diff options
Diffstat (limited to 'src/go/doc/testdata/examples/issue43658.golden')
-rw-r--r-- | src/go/doc/testdata/examples/issue43658.golden | 156 |
1 files changed, 156 insertions, 0 deletions
diff --git a/src/go/doc/testdata/examples/issue43658.golden b/src/go/doc/testdata/examples/issue43658.golden new file mode 100644 index 0000000..5200d14 --- /dev/null +++ b/src/go/doc/testdata/examples/issue43658.golden @@ -0,0 +1,156 @@ +-- Profile_simple.Play -- +package main + +import ( + "fmt" + "log" + "sort" + + "golang.org/x/exp/rand" + + "gonum.org/v1/gonum/graph/community" + "gonum.org/v1/gonum/graph/internal/ordered" + "gonum.org/v1/gonum/graph/simple" +) + +func main() { + // Profile calls Modularize which implements the Louvain modularization algorithm. + // Since this is a randomized algorithm we use a defined random source to ensure + // consistency between test runs. In practice, results will not differ greatly + // between runs with different PRNG seeds. + src := rand.NewSource(1) + + // Create dumbell graph: + // + // 0 4 + // |\ /| + // | 2 - 3 | + // |/ \| + // 1 5 + // + g := simple.NewUndirectedGraph() + for u, e := range smallDumbell { + for v := range e { + g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v)}) + } + } + + // Get the profile of internal node weight for resolutions + // between 0.1 and 10 using logarithmic bisection. + p, err := community.Profile( + community.ModularScore(g, community.Weight, 10, src), + true, 1e-3, 0.1, 10, + ) + if err != nil { + log.Fatal(err) + } + + // Print out each step with communities ordered. + for _, d := range p { + comm := d.Communities() + for _, c := range comm { + sort.Sort(ordered.ByID(c)) + } + sort.Sort(ordered.BySliceIDs(comm)) + fmt.Printf("Low:%.2v High:%.2v Score:%v Communities:%v Q=%.3v\n", + d.Low, d.High, d.Score, comm, community.Q(g, comm, d.Low)) + } + +} + +// intset is an integer set. +type intset map[int]struct{} + +func linksTo(i ...int) intset { + if len(i) == 0 { + return nil + } + s := make(intset) + for _, v := range i { + s[v] = struct{}{} + } + return s +} + +var smallDumbell = []intset{ + 0: linksTo(1, 2), + 1: linksTo(2), + 2: linksTo(3), + 3: linksTo(4, 5), + 4: linksTo(5), + 5: nil, +} + +-- Profile_simple.Output -- +Low:0.1 High:0.29 Score:14 Communities:[[0 1 2 3 4 5]] Q=0.9 +Low:0.29 High:2.3 Score:12 Communities:[[0 1 2] [3 4 5]] Q=0.714 +Low:2.3 High:3.5 Score:4 Communities:[[0 1] [2] [3] [4 5]] Q=-0.31 +Low:3.5 High:10 Score:0 Communities:[[0] [1] [2] [3] [4] [5]] Q=-0.607 + +-- Profile_multiplex.Play -- + +package main + +import ( + "fmt" + "log" + "sort" + + "golang.org/x/exp/rand" + + "gonum.org/v1/gonum/graph/community" + "gonum.org/v1/gonum/graph/internal/ordered" + "gonum.org/v1/gonum/graph/simple" +) + +var friends, enemies *simple.WeightedUndirectedGraph + +func main() { + // Profile calls ModularizeMultiplex which implements the Louvain modularization + // algorithm. Since this is a randomized algorithm we use a defined random source + // to ensure consistency between test runs. In practice, results will not differ + // greatly between runs with different PRNG seeds. + src := rand.NewSource(1) + + // The undirected graphs, friends and enemies, are the political relationships + // in the Middle East as described in the Slate article: + // http://www.slate.com/blogs/the_world_/2014/07/17/the_middle_east_friendship_chart.html + g, err := community.NewUndirectedLayers(friends, enemies) + if err != nil { + log.Fatal(err) + } + weights := []float64{1, -1} + + // Get the profile of internal node weight for resolutions + // between 0.1 and 10 using logarithmic bisection. + p, err := community.Profile( + community.ModularMultiplexScore(g, weights, true, community.WeightMultiplex, 10, src), + true, 1e-3, 0.1, 10, + ) + if err != nil { + log.Fatal(err) + } + + // Print out each step with communities ordered. + for _, d := range p { + comm := d.Communities() + for _, c := range comm { + sort.Sort(ordered.ByID(c)) + } + sort.Sort(ordered.BySliceIDs(comm)) + fmt.Printf("Low:%.2v High:%.2v Score:%v Communities:%v Q=%.3v\n", + d.Low, d.High, d.Score, comm, community.QMultiplex(g, comm, weights, []float64{d.Low})) + } + +} +-- Profile_multiplex.Output -- +Low:0.1 High:0.72 Score:26 Communities:[[0] [1 7 9 12] [2 8 11] [3 4 5 10] [6]] Q=[24.7 1.97] +Low:0.72 High:1.1 Score:24 Communities:[[0 6] [1 7 9 12] [2 8 11] [3 4 5 10]] Q=[16.9 14.1] +Low:1.1 High:1.2 Score:18 Communities:[[0 2 6 11] [1 7 9 12] [3 4 5 8 10]] Q=[9.16 25.1] +Low:1.2 High:1.6 Score:10 Communities:[[0 3 4 5 6 10] [1 7 9 12] [2 8 11]] Q=[10.5 26.7] +Low:1.6 High:1.6 Score:8 Communities:[[0 1 6 7 9 12] [2 8 11] [3 4 5 10]] Q=[5.56 39.8] +Low:1.6 High:1.8 Score:2 Communities:[[0 2 3 4 5 6 10] [1 7 8 9 11 12]] Q=[-1.82 48.6] +Low:1.8 High:2.3 Score:-6 Communities:[[0 2 3 4 5 6 8 10 11] [1 7 9 12]] Q=[-5 57.5] +Low:2.3 High:2.4 Score:-10 Communities:[[0 1 2 6 7 8 9 11 12] [3 4 5 10]] Q=[-11.2 79] +Low:2.4 High:4.3 Score:-52 Communities:[[0 1 2 3 4 5 6 7 8 9 10 11 12]] Q=[-46.1 117] +Low:4.3 High:10 Score:-54 Communities:[[0 1 2 3 4 6 7 8 9 10 11 12] [5]] Q=[-82 254] |