diff options
Diffstat (limited to 'src/image/image.go')
-rw-r--r-- | src/image/image.go | 1273 |
1 files changed, 1273 insertions, 0 deletions
diff --git a/src/image/image.go b/src/image/image.go new file mode 100644 index 0000000..dfb70d4 --- /dev/null +++ b/src/image/image.go @@ -0,0 +1,1273 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package image implements a basic 2-D image library. +// +// The fundamental interface is called Image. An Image contains colors, which +// are described in the image/color package. +// +// Values of the Image interface are created either by calling functions such +// as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing +// image data in a format such as GIF, JPEG or PNG. Decoding any particular +// image format requires the prior registration of a decoder function. +// Registration is typically automatic as a side effect of initializing that +// format's package so that, to decode a PNG image, it suffices to have +// +// import _ "image/png" +// +// in a program's main package. The _ means to import a package purely for its +// initialization side effects. +// +// See "The Go image package" for more details: +// https://golang.org/doc/articles/image_package.html +package image + +import ( + "image/color" +) + +// Config holds an image's color model and dimensions. +type Config struct { + ColorModel color.Model + Width, Height int +} + +// Image is a finite rectangular grid of color.Color values taken from a color +// model. +type Image interface { + // ColorModel returns the Image's color model. + ColorModel() color.Model + // Bounds returns the domain for which At can return non-zero color. + // The bounds do not necessarily contain the point (0, 0). + Bounds() Rectangle + // At returns the color of the pixel at (x, y). + // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid. + // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one. + At(x, y int) color.Color +} + +// RGBA64Image is an Image whose pixels can be converted directly to a +// color.RGBA64. +type RGBA64Image interface { + // RGBA64At returns the RGBA64 color of the pixel at (x, y). It is + // equivalent to calling At(x, y).RGBA() and converting the resulting + // 32-bit return values to a color.RGBA64, but it can avoid allocations + // from converting concrete color types to the color.Color interface type. + RGBA64At(x, y int) color.RGBA64 + Image +} + +// PalettedImage is an image whose colors may come from a limited palette. +// If m is a PalettedImage and m.ColorModel() returns a color.Palette p, +// then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's +// color model is not a color.Palette, then ColorIndexAt's behavior is +// undefined. +type PalettedImage interface { + // ColorIndexAt returns the palette index of the pixel at (x, y). + ColorIndexAt(x, y int) uint8 + Image +} + +// pixelBufferLength returns the length of the []uint8 typed Pix slice field +// for the NewXxx functions. Conceptually, this is just (bpp * width * height), +// but this function panics if at least one of those is negative or if the +// computation would overflow the int type. +// +// This panics instead of returning an error because of backwards +// compatibility. The NewXxx functions do not return an error. +func pixelBufferLength(bytesPerPixel int, r Rectangle, imageTypeName string) int { + totalLength := mul3NonNeg(bytesPerPixel, r.Dx(), r.Dy()) + if totalLength < 0 { + panic("image: New" + imageTypeName + " Rectangle has huge or negative dimensions") + } + return totalLength +} + +// RGBA is an in-memory image whose At method returns color.RGBA values. +type RGBA struct { + // Pix holds the image's pixels, in R, G, B, A order. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *RGBA) ColorModel() color.Model { return color.RGBAModel } + +func (p *RGBA) Bounds() Rectangle { return p.Rect } + +func (p *RGBA) At(x, y int) color.Color { + return p.RGBAAt(x, y) +} + +func (p *RGBA) RGBA64At(x, y int) color.RGBA64 { + if !(Point{x, y}.In(p.Rect)) { + return color.RGBA64{} + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + r := uint16(s[0]) + g := uint16(s[1]) + b := uint16(s[2]) + a := uint16(s[3]) + return color.RGBA64{ + (r << 8) | r, + (g << 8) | g, + (b << 8) | b, + (a << 8) | a, + } +} + +func (p *RGBA) RGBAAt(x, y int) color.RGBA { + if !(Point{x, y}.In(p.Rect)) { + return color.RGBA{} + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + return color.RGBA{s[0], s[1], s[2], s[3]} +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *RGBA) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 +} + +func (p *RGBA) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + c1 := color.RGBAModel.Convert(c).(color.RGBA) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = c1.R + s[1] = c1.G + s[2] = c1.B + s[3] = c1.A +} + +func (p *RGBA) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = uint8(c.R >> 8) + s[1] = uint8(c.G >> 8) + s[2] = uint8(c.B >> 8) + s[3] = uint8(c.A >> 8) +} + +func (p *RGBA) SetRGBA(x, y int, c color.RGBA) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = c.R + s[1] = c.G + s[2] = c.B + s[3] = c.A +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *RGBA) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &RGBA{} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &RGBA{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *RGBA) Opaque() bool { + if p.Rect.Empty() { + return true + } + i0, i1 := 3, p.Rect.Dx()*4 + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for i := i0; i < i1; i += 4 { + if p.Pix[i] != 0xff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewRGBA returns a new RGBA image with the given bounds. +func NewRGBA(r Rectangle) *RGBA { + return &RGBA{ + Pix: make([]uint8, pixelBufferLength(4, r, "RGBA")), + Stride: 4 * r.Dx(), + Rect: r, + } +} + +// RGBA64 is an in-memory image whose At method returns color.RGBA64 values. +type RGBA64 struct { + // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model } + +func (p *RGBA64) Bounds() Rectangle { return p.Rect } + +func (p *RGBA64) At(x, y int) color.Color { + return p.RGBA64At(x, y) +} + +func (p *RGBA64) RGBA64At(x, y int) color.RGBA64 { + if !(Point{x, y}.In(p.Rect)) { + return color.RGBA64{} + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 + return color.RGBA64{ + uint16(s[0])<<8 | uint16(s[1]), + uint16(s[2])<<8 | uint16(s[3]), + uint16(s[4])<<8 | uint16(s[5]), + uint16(s[6])<<8 | uint16(s[7]), + } +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *RGBA64) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 +} + +func (p *RGBA64) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + c1 := color.RGBA64Model.Convert(c).(color.RGBA64) + s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = uint8(c1.R >> 8) + s[1] = uint8(c1.R) + s[2] = uint8(c1.G >> 8) + s[3] = uint8(c1.G) + s[4] = uint8(c1.B >> 8) + s[5] = uint8(c1.B) + s[6] = uint8(c1.A >> 8) + s[7] = uint8(c1.A) +} + +func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = uint8(c.R >> 8) + s[1] = uint8(c.R) + s[2] = uint8(c.G >> 8) + s[3] = uint8(c.G) + s[4] = uint8(c.B >> 8) + s[5] = uint8(c.B) + s[6] = uint8(c.A >> 8) + s[7] = uint8(c.A) +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *RGBA64) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &RGBA64{} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &RGBA64{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *RGBA64) Opaque() bool { + if p.Rect.Empty() { + return true + } + i0, i1 := 6, p.Rect.Dx()*8 + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for i := i0; i < i1; i += 8 { + if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewRGBA64 returns a new RGBA64 image with the given bounds. +func NewRGBA64(r Rectangle) *RGBA64 { + return &RGBA64{ + Pix: make([]uint8, pixelBufferLength(8, r, "RGBA64")), + Stride: 8 * r.Dx(), + Rect: r, + } +} + +// NRGBA is an in-memory image whose At method returns color.NRGBA values. +type NRGBA struct { + // Pix holds the image's pixels, in R, G, B, A order. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel } + +func (p *NRGBA) Bounds() Rectangle { return p.Rect } + +func (p *NRGBA) At(x, y int) color.Color { + return p.NRGBAAt(x, y) +} + +func (p *NRGBA) RGBA64At(x, y int) color.RGBA64 { + r, g, b, a := p.NRGBAAt(x, y).RGBA() + return color.RGBA64{uint16(r), uint16(g), uint16(b), uint16(a)} +} + +func (p *NRGBA) NRGBAAt(x, y int) color.NRGBA { + if !(Point{x, y}.In(p.Rect)) { + return color.NRGBA{} + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + return color.NRGBA{s[0], s[1], s[2], s[3]} +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *NRGBA) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 +} + +func (p *NRGBA) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + c1 := color.NRGBAModel.Convert(c).(color.NRGBA) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = c1.R + s[1] = c1.G + s[2] = c1.B + s[3] = c1.A +} + +func (p *NRGBA) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + r, g, b, a := uint32(c.R), uint32(c.G), uint32(c.B), uint32(c.A) + if (a != 0) && (a != 0xffff) { + r = (r * 0xffff) / a + g = (g * 0xffff) / a + b = (b * 0xffff) / a + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = uint8(r >> 8) + s[1] = uint8(g >> 8) + s[2] = uint8(b >> 8) + s[3] = uint8(a >> 8) +} + +func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = c.R + s[1] = c.G + s[2] = c.B + s[3] = c.A +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *NRGBA) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &NRGBA{} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &NRGBA{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *NRGBA) Opaque() bool { + if p.Rect.Empty() { + return true + } + i0, i1 := 3, p.Rect.Dx()*4 + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for i := i0; i < i1; i += 4 { + if p.Pix[i] != 0xff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewNRGBA returns a new NRGBA image with the given bounds. +func NewNRGBA(r Rectangle) *NRGBA { + return &NRGBA{ + Pix: make([]uint8, pixelBufferLength(4, r, "NRGBA")), + Stride: 4 * r.Dx(), + Rect: r, + } +} + +// NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values. +type NRGBA64 struct { + // Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model } + +func (p *NRGBA64) Bounds() Rectangle { return p.Rect } + +func (p *NRGBA64) At(x, y int) color.Color { + return p.NRGBA64At(x, y) +} + +func (p *NRGBA64) RGBA64At(x, y int) color.RGBA64 { + r, g, b, a := p.NRGBA64At(x, y).RGBA() + return color.RGBA64{uint16(r), uint16(g), uint16(b), uint16(a)} +} + +func (p *NRGBA64) NRGBA64At(x, y int) color.NRGBA64 { + if !(Point{x, y}.In(p.Rect)) { + return color.NRGBA64{} + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 + return color.NRGBA64{ + uint16(s[0])<<8 | uint16(s[1]), + uint16(s[2])<<8 | uint16(s[3]), + uint16(s[4])<<8 | uint16(s[5]), + uint16(s[6])<<8 | uint16(s[7]), + } +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *NRGBA64) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8 +} + +func (p *NRGBA64) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64) + s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = uint8(c1.R >> 8) + s[1] = uint8(c1.R) + s[2] = uint8(c1.G >> 8) + s[3] = uint8(c1.G) + s[4] = uint8(c1.B >> 8) + s[5] = uint8(c1.B) + s[6] = uint8(c1.A >> 8) + s[7] = uint8(c1.A) +} + +func (p *NRGBA64) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + r, g, b, a := uint32(c.R), uint32(c.G), uint32(c.B), uint32(c.A) + if (a != 0) && (a != 0xffff) { + r = (r * 0xffff) / a + g = (g * 0xffff) / a + b = (b * 0xffff) / a + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = uint8(r >> 8) + s[1] = uint8(r) + s[2] = uint8(g >> 8) + s[3] = uint8(g) + s[4] = uint8(b >> 8) + s[5] = uint8(b) + s[6] = uint8(a >> 8) + s[7] = uint8(a) +} + +func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = uint8(c.R >> 8) + s[1] = uint8(c.R) + s[2] = uint8(c.G >> 8) + s[3] = uint8(c.G) + s[4] = uint8(c.B >> 8) + s[5] = uint8(c.B) + s[6] = uint8(c.A >> 8) + s[7] = uint8(c.A) +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *NRGBA64) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &NRGBA64{} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &NRGBA64{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *NRGBA64) Opaque() bool { + if p.Rect.Empty() { + return true + } + i0, i1 := 6, p.Rect.Dx()*8 + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for i := i0; i < i1; i += 8 { + if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewNRGBA64 returns a new NRGBA64 image with the given bounds. +func NewNRGBA64(r Rectangle) *NRGBA64 { + return &NRGBA64{ + Pix: make([]uint8, pixelBufferLength(8, r, "NRGBA64")), + Stride: 8 * r.Dx(), + Rect: r, + } +} + +// Alpha is an in-memory image whose At method returns color.Alpha values. +type Alpha struct { + // Pix holds the image's pixels, as alpha values. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Alpha) ColorModel() color.Model { return color.AlphaModel } + +func (p *Alpha) Bounds() Rectangle { return p.Rect } + +func (p *Alpha) At(x, y int) color.Color { + return p.AlphaAt(x, y) +} + +func (p *Alpha) RGBA64At(x, y int) color.RGBA64 { + a := uint16(p.AlphaAt(x, y).A) + a |= a << 8 + return color.RGBA64{a, a, a, a} +} + +func (p *Alpha) AlphaAt(x, y int) color.Alpha { + if !(Point{x, y}.In(p.Rect)) { + return color.Alpha{} + } + i := p.PixOffset(x, y) + return color.Alpha{p.Pix[i]} +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *Alpha) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 +} + +func (p *Alpha) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A +} + +func (p *Alpha) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i] = uint8(c.A >> 8) +} + +func (p *Alpha) SetAlpha(x, y int, c color.Alpha) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i] = c.A +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *Alpha) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &Alpha{} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &Alpha{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *Alpha) Opaque() bool { + if p.Rect.Empty() { + return true + } + i0, i1 := 0, p.Rect.Dx() + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for i := i0; i < i1; i++ { + if p.Pix[i] != 0xff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewAlpha returns a new Alpha image with the given bounds. +func NewAlpha(r Rectangle) *Alpha { + return &Alpha{ + Pix: make([]uint8, pixelBufferLength(1, r, "Alpha")), + Stride: 1 * r.Dx(), + Rect: r, + } +} + +// Alpha16 is an in-memory image whose At method returns color.Alpha16 values. +type Alpha16 struct { + // Pix holds the image's pixels, as alpha values in big-endian format. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model } + +func (p *Alpha16) Bounds() Rectangle { return p.Rect } + +func (p *Alpha16) At(x, y int) color.Color { + return p.Alpha16At(x, y) +} + +func (p *Alpha16) RGBA64At(x, y int) color.RGBA64 { + a := p.Alpha16At(x, y).A + return color.RGBA64{a, a, a, a} +} + +func (p *Alpha16) Alpha16At(x, y int) color.Alpha16 { + if !(Point{x, y}.In(p.Rect)) { + return color.Alpha16{} + } + i := p.PixOffset(x, y) + return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *Alpha16) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 +} + +func (p *Alpha16) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + c1 := color.Alpha16Model.Convert(c).(color.Alpha16) + p.Pix[i+0] = uint8(c1.A >> 8) + p.Pix[i+1] = uint8(c1.A) +} + +func (p *Alpha16) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i+0] = uint8(c.A >> 8) + p.Pix[i+1] = uint8(c.A) +} + +func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i+0] = uint8(c.A >> 8) + p.Pix[i+1] = uint8(c.A) +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *Alpha16) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &Alpha16{} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &Alpha16{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *Alpha16) Opaque() bool { + if p.Rect.Empty() { + return true + } + i0, i1 := 0, p.Rect.Dx()*2 + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for i := i0; i < i1; i += 2 { + if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff { + return false + } + } + i0 += p.Stride + i1 += p.Stride + } + return true +} + +// NewAlpha16 returns a new Alpha16 image with the given bounds. +func NewAlpha16(r Rectangle) *Alpha16 { + return &Alpha16{ + Pix: make([]uint8, pixelBufferLength(2, r, "Alpha16")), + Stride: 2 * r.Dx(), + Rect: r, + } +} + +// Gray is an in-memory image whose At method returns color.Gray values. +type Gray struct { + // Pix holds the image's pixels, as gray values. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Gray) ColorModel() color.Model { return color.GrayModel } + +func (p *Gray) Bounds() Rectangle { return p.Rect } + +func (p *Gray) At(x, y int) color.Color { + return p.GrayAt(x, y) +} + +func (p *Gray) RGBA64At(x, y int) color.RGBA64 { + gray := uint16(p.GrayAt(x, y).Y) + gray |= gray << 8 + return color.RGBA64{gray, gray, gray, 0xffff} +} + +func (p *Gray) GrayAt(x, y int) color.Gray { + if !(Point{x, y}.In(p.Rect)) { + return color.Gray{} + } + i := p.PixOffset(x, y) + return color.Gray{p.Pix[i]} +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *Gray) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 +} + +func (p *Gray) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y +} + +func (p *Gray) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + // This formula is the same as in color.grayModel. + gray := (19595*uint32(c.R) + 38470*uint32(c.G) + 7471*uint32(c.B) + 1<<15) >> 24 + i := p.PixOffset(x, y) + p.Pix[i] = uint8(gray) +} + +func (p *Gray) SetGray(x, y int, c color.Gray) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i] = c.Y +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *Gray) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &Gray{} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &Gray{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *Gray) Opaque() bool { + return true +} + +// NewGray returns a new Gray image with the given bounds. +func NewGray(r Rectangle) *Gray { + return &Gray{ + Pix: make([]uint8, pixelBufferLength(1, r, "Gray")), + Stride: 1 * r.Dx(), + Rect: r, + } +} + +// Gray16 is an in-memory image whose At method returns color.Gray16 values. +type Gray16 struct { + // Pix holds the image's pixels, as gray values in big-endian format. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *Gray16) ColorModel() color.Model { return color.Gray16Model } + +func (p *Gray16) Bounds() Rectangle { return p.Rect } + +func (p *Gray16) At(x, y int) color.Color { + return p.Gray16At(x, y) +} + +func (p *Gray16) RGBA64At(x, y int) color.RGBA64 { + gray := p.Gray16At(x, y).Y + return color.RGBA64{gray, gray, gray, 0xffff} +} + +func (p *Gray16) Gray16At(x, y int) color.Gray16 { + if !(Point{x, y}.In(p.Rect)) { + return color.Gray16{} + } + i := p.PixOffset(x, y) + return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])} +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *Gray16) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2 +} + +func (p *Gray16) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + c1 := color.Gray16Model.Convert(c).(color.Gray16) + p.Pix[i+0] = uint8(c1.Y >> 8) + p.Pix[i+1] = uint8(c1.Y) +} + +func (p *Gray16) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + // This formula is the same as in color.gray16Model. + gray := (19595*uint32(c.R) + 38470*uint32(c.G) + 7471*uint32(c.B) + 1<<15) >> 16 + i := p.PixOffset(x, y) + p.Pix[i+0] = uint8(gray >> 8) + p.Pix[i+1] = uint8(gray) +} + +func (p *Gray16) SetGray16(x, y int, c color.Gray16) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i+0] = uint8(c.Y >> 8) + p.Pix[i+1] = uint8(c.Y) +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *Gray16) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &Gray16{} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &Gray16{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *Gray16) Opaque() bool { + return true +} + +// NewGray16 returns a new Gray16 image with the given bounds. +func NewGray16(r Rectangle) *Gray16 { + return &Gray16{ + Pix: make([]uint8, pixelBufferLength(2, r, "Gray16")), + Stride: 2 * r.Dx(), + Rect: r, + } +} + +// CMYK is an in-memory image whose At method returns color.CMYK values. +type CMYK struct { + // Pix holds the image's pixels, in C, M, Y, K order. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle +} + +func (p *CMYK) ColorModel() color.Model { return color.CMYKModel } + +func (p *CMYK) Bounds() Rectangle { return p.Rect } + +func (p *CMYK) At(x, y int) color.Color { + return p.CMYKAt(x, y) +} + +func (p *CMYK) RGBA64At(x, y int) color.RGBA64 { + r, g, b, a := p.CMYKAt(x, y).RGBA() + return color.RGBA64{uint16(r), uint16(g), uint16(b), uint16(a)} +} + +func (p *CMYK) CMYKAt(x, y int) color.CMYK { + if !(Point{x, y}.In(p.Rect)) { + return color.CMYK{} + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + return color.CMYK{s[0], s[1], s[2], s[3]} +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *CMYK) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 +} + +func (p *CMYK) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + c1 := color.CMYKModel.Convert(c).(color.CMYK) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = c1.C + s[1] = c1.M + s[2] = c1.Y + s[3] = c1.K +} + +func (p *CMYK) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + cc, mm, yy, kk := color.RGBToCMYK(uint8(c.R>>8), uint8(c.G>>8), uint8(c.B>>8)) + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = cc + s[1] = mm + s[2] = yy + s[3] = kk +} + +func (p *CMYK) SetCMYK(x, y int, c color.CMYK) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + s[0] = c.C + s[1] = c.M + s[2] = c.Y + s[3] = c.K +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *CMYK) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &CMYK{} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &CMYK{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *CMYK) Opaque() bool { + return true +} + +// NewCMYK returns a new CMYK image with the given bounds. +func NewCMYK(r Rectangle) *CMYK { + return &CMYK{ + Pix: make([]uint8, pixelBufferLength(4, r, "CMYK")), + Stride: 4 * r.Dx(), + Rect: r, + } +} + +// Paletted is an in-memory image of uint8 indices into a given palette. +type Paletted struct { + // Pix holds the image's pixels, as palette indices. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect Rectangle + // Palette is the image's palette. + Palette color.Palette +} + +func (p *Paletted) ColorModel() color.Model { return p.Palette } + +func (p *Paletted) Bounds() Rectangle { return p.Rect } + +func (p *Paletted) At(x, y int) color.Color { + if len(p.Palette) == 0 { + return nil + } + if !(Point{x, y}.In(p.Rect)) { + return p.Palette[0] + } + i := p.PixOffset(x, y) + return p.Palette[p.Pix[i]] +} + +func (p *Paletted) RGBA64At(x, y int) color.RGBA64 { + if len(p.Palette) == 0 { + return color.RGBA64{} + } + c := color.Color(nil) + if !(Point{x, y}.In(p.Rect)) { + c = p.Palette[0] + } else { + i := p.PixOffset(x, y) + c = p.Palette[p.Pix[i]] + } + r, g, b, a := c.RGBA() + return color.RGBA64{ + uint16(r), + uint16(g), + uint16(b), + uint16(a), + } +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *Paletted) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1 +} + +func (p *Paletted) Set(x, y int, c color.Color) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i] = uint8(p.Palette.Index(c)) +} + +func (p *Paletted) SetRGBA64(x, y int, c color.RGBA64) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i] = uint8(p.Palette.Index(c)) +} + +func (p *Paletted) ColorIndexAt(x, y int) uint8 { + if !(Point{x, y}.In(p.Rect)) { + return 0 + } + i := p.PixOffset(x, y) + return p.Pix[i] +} + +func (p *Paletted) SetColorIndex(x, y int, index uint8) { + if !(Point{x, y}.In(p.Rect)) { + return + } + i := p.PixOffset(x, y) + p.Pix[i] = index +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *Paletted) SubImage(r Rectangle) Image { + r = r.Intersect(p.Rect) + // If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside + // either r1 or r2 if the intersection is empty. Without explicitly checking for + // this, the Pix[i:] expression below can panic. + if r.Empty() { + return &Paletted{ + Palette: p.Palette, + } + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &Paletted{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: p.Rect.Intersect(r), + Palette: p.Palette, + } +} + +// Opaque scans the entire image and reports whether it is fully opaque. +func (p *Paletted) Opaque() bool { + var present [256]bool + i0, i1 := 0, p.Rect.Dx() + for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { + for _, c := range p.Pix[i0:i1] { + present[c] = true + } + i0 += p.Stride + i1 += p.Stride + } + for i, c := range p.Palette { + if !present[i] { + continue + } + _, _, _, a := c.RGBA() + if a != 0xffff { + return false + } + } + return true +} + +// NewPaletted returns a new Paletted image with the given width, height and +// palette. +func NewPaletted(r Rectangle, p color.Palette) *Paletted { + return &Paletted{ + Pix: make([]uint8, pixelBufferLength(1, r, "Paletted")), + Stride: 1 * r.Dx(), + Rect: r, + Palette: p, + } +} |