values that are an int64 offset into + // the "mac" section. + ClassMacPtr + + // ClassRangeListPtr represents values that are an int64 offset into + // the "rangelist" section. + ClassRangeListPtr + + // ClassReference represents values that are an Offset offset + // of an Entry in the info section (for use with Reader.Seek). + // The DWARF specification combines ClassReference and + // ClassReferenceSig into class "reference". + ClassReference + + // ClassReferenceSig represents values that are a uint64 type + // signature referencing a type Entry. + ClassReferenceSig + + // ClassString represents values that are strings. If the + // compilation unit specifies the AttrUseUTF8 flag (strongly + // recommended), the string value will be encoded in UTF-8. + // Otherwise, the encoding is unspecified. + ClassString + + // ClassReferenceAlt represents values of type int64 that are + // an offset into the DWARF "info" section of an alternate + // object file. + ClassReferenceAlt + + // ClassStringAlt represents values of type int64 that are an + // offset into the DWARF string section of an alternate object + // file. + ClassStringAlt + + // ClassAddrPtr represents values that are an int64 offset + // into the "addr" section. + ClassAddrPtr + + // ClassLocList represents values that are an int64 offset + // into the "loclists" section. + ClassLocList + + // ClassRngList represents values that are a uint64 offset + // from the base of the "rnglists" section. + ClassRngList + + // ClassRngListsPtr represents values that are an int64 offset + // into the "rnglists" section. These are used as the base for + // ClassRngList values. + ClassRngListsPtr + + // ClassStrOffsetsPtr represents values that are an int64 + // offset into the "str_offsets" section. + ClassStrOffsetsPtr +) + +//go:generate stringer -type=Class + +func (i Class) GoString() string { + return "dwarf." + i.String() +} + +// Val returns the value associated with attribute Attr in Entry, +// or nil if there is no such attribute. +// +// A common idiom is to merge the check for nil return with +// the check that the value has the expected dynamic type, as in: +// +// v, ok := e.Val(AttrSibling).(int64) +func (e *Entry) Val(a Attr) any { + if f := e.AttrField(a); f != nil { + return f.Val + } + return nil +} + +// AttrField returns the Field associated with attribute Attr in +// Entry, or nil if there is no such attribute. +func (e *Entry) AttrField(a Attr) *Field { + for i, f := range e.Field { + if f.Attr == a { + return &e.Field[i] + } + } + return nil +} + +// An Offset represents the location of an Entry within the DWARF info. +// (See Reader.Seek.) +type Offset uint32 + +// Entry reads a single entry from buf, decoding +// according to the given abbreviation table. +func (b *buf) entry(cu *Entry, atab abbrevTable, ubase Offset, vers int) *Entry { + off := b.off + id := uint32(b.uint()) + if id == 0 { + return &Entry{} + } + a, ok := atab[id] + if !ok { + b.error("unknown abbreviation table index") + return nil + } + e := &Entry{ + Offset: off, + Tag: a.tag, + Children: a.children, + Field: make([]Field, len(a.field)), + } + + // If we are currently parsing the compilation unit, + // we can't evaluate Addrx or Strx until we've seen the + // relevant base entry. + type delayed struct { + idx int + off uint64 + fmt format + } + var delay []delayed + + resolveStrx := func(strBase, off uint64) string { + off += strBase + if uint64(int(off)) != off { + b.error("DW_FORM_strx offset out of range") + } + + b1 := makeBuf(b.dwarf, b.format, "str_offsets", 0, b.dwarf.strOffsets) + b1.skip(int(off)) + is64, _ := b.format.dwarf64() + if is64 { + off = b1.uint64() + } else { + off = uint64(b1.uint32()) + } + if b1.err != nil { + b.err = b1.err + return "" + } + if uint64(int(off)) != off { + b.error("DW_FORM_strx indirect offset out of range") + } + b1 = makeBuf(b.dwarf, b.format, "str", 0, b.dwarf.str) + b1.skip(int(off)) + val := b1.string() + if b1.err != nil { + b.err = b1.err + } + return val + } + + resolveRnglistx := func(rnglistsBase, off uint64) uint64 { + is64, _ := b.format.dwarf64() + if is64 { + off *= 8 + } else { + off *= 4 + } + off += rnglistsBase + if uint64(int(off)) != off { + b.error("DW_FORM_rnglistx offset out of range") + } + + b1 := makeBuf(b.dwarf, b.format, "rnglists", 0, b.dwarf.rngLists) + b1.skip(int(off)) + if is64 { + off = b1.uint64() + } else { + off = uint64(b1.uint32()) + } + if b1.err != nil { + b.err = b1.err + return 0 + } + if uint64(int(off)) != off { + b.error("DW_FORM_rnglistx indirect offset out of range") + } + return rnglistsBase + off + } + + for i := range e.Field { + e.Field[i].Attr = a.field[i].attr + e.Field[i].Class = a.field[i].class + fmt := a.field[i].fmt + if fmt == formIndirect { + fmt = format(b.uint()) + e.Field[i].Class = formToClass(fmt, a.field[i].attr, vers, b) + } + var val any + switch fmt { + default: + b.error("unknown entry attr format 0x" + strconv.FormatInt(int64(fmt), 16)) + + // address + case formAddr: + val = b.addr() + case formAddrx, formAddrx1, formAddrx2, formAddrx3, formAddrx4: + var off uint64 + switch fmt { + case formAddrx: + off = b.uint() + case formAddrx1: + off = uint64(b.uint8()) + case formAddrx2: + off = uint64(b.uint16()) + case formAddrx3: + off = uint64(b.uint24()) + case formAddrx4: + off = uint64(b.uint32()) + } + if b.dwarf.addr == nil { + b.error("DW_FORM_addrx with no .debug_addr section") + } + if b.err != nil { + return nil + } + + // We have to adjust by the offset of the + // compilation unit. This won't work if the + // program uses Reader.Seek to skip over the + // unit. Not much we can do about that. + var addrBase int64 + if cu != nil { + addrBase, _ = cu.Val(AttrAddrBase).(int64) + } else if a.tag == TagCompileUnit { + delay = append(delay, delayed{i, off, formAddrx}) + break + } + + var err error + val, err = b.dwarf.debugAddr(b.format, uint64(addrBase), off) + if err != nil { + if b.err == nil { + b.err = err + } + return nil + } + + // block + case formDwarfBlock1: + val = b.bytes(int(b.uint8())) + case formDwarfBlock2: + val = b.bytes(int(b.uint16())) + case formDwarfBlock4: + val = b.bytes(int(b.uint32())) + case formDwarfBlock: + val = b.bytes(int(b.uint())) + + // constant + case formData1: + val = int64(b.uint8()) + case formData2: + val = int64(b.uint16()) + case formData4: + val = int64(b.uint32()) + case formData8: + val = int64(b.uint64()) + case formData16: + val = b.bytes(16) + case formSdata: + val = int64(b.int()) + case formUdata: + val = int64(b.uint()) + case formImplicitConst: + val = a.field[i].val + + // flag + case formFlag: + val = b.uint8() == 1 + // New in DWARF 4. + case formFlagPresent: + // The attribute is implicitly indicated as present, and no value is + // encoded in the debugging information entry itself. + val = true + + // reference to other entry + case formRefAddr: + vers := b.format.version() + if vers == 0 { + b.error("unknown version for DW_FORM_ref_addr") + } else if vers == 2 { + val = Offset(b.addr()) + } else { + is64, known := b.format.dwarf64() + if !known { + b.error("unknown size for DW_FORM_ref_addr") + } else if is64 { + val = Offset(b.uint64()) + } else { + val = Offset(b.uint32()) + } + } + case formRef1: + val = Offset(b.uint8()) + ubase + case formRef2: + val = Offset(b.uint16()) + ubase + case formRef4: + val = Offset(b.uint32()) + ubase + case formRef8: + val = Offset(b.uint64()) + ubase + case formRefUdata: + val = Offset(b.uint()) + ubase + + // string + case formString: + val = b.string() + case formStrp, formLineStrp: + var off uint64 // offset into .debug_str + is64, known := b.format.dwarf64() + if !known { + b.error("unknown size for DW_FORM_strp/line_strp") + } else if is64 { + off = b.uint64() + } else { + off = uint64(b.uint32()) + } + if uint64(int(off)) != off { + b.error("DW_FORM_strp/line_strp offset out of range") + } + if b.err != nil { + return nil + } + var b1 buf + if fmt == formStrp { + b1 = makeBuf(b.dwarf, b.format, "str", 0, b.dwarf.str) + } else { + if len(b.dwarf.lineStr) == 0 { + b.error("DW_FORM_line_strp with no .debug_line_str section") + return nil + } + b1 = makeBuf(b.dwarf, b.format, "line_str", 0, b.dwarf.lineStr) + } + b1.skip(int(off)) + val = b1.string() + if b1.err != nil { + b.err = b1.err + return nil + } + case formStrx, formStrx1, formStrx2, formStrx3, formStrx4: + var off uint64 + switch fmt { + case formStrx: + off = b.uint() + case formStrx1: + off = uint64(b.uint8()) + case formStrx2: + off = uint64(b.uint16()) + case formStrx3: + off = uint64(b.uint24()) + case formStrx4: + off = uint64(b.uint32()) + } + if len(b.dwarf.strOffsets) == 0 { + b.error("DW_FORM_strx with no .debug_str_offsets section") + } + is64, known := b.format.dwarf64() + if !known { + b.error("unknown offset size for DW_FORM_strx") + } + if b.err != nil { + return nil + } + if is64 { + off *= 8 + } else { + off *= 4 + } + + // We have to adjust by the offset of the + // compilation unit. This won't work if the + // program uses Reader.Seek to skip over the + // unit. Not much we can do about that. + var strBase int64 + if cu != nil { + strBase, _ = cu.Val(AttrStrOffsetsBase).(int64) + } else if a.tag == TagCompileUnit { + delay = append(delay, delayed{i, off, formStrx}) + break + } + + val = resolveStrx(uint64(strBase), off) + + case formStrpSup: + is64, known := b.format.dwarf64() + if !known { + b.error("unknown size for DW_FORM_strp_sup") + } else if is64 { + val = b.uint64() + } else { + val = b.uint32() + } + + // lineptr, loclistptr, macptr, rangelistptr + // New in DWARF 4, but clang can generate them with -gdwarf-2. + // Section reference, replacing use of formData4 and formData8. + case formSecOffset, formGnuRefAlt, formGnuStrpAlt: + is64, known := b.format.dwarf64() + if !known { + b.error("unknown size for form 0x" + strconv.FormatInt(int64(fmt), 16)) + } else if is64 { + val = int64(b.uint64()) + } else { + val = int64(b.uint32()) + } + + // exprloc + // New in DWARF 4. + case formExprloc: + val = b.bytes(int(b.uint())) + + // reference + // New in DWARF 4. + case formRefSig8: + // 64-bit type signature. + val = b.uint64() + case formRefSup4: + val = b.uint32() + case formRefSup8: + val = b.uint64() + + // loclist + case formLoclistx: + val = b.uint() + + // rnglist + case formRnglistx: + off := b.uint() + + // We have to adjust by the rnglists_base of + // the compilation unit. This won't work if + // the program uses Reader.Seek to skip over + // the unit. Not much we can do about that. + var rnglistsBase int64 + if cu != nil { + rnglistsBase, _ = cu.Val(AttrRnglistsBase).(int64) + } else if a.tag == TagCompileUnit { + delay = append(delay, delayed{i, off, formRnglistx}) + break + } + + val = resolveRnglistx(uint64(rnglistsBase), off) + } + + e.Field[i].Val = val + } + if b.err != nil { + return nil + } + + for _, del := range delay { + switch del.fmt { + case formAddrx: + addrBase, _ := e.Val(AttrAddrBase).(int64) + val, err := b.dwarf.debugAddr(b.format, uint64(addrBase), del.off) + if err != nil { + b.err = err + return nil + } + e.Field[del.idx].Val = val + case formStrx: + strBase, _ := e.Val(AttrStrOffsetsBase).(int64) + e.Field[del.idx].Val = resolveStrx(uint64(strBase), del.off) + if b.err != nil { + return nil + } + case formRnglistx: + rnglistsBase, _ := e.Val(AttrRnglistsBase).(int64) + e.Field[del.idx].Val = resolveRnglistx(uint64(rnglistsBase), del.off) + if b.err != nil { + return nil + } + } + } + + return e +} + +// A Reader allows reading Entry structures from a DWARF “info” section. +// The Entry structures are arranged in a tree. The Reader's Next function +// return successive entries from a pre-order traversal of the tree. +// If an entry has children, its Children field will be true, and the children +// follow, terminated by an Entry with Tag 0. +type Reader struct { + b buf + d *Data + err error + unit int + lastUnit bool // set if last entry returned by Next is TagCompileUnit/TagPartialUnit + lastChildren bool // .Children of last entry returned by Next + lastSibling Offset // .Val(AttrSibling) of last entry returned by Next + cu *Entry // current compilation unit +} + +// Reader returns a new Reader for Data. +// The reader is positioned at byte offset 0 in the DWARF “info” section. +func (d *Data) Reader() *Reader { + r := &Reader{d: d} + r.Seek(0) + return r +} + +// AddressSize returns the size in bytes of addresses in the current compilation +// unit. +func (r *Reader) AddressSize() int { + return r.d.unit[r.unit].asize +} + +// ByteOrder returns the byte order in the current compilation unit. +func (r *Reader) ByteOrder() binary.ByteOrder { + return r.b.order +} + +// Seek positions the Reader at offset off in the encoded entry stream. +// Offset 0 can be used to denote the first entry. +func (r *Reader) Seek(off Offset) { + d := r.d + r.err = nil + r.lastChildren = false + if off == 0 { + if len(d.unit) == 0 { + return + } + u := &d.unit[0] + r.unit = 0 + r.b = makeBuf(r.d, u, "info", u.off, u.data) + r.cu = nil + return + } + + i := d.offsetToUnit(off) + if i == -1 { + r.err = errors.New("offset out of range") + return + } + if i != r.unit { + r.cu = nil + } + u := &d.unit[i] + r.unit = i + r.b = makeBuf(r.d, u, "info", off, u.data[off-u.off:]) +} + +// maybeNextUnit advances to the next unit if this one is finished. +func (r *Reader) maybeNextUnit() { + for len(r.b.data) == 0 && r.unit+1 < len(r.d.unit) { + r.nextUnit() + } +} + +// nextUnit advances to the next unit. +func (r *Reader) nextUnit() { + r.unit++ + u := &r.d.unit[r.unit] + r.b = makeBuf(r.d, u, "info", u.off, u.data) + r.cu = nil +} + +// Next reads the next entry from the encoded entry stream. +// It returns nil, nil when it reaches the end of the section. +// It returns an error if the current offset is invalid or the data at the +// offset cannot be decoded as a valid Entry. +func (r *Reader) Next() (*Entry, error) { + if r.err != nil { + return nil, r.err + } + r.maybeNextUnit() + if len(r.b.data) == 0 { + return nil, nil + } + u := &r.d.unit[r.unit] + e := r.b.entry(r.cu, u.atable, u.base, u.vers) + if r.b.err != nil { + r.err = r.b.err + return nil, r.err + } + r.lastUnit = false + if e != nil { + r.lastChildren = e.Children + if r.lastChildren { + r.lastSibling, _ = e.Val(AttrSibling).(Offset) + } + if e.Tag == TagCompileUnit || e.Tag == TagPartialUnit { + r.lastUnit = true + r.cu = e + } + } else { + r.lastChildren = false + } + return e, nil +} + +// SkipChildren skips over the child entries associated with +// the last Entry returned by Next. If that Entry did not have +// children or Next has not been called, SkipChildren is a no-op. +func (r *Reader) SkipChildren() { + if r.err != nil || !r.lastChildren { + return + } + + // If the last entry had a sibling attribute, + // that attribute gives the offset of the next + // sibling, so we can avoid decoding the + // child subtrees. + if r.lastSibling >= r.b.off { + r.Seek(r.lastSibling) + return + } + + if r.lastUnit && r.unit+1 < len(r.d.unit) { + r.nextUnit() + return + } + + for { + e, err := r.Next() + if err != nil || e == nil || e.Tag == 0 { + break + } + if e.Children { + r.SkipChildren() + } + } +} + +// clone returns a copy of the reader. This is used by the typeReader +// interface. +func (r *Reader) clone() typeReader { + return r.d.Reader() +} + +// offset returns the current buffer offset. This is used by the +// typeReader interface. +func (r *Reader) offset() Offset { + return r.b.off +} + +// SeekPC returns the Entry for the compilation unit that includes pc, +// and positions the reader to read the children of that unit. If pc +// is not covered by any unit, SeekPC returns ErrUnknownPC and the +// position of the reader is undefined. +// +// Because compilation units can describe multiple regions of the +// executable, in the worst case SeekPC must search through all the +// ranges in all the compilation units. Each call to SeekPC starts the +// search at the compilation unit of the last call, so in general +// looking up a series of PCs will be faster if they are sorted. If +// the caller wishes to do repeated fast PC lookups, it should build +// an appropriate index using the Ranges method. +func (r *Reader) SeekPC(pc uint64) (*Entry, error) { + unit := r.unit + for i := 0; i < len(r.d.unit); i++ { + if unit >= len(r.d.unit) { + unit = 0 + } + r.err = nil + r.lastChildren = false + r.unit = unit + r.cu = nil + u := &r.d.unit[unit] + r.b = makeBuf(r.d, u, "info", u.off, u.data) + e, err := r.Next() + if err != nil || e == nil || e.Tag == 0 { + return nil, err + } + ranges, err := r.d.Ranges(e) + if err != nil { + return nil, err + } + for _, pcs := range ranges { + if pcs[0] <= pc && pc < pcs[1] { + return e, nil + } + } + unit++ + } + return nil, ErrUnknownPC +} + +// Ranges returns the PC ranges covered by e, a slice of [low,high) pairs. +// Only some entry types, such as TagCompileUnit or TagSubprogram, have PC +// ranges; for others, this will return nil with no error. +func (d *Data) Ranges(e *Entry) ([][2]uint64, error) { + var ret [][2]uint64 + + low, lowOK := e.Val(AttrLowpc).(uint64) + + var high uint64 + var highOK bool + highField := e.AttrField(AttrHighpc) + if highField != nil { + switch highField.Class { + case ClassAddress: + high, highOK = highField.Val.(uint64) + case ClassConstant: + off, ok := highField.Val.(int64) + if ok { + high = low + uint64(off) + highOK = true + } + } + } + + if lowOK && highOK { + ret = append(ret, [2]uint64{low, high}) + } + + var u *unit + if uidx := d.offsetToUnit(e.Offset); uidx >= 0 && uidx < len(d.unit) { + u = &d.unit[uidx] + } + + if u != nil && u.vers >= 5 && d.rngLists != nil { + // DWARF version 5 and later + field := e.AttrField(AttrRanges) + if field == nil { + return ret, nil + } + switch field.Class { + case ClassRangeListPtr: + ranges, rangesOK := field.Val.(int64) + if !rangesOK { + return ret, nil + } + cu, base, err := d.baseAddressForEntry(e) + if err != nil { + return nil, err + } + return d.dwarf5Ranges(u, cu, base, ranges, ret) + + case ClassRngList: + rnglist, ok := field.Val.(uint64) + if !ok { + return ret, nil + } + cu, base, err := d.baseAddressForEntry(e) + if err != nil { + return nil, err + } + return d.dwarf5Ranges(u, cu, base, int64(rnglist), ret) + + default: + return ret, nil + } + } + + // DWARF version 2 through 4 + ranges, rangesOK := e.Val(AttrRanges).(int64) + if rangesOK && d.ranges != nil { + _, base, err := d.baseAddressForEntry(e) + if err != nil { + return nil, err + } + return d.dwarf2Ranges(u, base, ranges, ret) + } + + return ret, nil +} + +// baseAddressForEntry returns the initial base address to be used when +// looking up the range list of entry e. +// DWARF specifies that this should be the lowpc attribute of the enclosing +// compilation unit, however comments in gdb/dwarf2read.c say that some +// versions of GCC use the entrypc attribute, so we check that too. +func (d *Data) baseAddressForEntry(e *Entry) (*Entry, uint64, error) { + var cu *Entry + if e.Tag == TagCompileUnit { + cu = e + } else { + i := d.offsetToUnit(e.Offset) + if i == -1 { + return nil, 0, errors.New("no unit for entry") + } + u := &d.unit[i] + b := makeBuf(d, u, "info", u.off, u.data) + cu = b.entry(nil, u.atable, u.base, u.vers) + if b.err != nil { + return nil, 0, b.err + } + } + + if cuEntry, cuEntryOK := cu.Val(AttrEntrypc).(uint64); cuEntryOK { + return cu, cuEntry, nil + } else if cuLow, cuLowOK := cu.Val(AttrLowpc).(uint64); cuLowOK { + return cu, cuLow, nil + } + + return cu, 0, nil +} + +func (d *Data) dwarf2Ranges(u *unit, base uint64, ranges int64, ret [][2]uint64) ([][2]uint64, error) { + if ranges < 0 || ranges > int64(len(d.ranges)) { + return nil, fmt.Errorf("invalid range offset %d (max %d)", ranges, len(d.ranges)) + } + buf := makeBuf(d, u, "ranges", Offset(ranges), d.ranges[ranges:]) + for len(buf.data) > 0 { + low := buf.addr() + high := buf.addr() + + if low == 0 && high == 0 { + break + } + + if low == ^uint64(0)>>uint((8-u.addrsize())*8) { + base = high + } else { + ret = append(ret, [2]uint64{base + low, base + high}) + } + } + + return ret, nil +} + +// dwarf5Ranges interprets a debug_rnglists sequence, see DWARFv5 section +// 2.17.3 (page 53). +func (d *Data) dwarf5Ranges(u *unit, cu *Entry, base uint64, ranges int64, ret [][2]uint64) ([][2]uint64, error) { + if ranges < 0 || ranges > int64(len(d.rngLists)) { + return nil, fmt.Errorf("invalid rnglist offset %d (max %d)", ranges, len(d.ranges)) + } + var addrBase int64 + if cu != nil { + addrBase, _ = cu.Val(AttrAddrBase).(int64) + } + + buf := makeBuf(d, u, "rnglists", 0, d.rngLists) + buf.skip(int(ranges)) + for { + opcode := buf.uint8() + switch opcode { + case rleEndOfList: + if buf.err != nil { + return nil, buf.err + } + return ret, nil + + case rleBaseAddressx: + baseIdx := buf.uint() + var err error + base, err = d.debugAddr(u, uint64(addrBase), baseIdx) + if err != nil { + return nil, err + } + + case rleStartxEndx: + startIdx := buf.uint() + endIdx := buf.uint() + + start, err := d.debugAddr(u, uint64(addrBase), startIdx) + if err != nil { + return nil, err + } + end, err := d.debugAddr(u, uint64(addrBase), endIdx) + if err != nil { + return nil, err + } + ret = append(ret, [2]uint64{start, end}) + + case rleStartxLength: + startIdx := buf.uint() + len := buf.uint() + start, err := d.debugAddr(u, uint64(addrBase), startIdx) + if err != nil { + return nil, err + } + ret = append(ret, [2]uint64{start, start + len}) + + case rleOffsetPair: + off1 := buf.uint() + off2 := buf.uint() + ret = append(ret, [2]uint64{base + off1, base + off2}) + + case rleBaseAddress: + base = buf.addr() + + case rleStartEnd: + start := buf.addr() + end := buf.addr() + ret = append(ret, [2]uint64{start, end}) + + case rleStartLength: + start := buf.addr() + len := buf.uint() + ret = append(ret, [2]uint64{start, start + len}) + } + } +} + +// debugAddr returns the address at idx in debug_addr +func (d *Data) debugAddr(format dataFormat, addrBase, idx uint64) (uint64, error) { + off := idx*uint64(format.addrsize()) + addrBase + + if uint64(int(off)) != off { + return 0, errors.New("offset out of range") + } + + b := makeBuf(d, format, "addr", 0, d.addr) + b.skip(int(off)) + val := b.addr() + if b.err != nil { + return 0, b.err + } + return val, nil +} |