summaryrefslogtreecommitdiffstats
path: root/src/image/jpeg
diff options
context:
space:
mode:
Diffstat (limited to 'src/image/jpeg')
-rw-r--r--src/image/jpeg/dct_test.go299
-rw-r--r--src/image/jpeg/fdct.go192
-rw-r--r--src/image/jpeg/fuzz_test.go65
-rw-r--r--src/image/jpeg/huffman.go247
-rw-r--r--src/image/jpeg/idct.go194
-rw-r--r--src/image/jpeg/reader.go815
-rw-r--r--src/image/jpeg/reader_test.go516
-rw-r--r--src/image/jpeg/scan.go523
-rw-r--r--src/image/jpeg/writer.go641
-rw-r--r--src/image/jpeg/writer_test.go289
10 files changed, 3781 insertions, 0 deletions
diff --git a/src/image/jpeg/dct_test.go b/src/image/jpeg/dct_test.go
new file mode 100644
index 0000000..ed5b73d
--- /dev/null
+++ b/src/image/jpeg/dct_test.go
@@ -0,0 +1,299 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "fmt"
+ "math"
+ "math/rand"
+ "strings"
+ "testing"
+)
+
+func benchmarkDCT(b *testing.B, f func(*block)) {
+ b.StopTimer()
+ blocks := make([]block, 0, b.N*len(testBlocks))
+ for i := 0; i < b.N; i++ {
+ blocks = append(blocks, testBlocks[:]...)
+ }
+ b.StartTimer()
+ for i := range blocks {
+ f(&blocks[i])
+ }
+}
+
+func BenchmarkFDCT(b *testing.B) {
+ benchmarkDCT(b, fdct)
+}
+
+func BenchmarkIDCT(b *testing.B) {
+ benchmarkDCT(b, idct)
+}
+
+func TestDCT(t *testing.T) {
+ blocks := make([]block, len(testBlocks))
+ copy(blocks, testBlocks[:])
+
+ // Append some randomly generated blocks of varying sparseness.
+ r := rand.New(rand.NewSource(123))
+ for i := 0; i < 100; i++ {
+ b := block{}
+ n := r.Int() % 64
+ for j := 0; j < n; j++ {
+ b[r.Int()%len(b)] = r.Int31() % 256
+ }
+ blocks = append(blocks, b)
+ }
+
+ // Check that the FDCT and IDCT functions are inverses, after a scale and
+ // level shift. Scaling reduces the rounding errors in the conversion from
+ // floats to ints.
+ for i, b := range blocks {
+ got, want := b, b
+ for j := range got {
+ got[j] = (got[j] - 128) * 8
+ }
+ slowFDCT(&got)
+ slowIDCT(&got)
+ for j := range got {
+ got[j] = got[j]/8 + 128
+ }
+ if differ(&got, &want) {
+ t.Errorf("i=%d: IDCT(FDCT)\nsrc\n%s\ngot\n%s\nwant\n%s\n", i, &b, &got, &want)
+ }
+ }
+
+ // Check that the optimized and slow FDCT implementations agree.
+ // The fdct function already does a scale and level shift.
+ for i, b := range blocks {
+ got, want := b, b
+ fdct(&got)
+ for j := range want {
+ want[j] = (want[j] - 128) * 8
+ }
+ slowFDCT(&want)
+ if differ(&got, &want) {
+ t.Errorf("i=%d: FDCT\nsrc\n%s\ngot\n%s\nwant\n%s\n", i, &b, &got, &want)
+ }
+ }
+
+ // Check that the optimized and slow IDCT implementations agree.
+ for i, b := range blocks {
+ got, want := b, b
+ idct(&got)
+ slowIDCT(&want)
+ if differ(&got, &want) {
+ t.Errorf("i=%d: IDCT\nsrc\n%s\ngot\n%s\nwant\n%s\n", i, &b, &got, &want)
+ }
+ }
+}
+
+// differ reports whether any pair-wise elements in b0 and b1 differ by 2 or
+// more. That tolerance is because there isn't a single definitive decoding of
+// a given JPEG image, even before the YCbCr to RGB conversion; implementations
+// can have different IDCT rounding errors.
+func differ(b0, b1 *block) bool {
+ for i := range b0 {
+ delta := b0[i] - b1[i]
+ if delta < -2 || +2 < delta {
+ return true
+ }
+ }
+ return false
+}
+
+// alpha returns 1 if i is 0 and returns √2 otherwise.
+func alpha(i int) float64 {
+ if i == 0 {
+ return 1
+ }
+ return math.Sqrt2
+}
+
+var cosines [32]float64 // cosines[k] = cos(π/2 * k/8)
+
+func init() {
+ for k := range cosines {
+ cosines[k] = math.Cos(math.Pi * float64(k) / 16)
+ }
+}
+
+// slowFDCT performs the 8*8 2-dimensional forward discrete cosine transform:
+//
+// dst[u,v] = (1/8) * Σ_x Σ_y alpha(u) * alpha(v) * src[x,y] *
+// cos((π/2) * (2*x + 1) * u / 8) *
+// cos((π/2) * (2*y + 1) * v / 8)
+//
+// x and y are in pixel space, and u and v are in transform space.
+//
+// b acts as both dst and src.
+func slowFDCT(b *block) {
+ var dst [blockSize]float64
+ for v := 0; v < 8; v++ {
+ for u := 0; u < 8; u++ {
+ sum := 0.0
+ for y := 0; y < 8; y++ {
+ for x := 0; x < 8; x++ {
+ sum += alpha(u) * alpha(v) * float64(b[8*y+x]) *
+ cosines[((2*x+1)*u)%32] *
+ cosines[((2*y+1)*v)%32]
+ }
+ }
+ dst[8*v+u] = sum / 8
+ }
+ }
+ // Convert from float64 to int32.
+ for i := range dst {
+ b[i] = int32(dst[i] + 0.5)
+ }
+}
+
+// slowIDCT performs the 8*8 2-dimensional inverse discrete cosine transform:
+//
+// dst[x,y] = (1/8) * Σ_u Σ_v alpha(u) * alpha(v) * src[u,v] *
+// cos((π/2) * (2*x + 1) * u / 8) *
+// cos((π/2) * (2*y + 1) * v / 8)
+//
+// x and y are in pixel space, and u and v are in transform space.
+//
+// b acts as both dst and src.
+func slowIDCT(b *block) {
+ var dst [blockSize]float64
+ for y := 0; y < 8; y++ {
+ for x := 0; x < 8; x++ {
+ sum := 0.0
+ for v := 0; v < 8; v++ {
+ for u := 0; u < 8; u++ {
+ sum += alpha(u) * alpha(v) * float64(b[8*v+u]) *
+ cosines[((2*x+1)*u)%32] *
+ cosines[((2*y+1)*v)%32]
+ }
+ }
+ dst[8*y+x] = sum / 8
+ }
+ }
+ // Convert from float64 to int32.
+ for i := range dst {
+ b[i] = int32(dst[i] + 0.5)
+ }
+}
+
+func (b *block) String() string {
+ s := &strings.Builder{}
+ fmt.Fprintf(s, "{\n")
+ for y := 0; y < 8; y++ {
+ fmt.Fprintf(s, "\t")
+ for x := 0; x < 8; x++ {
+ fmt.Fprintf(s, "0x%04x, ", uint16(b[8*y+x]))
+ }
+ fmt.Fprintln(s)
+ }
+ fmt.Fprintf(s, "}")
+ return s.String()
+}
+
+// testBlocks are the first 10 pre-IDCT blocks from ../testdata/video-001.jpeg.
+var testBlocks = [10]block{
+ {
+ 0x7f, 0xf6, 0x01, 0x07, 0xff, 0x00, 0x00, 0x00,
+ 0xf5, 0x01, 0xfa, 0x01, 0xfe, 0x00, 0x01, 0x00,
+ 0x05, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0xff, 0xf8, 0x00, 0x01, 0xff, 0x00, 0x00,
+ 0x00, 0x01, 0x00, 0x01, 0x00, 0xff, 0xff, 0x00,
+ 0xff, 0x0c, 0x00, 0x00, 0x00, 0x00, 0xff, 0x01,
+ 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0x00, 0x00, 0x01, 0xff, 0x01, 0x00, 0xfe,
+ },
+ {
+ 0x29, 0x07, 0x00, 0xfc, 0x01, 0x01, 0x00, 0x00,
+ 0x07, 0x00, 0x03, 0x00, 0x01, 0x00, 0xff, 0xff,
+ 0xff, 0xfd, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x04, 0x00, 0xff, 0x01, 0x00, 0x00,
+ 0x01, 0x00, 0x01, 0xff, 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0xfa, 0x01, 0x00, 0x01, 0x00, 0x01, 0xff,
+ 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0xff, 0x00, 0xff, 0x00, 0x02,
+ },
+ {
+ 0xc5, 0xfa, 0x01, 0x00, 0x00, 0x01, 0x00, 0xff,
+ 0x02, 0xff, 0x01, 0x00, 0x01, 0x00, 0xff, 0x00,
+ 0xff, 0xff, 0x00, 0xff, 0x01, 0x00, 0x00, 0x00,
+ 0xff, 0x00, 0x01, 0x00, 0x00, 0x00, 0xff, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff,
+ 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ },
+ {
+ 0x86, 0x05, 0x00, 0x02, 0x00, 0x00, 0x01, 0x00,
+ 0xf2, 0x06, 0x00, 0x00, 0x01, 0x02, 0x00, 0x00,
+ 0xf6, 0xfa, 0xf9, 0x00, 0xff, 0x01, 0x00, 0x00,
+ 0xf9, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
+ 0xff, 0x00, 0x00, 0x01, 0x00, 0xff, 0x01, 0x00,
+ 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x01,
+ 0x00, 0x01, 0xff, 0x01, 0x00, 0xff, 0x00, 0x00,
+ },
+ {
+ 0x24, 0xfe, 0x00, 0xff, 0x00, 0xff, 0xff, 0x00,
+ 0x08, 0xfd, 0x00, 0x01, 0x01, 0x00, 0x01, 0x00,
+ 0x06, 0x03, 0x03, 0xff, 0x00, 0x00, 0x00, 0x00,
+ 0x04, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff,
+ 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x01,
+ 0x01, 0x00, 0x01, 0xff, 0x00, 0x01, 0x00, 0x00,
+ 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0xff, 0x01,
+ },
+ {
+ 0xcd, 0xff, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01,
+ 0x03, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff,
+ 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00,
+ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x00,
+ 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0xff,
+ },
+ {
+ 0x81, 0xfe, 0x05, 0xff, 0x01, 0xff, 0x01, 0x00,
+ 0xef, 0xf9, 0x00, 0xf9, 0x00, 0xff, 0x00, 0xff,
+ 0x05, 0xf9, 0x00, 0xf8, 0x01, 0xff, 0x01, 0xff,
+ 0x00, 0xff, 0x07, 0x00, 0x01, 0x00, 0x00, 0x00,
+ 0x01, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x01,
+ 0xff, 0x01, 0x01, 0x00, 0xff, 0x00, 0x00, 0x00,
+ 0x01, 0x01, 0x00, 0xff, 0x00, 0x00, 0x00, 0xff,
+ },
+ {
+ 0x28, 0x00, 0xfe, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x0b, 0x02, 0x01, 0x03, 0x00, 0xff, 0x00, 0x01,
+ 0xfe, 0x02, 0x01, 0x03, 0xff, 0x00, 0x00, 0x00,
+ 0x01, 0x00, 0xfd, 0x00, 0x01, 0x00, 0xff, 0x00,
+ 0x01, 0xff, 0x00, 0xff, 0x01, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0xff, 0x01, 0x01, 0x00, 0xff,
+ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0xff, 0xff, 0x00, 0x00, 0x00, 0xff, 0x00, 0x01,
+ },
+ {
+ 0xdf, 0xf9, 0xfe, 0x00, 0x03, 0x01, 0xff, 0xff,
+ 0x04, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
+ 0xff, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x01,
+ 0x00, 0x00, 0xfe, 0x01, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0xff, 0x01, 0x00, 0x00, 0x00, 0x01,
+ 0xff, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,
+ 0x00, 0xff, 0x00, 0xff, 0x01, 0x00, 0x00, 0x01,
+ 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,
+ },
+ {
+ 0x88, 0xfd, 0x00, 0x00, 0xff, 0x00, 0x01, 0xff,
+ 0xe1, 0x06, 0x06, 0x01, 0xff, 0x00, 0x01, 0x00,
+ 0x08, 0x00, 0xfa, 0x00, 0xff, 0xff, 0xff, 0xff,
+ 0x08, 0x01, 0x00, 0xff, 0x01, 0xff, 0x00, 0x00,
+ 0xf5, 0xff, 0x00, 0x01, 0xff, 0x01, 0x01, 0x00,
+ 0xff, 0xff, 0x01, 0xff, 0x01, 0x00, 0x01, 0x00,
+ 0x00, 0x01, 0x01, 0xff, 0x00, 0xff, 0x00, 0x01,
+ 0x02, 0x00, 0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
+ },
+}
diff --git a/src/image/jpeg/fdct.go b/src/image/jpeg/fdct.go
new file mode 100644
index 0000000..c7a973e
--- /dev/null
+++ b/src/image/jpeg/fdct.go
@@ -0,0 +1,192 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+// This file implements a Forward Discrete Cosine Transformation.
+
+/*
+It is based on the code in jfdctint.c from the Independent JPEG Group,
+found at http://www.ijg.org/files/jpegsrc.v8c.tar.gz.
+
+The "LEGAL ISSUES" section of the README in that archive says:
+
+In plain English:
+
+1. We don't promise that this software works. (But if you find any bugs,
+ please let us know!)
+2. You can use this software for whatever you want. You don't have to pay us.
+3. You may not pretend that you wrote this software. If you use it in a
+ program, you must acknowledge somewhere in your documentation that
+ you've used the IJG code.
+
+In legalese:
+
+The authors make NO WARRANTY or representation, either express or implied,
+with respect to this software, its quality, accuracy, merchantability, or
+fitness for a particular purpose. This software is provided "AS IS", and you,
+its user, assume the entire risk as to its quality and accuracy.
+
+This software is copyright (C) 1991-2011, Thomas G. Lane, Guido Vollbeding.
+All Rights Reserved except as specified below.
+
+Permission is hereby granted to use, copy, modify, and distribute this
+software (or portions thereof) for any purpose, without fee, subject to these
+conditions:
+(1) If any part of the source code for this software is distributed, then this
+README file must be included, with this copyright and no-warranty notice
+unaltered; and any additions, deletions, or changes to the original files
+must be clearly indicated in accompanying documentation.
+(2) If only executable code is distributed, then the accompanying
+documentation must state that "this software is based in part on the work of
+the Independent JPEG Group".
+(3) Permission for use of this software is granted only if the user accepts
+full responsibility for any undesirable consequences; the authors accept
+NO LIABILITY for damages of any kind.
+
+These conditions apply to any software derived from or based on the IJG code,
+not just to the unmodified library. If you use our work, you ought to
+acknowledge us.
+
+Permission is NOT granted for the use of any IJG author's name or company name
+in advertising or publicity relating to this software or products derived from
+it. This software may be referred to only as "the Independent JPEG Group's
+software".
+
+We specifically permit and encourage the use of this software as the basis of
+commercial products, provided that all warranty or liability claims are
+assumed by the product vendor.
+*/
+
+// Trigonometric constants in 13-bit fixed point format.
+const (
+ fix_0_298631336 = 2446
+ fix_0_390180644 = 3196
+ fix_0_541196100 = 4433
+ fix_0_765366865 = 6270
+ fix_0_899976223 = 7373
+ fix_1_175875602 = 9633
+ fix_1_501321110 = 12299
+ fix_1_847759065 = 15137
+ fix_1_961570560 = 16069
+ fix_2_053119869 = 16819
+ fix_2_562915447 = 20995
+ fix_3_072711026 = 25172
+)
+
+const (
+ constBits = 13
+ pass1Bits = 2
+ centerJSample = 128
+)
+
+// fdct performs a forward DCT on an 8x8 block of coefficients, including a
+// level shift.
+func fdct(b *block) {
+ // Pass 1: process rows.
+ for y := 0; y < 8; y++ {
+ y8 := y * 8
+ s := b[y8 : y8+8 : y8+8] // Small cap improves performance, see https://golang.org/issue/27857
+ x0 := s[0]
+ x1 := s[1]
+ x2 := s[2]
+ x3 := s[3]
+ x4 := s[4]
+ x5 := s[5]
+ x6 := s[6]
+ x7 := s[7]
+
+ tmp0 := x0 + x7
+ tmp1 := x1 + x6
+ tmp2 := x2 + x5
+ tmp3 := x3 + x4
+
+ tmp10 := tmp0 + tmp3
+ tmp12 := tmp0 - tmp3
+ tmp11 := tmp1 + tmp2
+ tmp13 := tmp1 - tmp2
+
+ tmp0 = x0 - x7
+ tmp1 = x1 - x6
+ tmp2 = x2 - x5
+ tmp3 = x3 - x4
+
+ s[0] = (tmp10 + tmp11 - 8*centerJSample) << pass1Bits
+ s[4] = (tmp10 - tmp11) << pass1Bits
+ z1 := (tmp12 + tmp13) * fix_0_541196100
+ z1 += 1 << (constBits - pass1Bits - 1)
+ s[2] = (z1 + tmp12*fix_0_765366865) >> (constBits - pass1Bits)
+ s[6] = (z1 - tmp13*fix_1_847759065) >> (constBits - pass1Bits)
+
+ tmp10 = tmp0 + tmp3
+ tmp11 = tmp1 + tmp2
+ tmp12 = tmp0 + tmp2
+ tmp13 = tmp1 + tmp3
+ z1 = (tmp12 + tmp13) * fix_1_175875602
+ z1 += 1 << (constBits - pass1Bits - 1)
+ tmp0 *= fix_1_501321110
+ tmp1 *= fix_3_072711026
+ tmp2 *= fix_2_053119869
+ tmp3 *= fix_0_298631336
+ tmp10 *= -fix_0_899976223
+ tmp11 *= -fix_2_562915447
+ tmp12 *= -fix_0_390180644
+ tmp13 *= -fix_1_961570560
+
+ tmp12 += z1
+ tmp13 += z1
+ s[1] = (tmp0 + tmp10 + tmp12) >> (constBits - pass1Bits)
+ s[3] = (tmp1 + tmp11 + tmp13) >> (constBits - pass1Bits)
+ s[5] = (tmp2 + tmp11 + tmp12) >> (constBits - pass1Bits)
+ s[7] = (tmp3 + tmp10 + tmp13) >> (constBits - pass1Bits)
+ }
+ // Pass 2: process columns.
+ // We remove pass1Bits scaling, but leave results scaled up by an overall factor of 8.
+ for x := 0; x < 8; x++ {
+ tmp0 := b[0*8+x] + b[7*8+x]
+ tmp1 := b[1*8+x] + b[6*8+x]
+ tmp2 := b[2*8+x] + b[5*8+x]
+ tmp3 := b[3*8+x] + b[4*8+x]
+
+ tmp10 := tmp0 + tmp3 + 1<<(pass1Bits-1)
+ tmp12 := tmp0 - tmp3
+ tmp11 := tmp1 + tmp2
+ tmp13 := tmp1 - tmp2
+
+ tmp0 = b[0*8+x] - b[7*8+x]
+ tmp1 = b[1*8+x] - b[6*8+x]
+ tmp2 = b[2*8+x] - b[5*8+x]
+ tmp3 = b[3*8+x] - b[4*8+x]
+
+ b[0*8+x] = (tmp10 + tmp11) >> pass1Bits
+ b[4*8+x] = (tmp10 - tmp11) >> pass1Bits
+
+ z1 := (tmp12 + tmp13) * fix_0_541196100
+ z1 += 1 << (constBits + pass1Bits - 1)
+ b[2*8+x] = (z1 + tmp12*fix_0_765366865) >> (constBits + pass1Bits)
+ b[6*8+x] = (z1 - tmp13*fix_1_847759065) >> (constBits + pass1Bits)
+
+ tmp10 = tmp0 + tmp3
+ tmp11 = tmp1 + tmp2
+ tmp12 = tmp0 + tmp2
+ tmp13 = tmp1 + tmp3
+ z1 = (tmp12 + tmp13) * fix_1_175875602
+ z1 += 1 << (constBits + pass1Bits - 1)
+ tmp0 *= fix_1_501321110
+ tmp1 *= fix_3_072711026
+ tmp2 *= fix_2_053119869
+ tmp3 *= fix_0_298631336
+ tmp10 *= -fix_0_899976223
+ tmp11 *= -fix_2_562915447
+ tmp12 *= -fix_0_390180644
+ tmp13 *= -fix_1_961570560
+
+ tmp12 += z1
+ tmp13 += z1
+ b[1*8+x] = (tmp0 + tmp10 + tmp12) >> (constBits + pass1Bits)
+ b[3*8+x] = (tmp1 + tmp11 + tmp13) >> (constBits + pass1Bits)
+ b[5*8+x] = (tmp2 + tmp11 + tmp12) >> (constBits + pass1Bits)
+ b[7*8+x] = (tmp3 + tmp10 + tmp13) >> (constBits + pass1Bits)
+ }
+}
diff --git a/src/image/jpeg/fuzz_test.go b/src/image/jpeg/fuzz_test.go
new file mode 100644
index 0000000..bd534a9
--- /dev/null
+++ b/src/image/jpeg/fuzz_test.go
@@ -0,0 +1,65 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "bytes"
+ "image"
+ "os"
+ "path/filepath"
+ "strings"
+ "testing"
+)
+
+func FuzzDecode(f *testing.F) {
+ if testing.Short() {
+ f.Skip("Skipping in short mode")
+ }
+
+ testdata, err := os.ReadDir("../testdata")
+ if err != nil {
+ f.Fatalf("failed to read testdata directory: %s", err)
+ }
+ for _, de := range testdata {
+ if de.IsDir() || !strings.HasSuffix(de.Name(), ".jpeg") {
+ continue
+ }
+ b, err := os.ReadFile(filepath.Join("../testdata", de.Name()))
+ if err != nil {
+ f.Fatalf("failed to read testdata: %s", err)
+ }
+ f.Add(b)
+ }
+
+ f.Fuzz(func(t *testing.T, b []byte) {
+ cfg, _, err := image.DecodeConfig(bytes.NewReader(b))
+ if err != nil {
+ return
+ }
+ if cfg.Width*cfg.Height > 1e6 {
+ return
+ }
+ img, typ, err := image.Decode(bytes.NewReader(b))
+ if err != nil || typ != "jpeg" {
+ return
+ }
+ for q := 1; q <= 100; q++ {
+ var w bytes.Buffer
+ err := Encode(&w, img, &Options{Quality: q})
+ if err != nil {
+ t.Fatalf("failed to encode valid image: %s", err)
+ }
+ img1, err := Decode(&w)
+ if err != nil {
+ t.Fatalf("failed to decode roundtripped image: %s", err)
+ }
+ got := img1.Bounds()
+ want := img.Bounds()
+ if !got.Eq(want) {
+ t.Fatalf("roundtripped image bounds have changed, got: %s, want: %s", got, want)
+ }
+ }
+ })
+}
diff --git a/src/image/jpeg/huffman.go b/src/image/jpeg/huffman.go
new file mode 100644
index 0000000..95aaf71
--- /dev/null
+++ b/src/image/jpeg/huffman.go
@@ -0,0 +1,247 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "io"
+)
+
+// maxCodeLength is the maximum (inclusive) number of bits in a Huffman code.
+const maxCodeLength = 16
+
+// maxNCodes is the maximum (inclusive) number of codes in a Huffman tree.
+const maxNCodes = 256
+
+// lutSize is the log-2 size of the Huffman decoder's look-up table.
+const lutSize = 8
+
+// huffman is a Huffman decoder, specified in section C.
+type huffman struct {
+ // length is the number of codes in the tree.
+ nCodes int32
+ // lut is the look-up table for the next lutSize bits in the bit-stream.
+ // The high 8 bits of the uint16 are the encoded value. The low 8 bits
+ // are 1 plus the code length, or 0 if the value is too large to fit in
+ // lutSize bits.
+ lut [1 << lutSize]uint16
+ // vals are the decoded values, sorted by their encoding.
+ vals [maxNCodes]uint8
+ // minCodes[i] is the minimum code of length i, or -1 if there are no
+ // codes of that length.
+ minCodes [maxCodeLength]int32
+ // maxCodes[i] is the maximum code of length i, or -1 if there are no
+ // codes of that length.
+ maxCodes [maxCodeLength]int32
+ // valsIndices[i] is the index into vals of minCodes[i].
+ valsIndices [maxCodeLength]int32
+}
+
+// errShortHuffmanData means that an unexpected EOF occurred while decoding
+// Huffman data.
+var errShortHuffmanData = FormatError("short Huffman data")
+
+// ensureNBits reads bytes from the byte buffer to ensure that d.bits.n is at
+// least n. For best performance (avoiding function calls inside hot loops),
+// the caller is the one responsible for first checking that d.bits.n < n.
+func (d *decoder) ensureNBits(n int32) error {
+ for {
+ c, err := d.readByteStuffedByte()
+ if err != nil {
+ if err == io.EOF {
+ return errShortHuffmanData
+ }
+ return err
+ }
+ d.bits.a = d.bits.a<<8 | uint32(c)
+ d.bits.n += 8
+ if d.bits.m == 0 {
+ d.bits.m = 1 << 7
+ } else {
+ d.bits.m <<= 8
+ }
+ if d.bits.n >= n {
+ break
+ }
+ }
+ return nil
+}
+
+// receiveExtend is the composition of RECEIVE and EXTEND, specified in section
+// F.2.2.1.
+func (d *decoder) receiveExtend(t uint8) (int32, error) {
+ if d.bits.n < int32(t) {
+ if err := d.ensureNBits(int32(t)); err != nil {
+ return 0, err
+ }
+ }
+ d.bits.n -= int32(t)
+ d.bits.m >>= t
+ s := int32(1) << t
+ x := int32(d.bits.a>>uint8(d.bits.n)) & (s - 1)
+ if x < s>>1 {
+ x += ((-1) << t) + 1
+ }
+ return x, nil
+}
+
+// processDHT processes a Define Huffman Table marker, and initializes a huffman
+// struct from its contents. Specified in section B.2.4.2.
+func (d *decoder) processDHT(n int) error {
+ for n > 0 {
+ if n < 17 {
+ return FormatError("DHT has wrong length")
+ }
+ if err := d.readFull(d.tmp[:17]); err != nil {
+ return err
+ }
+ tc := d.tmp[0] >> 4
+ if tc > maxTc {
+ return FormatError("bad Tc value")
+ }
+ th := d.tmp[0] & 0x0f
+ // The baseline th <= 1 restriction is specified in table B.5.
+ if th > maxTh || (d.baseline && th > 1) {
+ return FormatError("bad Th value")
+ }
+ h := &d.huff[tc][th]
+
+ // Read nCodes and h.vals (and derive h.nCodes).
+ // nCodes[i] is the number of codes with code length i.
+ // h.nCodes is the total number of codes.
+ h.nCodes = 0
+ var nCodes [maxCodeLength]int32
+ for i := range nCodes {
+ nCodes[i] = int32(d.tmp[i+1])
+ h.nCodes += nCodes[i]
+ }
+ if h.nCodes == 0 {
+ return FormatError("Huffman table has zero length")
+ }
+ if h.nCodes > maxNCodes {
+ return FormatError("Huffman table has excessive length")
+ }
+ n -= int(h.nCodes) + 17
+ if n < 0 {
+ return FormatError("DHT has wrong length")
+ }
+ if err := d.readFull(h.vals[:h.nCodes]); err != nil {
+ return err
+ }
+
+ // Derive the look-up table.
+ for i := range h.lut {
+ h.lut[i] = 0
+ }
+ var x, code uint32
+ for i := uint32(0); i < lutSize; i++ {
+ code <<= 1
+ for j := int32(0); j < nCodes[i]; j++ {
+ // The codeLength is 1+i, so shift code by 8-(1+i) to
+ // calculate the high bits for every 8-bit sequence
+ // whose codeLength's high bits matches code.
+ // The high 8 bits of lutValue are the encoded value.
+ // The low 8 bits are 1 plus the codeLength.
+ base := uint8(code << (7 - i))
+ lutValue := uint16(h.vals[x])<<8 | uint16(2+i)
+ for k := uint8(0); k < 1<<(7-i); k++ {
+ h.lut[base|k] = lutValue
+ }
+ code++
+ x++
+ }
+ }
+
+ // Derive minCodes, maxCodes, and valsIndices.
+ var c, index int32
+ for i, n := range nCodes {
+ if n == 0 {
+ h.minCodes[i] = -1
+ h.maxCodes[i] = -1
+ h.valsIndices[i] = -1
+ } else {
+ h.minCodes[i] = c
+ h.maxCodes[i] = c + n - 1
+ h.valsIndices[i] = index
+ c += n
+ index += n
+ }
+ c <<= 1
+ }
+ }
+ return nil
+}
+
+// decodeHuffman returns the next Huffman-coded value from the bit-stream,
+// decoded according to h.
+func (d *decoder) decodeHuffman(h *huffman) (uint8, error) {
+ if h.nCodes == 0 {
+ return 0, FormatError("uninitialized Huffman table")
+ }
+
+ if d.bits.n < 8 {
+ if err := d.ensureNBits(8); err != nil {
+ if err != errMissingFF00 && err != errShortHuffmanData {
+ return 0, err
+ }
+ // There are no more bytes of data in this segment, but we may still
+ // be able to read the next symbol out of the previously read bits.
+ // First, undo the readByte that the ensureNBits call made.
+ if d.bytes.nUnreadable != 0 {
+ d.unreadByteStuffedByte()
+ }
+ goto slowPath
+ }
+ }
+ if v := h.lut[(d.bits.a>>uint32(d.bits.n-lutSize))&0xff]; v != 0 {
+ n := (v & 0xff) - 1
+ d.bits.n -= int32(n)
+ d.bits.m >>= n
+ return uint8(v >> 8), nil
+ }
+
+slowPath:
+ for i, code := 0, int32(0); i < maxCodeLength; i++ {
+ if d.bits.n == 0 {
+ if err := d.ensureNBits(1); err != nil {
+ return 0, err
+ }
+ }
+ if d.bits.a&d.bits.m != 0 {
+ code |= 1
+ }
+ d.bits.n--
+ d.bits.m >>= 1
+ if code <= h.maxCodes[i] {
+ return h.vals[h.valsIndices[i]+code-h.minCodes[i]], nil
+ }
+ code <<= 1
+ }
+ return 0, FormatError("bad Huffman code")
+}
+
+func (d *decoder) decodeBit() (bool, error) {
+ if d.bits.n == 0 {
+ if err := d.ensureNBits(1); err != nil {
+ return false, err
+ }
+ }
+ ret := d.bits.a&d.bits.m != 0
+ d.bits.n--
+ d.bits.m >>= 1
+ return ret, nil
+}
+
+func (d *decoder) decodeBits(n int32) (uint32, error) {
+ if d.bits.n < n {
+ if err := d.ensureNBits(n); err != nil {
+ return 0, err
+ }
+ }
+ ret := d.bits.a >> uint32(d.bits.n-n)
+ ret &= (1 << uint32(n)) - 1
+ d.bits.n -= n
+ d.bits.m >>= uint32(n)
+ return ret, nil
+}
diff --git a/src/image/jpeg/idct.go b/src/image/jpeg/idct.go
new file mode 100644
index 0000000..a3957c8
--- /dev/null
+++ b/src/image/jpeg/idct.go
@@ -0,0 +1,194 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+// This is a Go translation of idct.c from
+//
+// http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
+//
+// which carries the following notice:
+
+/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
+
+/*
+ * Disclaimer of Warranty
+ *
+ * These software programs are available to the user without any license fee or
+ * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
+ * any and all warranties, whether express, implied, or statuary, including any
+ * implied warranties or merchantability or of fitness for a particular
+ * purpose. In no event shall the copyright-holder be liable for any
+ * incidental, punitive, or consequential damages of any kind whatsoever
+ * arising from the use of these programs.
+ *
+ * This disclaimer of warranty extends to the user of these programs and user's
+ * customers, employees, agents, transferees, successors, and assigns.
+ *
+ * The MPEG Software Simulation Group does not represent or warrant that the
+ * programs furnished hereunder are free of infringement of any third-party
+ * patents.
+ *
+ * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
+ * are subject to royalty fees to patent holders. Many of these patents are
+ * general enough such that they are unavoidable regardless of implementation
+ * design.
+ *
+ */
+
+const blockSize = 64 // A DCT block is 8x8.
+
+type block [blockSize]int32
+
+const (
+ w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
+ w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
+ w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16)
+ w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16)
+ w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16)
+ w7 = 565 // 2048*sqrt(2)*cos(7*pi/16)
+
+ w1pw7 = w1 + w7
+ w1mw7 = w1 - w7
+ w2pw6 = w2 + w6
+ w2mw6 = w2 - w6
+ w3pw5 = w3 + w5
+ w3mw5 = w3 - w5
+
+ r2 = 181 // 256/sqrt(2)
+)
+
+// idct performs a 2-D Inverse Discrete Cosine Transformation.
+//
+// The input coefficients should already have been multiplied by the
+// appropriate quantization table. We use fixed-point computation, with the
+// number of bits for the fractional component varying over the intermediate
+// stages.
+//
+// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
+// discrete W transform and for the discrete Fourier transform", IEEE Trans. on
+// ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
+func idct(src *block) {
+ // Horizontal 1-D IDCT.
+ for y := 0; y < 8; y++ {
+ y8 := y * 8
+ s := src[y8 : y8+8 : y8+8] // Small cap improves performance, see https://golang.org/issue/27857
+ // If all the AC components are zero, then the IDCT is trivial.
+ if s[1] == 0 && s[2] == 0 && s[3] == 0 &&
+ s[4] == 0 && s[5] == 0 && s[6] == 0 && s[7] == 0 {
+ dc := s[0] << 3
+ s[0] = dc
+ s[1] = dc
+ s[2] = dc
+ s[3] = dc
+ s[4] = dc
+ s[5] = dc
+ s[6] = dc
+ s[7] = dc
+ continue
+ }
+
+ // Prescale.
+ x0 := (s[0] << 11) + 128
+ x1 := s[4] << 11
+ x2 := s[6]
+ x3 := s[2]
+ x4 := s[1]
+ x5 := s[7]
+ x6 := s[5]
+ x7 := s[3]
+
+ // Stage 1.
+ x8 := w7 * (x4 + x5)
+ x4 = x8 + w1mw7*x4
+ x5 = x8 - w1pw7*x5
+ x8 = w3 * (x6 + x7)
+ x6 = x8 - w3mw5*x6
+ x7 = x8 - w3pw5*x7
+
+ // Stage 2.
+ x8 = x0 + x1
+ x0 -= x1
+ x1 = w6 * (x3 + x2)
+ x2 = x1 - w2pw6*x2
+ x3 = x1 + w2mw6*x3
+ x1 = x4 + x6
+ x4 -= x6
+ x6 = x5 + x7
+ x5 -= x7
+
+ // Stage 3.
+ x7 = x8 + x3
+ x8 -= x3
+ x3 = x0 + x2
+ x0 -= x2
+ x2 = (r2*(x4+x5) + 128) >> 8
+ x4 = (r2*(x4-x5) + 128) >> 8
+
+ // Stage 4.
+ s[0] = (x7 + x1) >> 8
+ s[1] = (x3 + x2) >> 8
+ s[2] = (x0 + x4) >> 8
+ s[3] = (x8 + x6) >> 8
+ s[4] = (x8 - x6) >> 8
+ s[5] = (x0 - x4) >> 8
+ s[6] = (x3 - x2) >> 8
+ s[7] = (x7 - x1) >> 8
+ }
+
+ // Vertical 1-D IDCT.
+ for x := 0; x < 8; x++ {
+ // Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
+ // However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
+ // we do not bother to check for the all-zero case.
+ s := src[x : x+57 : x+57] // Small cap improves performance, see https://golang.org/issue/27857
+
+ // Prescale.
+ y0 := (s[8*0] << 8) + 8192
+ y1 := s[8*4] << 8
+ y2 := s[8*6]
+ y3 := s[8*2]
+ y4 := s[8*1]
+ y5 := s[8*7]
+ y6 := s[8*5]
+ y7 := s[8*3]
+
+ // Stage 1.
+ y8 := w7*(y4+y5) + 4
+ y4 = (y8 + w1mw7*y4) >> 3
+ y5 = (y8 - w1pw7*y5) >> 3
+ y8 = w3*(y6+y7) + 4
+ y6 = (y8 - w3mw5*y6) >> 3
+ y7 = (y8 - w3pw5*y7) >> 3
+
+ // Stage 2.
+ y8 = y0 + y1
+ y0 -= y1
+ y1 = w6*(y3+y2) + 4
+ y2 = (y1 - w2pw6*y2) >> 3
+ y3 = (y1 + w2mw6*y3) >> 3
+ y1 = y4 + y6
+ y4 -= y6
+ y6 = y5 + y7
+ y5 -= y7
+
+ // Stage 3.
+ y7 = y8 + y3
+ y8 -= y3
+ y3 = y0 + y2
+ y0 -= y2
+ y2 = (r2*(y4+y5) + 128) >> 8
+ y4 = (r2*(y4-y5) + 128) >> 8
+
+ // Stage 4.
+ s[8*0] = (y7 + y1) >> 14
+ s[8*1] = (y3 + y2) >> 14
+ s[8*2] = (y0 + y4) >> 14
+ s[8*3] = (y8 + y6) >> 14
+ s[8*4] = (y8 - y6) >> 14
+ s[8*5] = (y0 - y4) >> 14
+ s[8*6] = (y3 - y2) >> 14
+ s[8*7] = (y7 - y1) >> 14
+ }
+}
diff --git a/src/image/jpeg/reader.go b/src/image/jpeg/reader.go
new file mode 100644
index 0000000..b340723
--- /dev/null
+++ b/src/image/jpeg/reader.go
@@ -0,0 +1,815 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package jpeg implements a JPEG image decoder and encoder.
+//
+// JPEG is defined in ITU-T T.81: https://www.w3.org/Graphics/JPEG/itu-t81.pdf.
+package jpeg
+
+import (
+ "image"
+ "image/color"
+ "image/internal/imageutil"
+ "io"
+)
+
+// A FormatError reports that the input is not a valid JPEG.
+type FormatError string
+
+func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
+
+// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
+type UnsupportedError string
+
+func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
+
+var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")
+
+// Component specification, specified in section B.2.2.
+type component struct {
+ h int // Horizontal sampling factor.
+ v int // Vertical sampling factor.
+ c uint8 // Component identifier.
+ tq uint8 // Quantization table destination selector.
+}
+
+const (
+ dcTable = 0
+ acTable = 1
+ maxTc = 1
+ maxTh = 3
+ maxTq = 3
+
+ maxComponents = 4
+)
+
+const (
+ sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential).
+ sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
+ sof2Marker = 0xc2 // Start Of Frame (Progressive).
+ dhtMarker = 0xc4 // Define Huffman Table.
+ rst0Marker = 0xd0 // ReSTart (0).
+ rst7Marker = 0xd7 // ReSTart (7).
+ soiMarker = 0xd8 // Start Of Image.
+ eoiMarker = 0xd9 // End Of Image.
+ sosMarker = 0xda // Start Of Scan.
+ dqtMarker = 0xdb // Define Quantization Table.
+ driMarker = 0xdd // Define Restart Interval.
+ comMarker = 0xfe // COMment.
+ // "APPlication specific" markers aren't part of the JPEG spec per se,
+ // but in practice, their use is described at
+ // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
+ app0Marker = 0xe0
+ app14Marker = 0xee
+ app15Marker = 0xef
+)
+
+// See https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
+const (
+ adobeTransformUnknown = 0
+ adobeTransformYCbCr = 1
+ adobeTransformYCbCrK = 2
+)
+
+// unzig maps from the zig-zag ordering to the natural ordering. For example,
+// unzig[3] is the column and row of the fourth element in zig-zag order. The
+// value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
+var unzig = [blockSize]int{
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13, 6, 7, 14, 21, 28,
+ 35, 42, 49, 56, 57, 50, 43, 36,
+ 29, 22, 15, 23, 30, 37, 44, 51,
+ 58, 59, 52, 45, 38, 31, 39, 46,
+ 53, 60, 61, 54, 47, 55, 62, 63,
+}
+
+// Deprecated: Reader is not used by the image/jpeg package and should
+// not be used by others. It is kept for compatibility.
+type Reader interface {
+ io.ByteReader
+ io.Reader
+}
+
+// bits holds the unprocessed bits that have been taken from the byte-stream.
+// The n least significant bits of a form the unread bits, to be read in MSB to
+// LSB order.
+type bits struct {
+ a uint32 // accumulator.
+ m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
+ n int32 // the number of unread bits in a.
+}
+
+type decoder struct {
+ r io.Reader
+ bits bits
+ // bytes is a byte buffer, similar to a bufio.Reader, except that it
+ // has to be able to unread more than 1 byte, due to byte stuffing.
+ // Byte stuffing is specified in section F.1.2.3.
+ bytes struct {
+ // buf[i:j] are the buffered bytes read from the underlying
+ // io.Reader that haven't yet been passed further on.
+ buf [4096]byte
+ i, j int
+ // nUnreadable is the number of bytes to back up i after
+ // overshooting. It can be 0, 1 or 2.
+ nUnreadable int
+ }
+ width, height int
+
+ img1 *image.Gray
+ img3 *image.YCbCr
+ blackPix []byte
+ blackStride int
+
+ ri int // Restart Interval.
+ nComp int
+
+ // As per section 4.5, there are four modes of operation (selected by the
+ // SOF? markers): sequential DCT, progressive DCT, lossless and
+ // hierarchical, although this implementation does not support the latter
+ // two non-DCT modes. Sequential DCT is further split into baseline and
+ // extended, as per section 4.11.
+ baseline bool
+ progressive bool
+
+ jfif bool
+ adobeTransformValid bool
+ adobeTransform uint8
+ eobRun uint16 // End-of-Band run, specified in section G.1.2.2.
+
+ comp [maxComponents]component
+ progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
+ huff [maxTc + 1][maxTh + 1]huffman
+ quant [maxTq + 1]block // Quantization tables, in zig-zag order.
+ tmp [2 * blockSize]byte
+}
+
+// fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
+// should only be called when there are no unread bytes in d.bytes.
+func (d *decoder) fill() error {
+ if d.bytes.i != d.bytes.j {
+ panic("jpeg: fill called when unread bytes exist")
+ }
+ // Move the last 2 bytes to the start of the buffer, in case we need
+ // to call unreadByteStuffedByte.
+ if d.bytes.j > 2 {
+ d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
+ d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
+ d.bytes.i, d.bytes.j = 2, 2
+ }
+ // Fill in the rest of the buffer.
+ n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
+ d.bytes.j += n
+ if n > 0 {
+ err = nil
+ }
+ return err
+}
+
+// unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
+// giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
+// requires at least 8 bits for look-up, which means that Huffman decoding can
+// sometimes overshoot and read one or two too many bytes. Two-byte overshoot
+// can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
+func (d *decoder) unreadByteStuffedByte() {
+ d.bytes.i -= d.bytes.nUnreadable
+ d.bytes.nUnreadable = 0
+ if d.bits.n >= 8 {
+ d.bits.a >>= 8
+ d.bits.n -= 8
+ d.bits.m >>= 8
+ }
+}
+
+// readByte returns the next byte, whether buffered or not buffered. It does
+// not care about byte stuffing.
+func (d *decoder) readByte() (x byte, err error) {
+ for d.bytes.i == d.bytes.j {
+ if err = d.fill(); err != nil {
+ return 0, err
+ }
+ }
+ x = d.bytes.buf[d.bytes.i]
+ d.bytes.i++
+ d.bytes.nUnreadable = 0
+ return x, nil
+}
+
+// errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
+// marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
+var errMissingFF00 = FormatError("missing 0xff00 sequence")
+
+// readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
+func (d *decoder) readByteStuffedByte() (x byte, err error) {
+ // Take the fast path if d.bytes.buf contains at least two bytes.
+ if d.bytes.i+2 <= d.bytes.j {
+ x = d.bytes.buf[d.bytes.i]
+ d.bytes.i++
+ d.bytes.nUnreadable = 1
+ if x != 0xff {
+ return x, err
+ }
+ if d.bytes.buf[d.bytes.i] != 0x00 {
+ return 0, errMissingFF00
+ }
+ d.bytes.i++
+ d.bytes.nUnreadable = 2
+ return 0xff, nil
+ }
+
+ d.bytes.nUnreadable = 0
+
+ x, err = d.readByte()
+ if err != nil {
+ return 0, err
+ }
+ d.bytes.nUnreadable = 1
+ if x != 0xff {
+ return x, nil
+ }
+
+ x, err = d.readByte()
+ if err != nil {
+ return 0, err
+ }
+ d.bytes.nUnreadable = 2
+ if x != 0x00 {
+ return 0, errMissingFF00
+ }
+ return 0xff, nil
+}
+
+// readFull reads exactly len(p) bytes into p. It does not care about byte
+// stuffing.
+func (d *decoder) readFull(p []byte) error {
+ // Unread the overshot bytes, if any.
+ if d.bytes.nUnreadable != 0 {
+ if d.bits.n >= 8 {
+ d.unreadByteStuffedByte()
+ }
+ d.bytes.nUnreadable = 0
+ }
+
+ for {
+ n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
+ p = p[n:]
+ d.bytes.i += n
+ if len(p) == 0 {
+ break
+ }
+ if err := d.fill(); err != nil {
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ return err
+ }
+ }
+ return nil
+}
+
+// ignore ignores the next n bytes.
+func (d *decoder) ignore(n int) error {
+ // Unread the overshot bytes, if any.
+ if d.bytes.nUnreadable != 0 {
+ if d.bits.n >= 8 {
+ d.unreadByteStuffedByte()
+ }
+ d.bytes.nUnreadable = 0
+ }
+
+ for {
+ m := d.bytes.j - d.bytes.i
+ if m > n {
+ m = n
+ }
+ d.bytes.i += m
+ n -= m
+ if n == 0 {
+ break
+ }
+ if err := d.fill(); err != nil {
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ return err
+ }
+ }
+ return nil
+}
+
+// Specified in section B.2.2.
+func (d *decoder) processSOF(n int) error {
+ if d.nComp != 0 {
+ return FormatError("multiple SOF markers")
+ }
+ switch n {
+ case 6 + 3*1: // Grayscale image.
+ d.nComp = 1
+ case 6 + 3*3: // YCbCr or RGB image.
+ d.nComp = 3
+ case 6 + 3*4: // YCbCrK or CMYK image.
+ d.nComp = 4
+ default:
+ return UnsupportedError("number of components")
+ }
+ if err := d.readFull(d.tmp[:n]); err != nil {
+ return err
+ }
+ // We only support 8-bit precision.
+ if d.tmp[0] != 8 {
+ return UnsupportedError("precision")
+ }
+ d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
+ d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
+ if int(d.tmp[5]) != d.nComp {
+ return FormatError("SOF has wrong length")
+ }
+
+ for i := 0; i < d.nComp; i++ {
+ d.comp[i].c = d.tmp[6+3*i]
+ // Section B.2.2 states that "the value of C_i shall be different from
+ // the values of C_1 through C_(i-1)".
+ for j := 0; j < i; j++ {
+ if d.comp[i].c == d.comp[j].c {
+ return FormatError("repeated component identifier")
+ }
+ }
+
+ d.comp[i].tq = d.tmp[8+3*i]
+ if d.comp[i].tq > maxTq {
+ return FormatError("bad Tq value")
+ }
+
+ hv := d.tmp[7+3*i]
+ h, v := int(hv>>4), int(hv&0x0f)
+ if h < 1 || 4 < h || v < 1 || 4 < v {
+ return FormatError("luma/chroma subsampling ratio")
+ }
+ if h == 3 || v == 3 {
+ return errUnsupportedSubsamplingRatio
+ }
+ switch d.nComp {
+ case 1:
+ // If a JPEG image has only one component, section A.2 says "this data
+ // is non-interleaved by definition" and section A.2.2 says "[in this
+ // case...] the order of data units within a scan shall be left-to-right
+ // and top-to-bottom... regardless of the values of H_1 and V_1". Section
+ // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
+ // one data unit". Similarly, section A.1.1 explains that it is the ratio
+ // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
+ // images, H_1 is the maximum H_j for all components j, so that ratio is
+ // always 1. The component's (h, v) is effectively always (1, 1): even if
+ // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
+ // MCUs, not two 16x8 MCUs.
+ h, v = 1, 1
+
+ case 3:
+ // For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
+ // 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
+ // (h, v) values for the Y component are either (1, 1), (1, 2),
+ // (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
+ // must be a multiple of the Cb and Cr component's values. We also
+ // assume that the two chroma components have the same subsampling
+ // ratio.
+ switch i {
+ case 0: // Y.
+ // We have already verified, above, that h and v are both
+ // either 1, 2 or 4, so invalid (h, v) combinations are those
+ // with v == 4.
+ if v == 4 {
+ return errUnsupportedSubsamplingRatio
+ }
+ case 1: // Cb.
+ if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
+ return errUnsupportedSubsamplingRatio
+ }
+ case 2: // Cr.
+ if d.comp[1].h != h || d.comp[1].v != v {
+ return errUnsupportedSubsamplingRatio
+ }
+ }
+
+ case 4:
+ // For 4-component images (either CMYK or YCbCrK), we only support two
+ // hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
+ // Theoretically, 4-component JPEG images could mix and match hv values
+ // but in practice, those two combinations are the only ones in use,
+ // and it simplifies the applyBlack code below if we can assume that:
+ // - for CMYK, the C and K channels have full samples, and if the M
+ // and Y channels subsample, they subsample both horizontally and
+ // vertically.
+ // - for YCbCrK, the Y and K channels have full samples.
+ switch i {
+ case 0:
+ if hv != 0x11 && hv != 0x22 {
+ return errUnsupportedSubsamplingRatio
+ }
+ case 1, 2:
+ if hv != 0x11 {
+ return errUnsupportedSubsamplingRatio
+ }
+ case 3:
+ if d.comp[0].h != h || d.comp[0].v != v {
+ return errUnsupportedSubsamplingRatio
+ }
+ }
+ }
+
+ d.comp[i].h = h
+ d.comp[i].v = v
+ }
+ return nil
+}
+
+// Specified in section B.2.4.1.
+func (d *decoder) processDQT(n int) error {
+loop:
+ for n > 0 {
+ n--
+ x, err := d.readByte()
+ if err != nil {
+ return err
+ }
+ tq := x & 0x0f
+ if tq > maxTq {
+ return FormatError("bad Tq value")
+ }
+ switch x >> 4 {
+ default:
+ return FormatError("bad Pq value")
+ case 0:
+ if n < blockSize {
+ break loop
+ }
+ n -= blockSize
+ if err := d.readFull(d.tmp[:blockSize]); err != nil {
+ return err
+ }
+ for i := range d.quant[tq] {
+ d.quant[tq][i] = int32(d.tmp[i])
+ }
+ case 1:
+ if n < 2*blockSize {
+ break loop
+ }
+ n -= 2 * blockSize
+ if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
+ return err
+ }
+ for i := range d.quant[tq] {
+ d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
+ }
+ }
+ }
+ if n != 0 {
+ return FormatError("DQT has wrong length")
+ }
+ return nil
+}
+
+// Specified in section B.2.4.4.
+func (d *decoder) processDRI(n int) error {
+ if n != 2 {
+ return FormatError("DRI has wrong length")
+ }
+ if err := d.readFull(d.tmp[:2]); err != nil {
+ return err
+ }
+ d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
+ return nil
+}
+
+func (d *decoder) processApp0Marker(n int) error {
+ if n < 5 {
+ return d.ignore(n)
+ }
+ if err := d.readFull(d.tmp[:5]); err != nil {
+ return err
+ }
+ n -= 5
+
+ d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'
+
+ if n > 0 {
+ return d.ignore(n)
+ }
+ return nil
+}
+
+func (d *decoder) processApp14Marker(n int) error {
+ if n < 12 {
+ return d.ignore(n)
+ }
+ if err := d.readFull(d.tmp[:12]); err != nil {
+ return err
+ }
+ n -= 12
+
+ if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
+ d.adobeTransformValid = true
+ d.adobeTransform = d.tmp[11]
+ }
+
+ if n > 0 {
+ return d.ignore(n)
+ }
+ return nil
+}
+
+// decode reads a JPEG image from r and returns it as an image.Image.
+func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
+ d.r = r
+
+ // Check for the Start Of Image marker.
+ if err := d.readFull(d.tmp[:2]); err != nil {
+ return nil, err
+ }
+ if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
+ return nil, FormatError("missing SOI marker")
+ }
+
+ // Process the remaining segments until the End Of Image marker.
+ for {
+ err := d.readFull(d.tmp[:2])
+ if err != nil {
+ return nil, err
+ }
+ for d.tmp[0] != 0xff {
+ // Strictly speaking, this is a format error. However, libjpeg is
+ // liberal in what it accepts. As of version 9, next_marker in
+ // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
+ // continues to decode the stream. Even before next_marker sees
+ // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
+ // bytes as it can, possibly past the end of a scan's data. It
+ // effectively puts back any markers that it overscanned (e.g. an
+ // "\xff\xd9" EOI marker), but it does not put back non-marker data,
+ // and thus it can silently ignore a small number of extraneous
+ // non-marker bytes before next_marker has a chance to see them (and
+ // print a warning).
+ //
+ // We are therefore also liberal in what we accept. Extraneous data
+ // is silently ignored.
+ //
+ // This is similar to, but not exactly the same as, the restart
+ // mechanism within a scan (the RST[0-7] markers).
+ //
+ // Note that extraneous 0xff bytes in e.g. SOS data are escaped as
+ // "\xff\x00", and so are detected a little further down below.
+ d.tmp[0] = d.tmp[1]
+ d.tmp[1], err = d.readByte()
+ if err != nil {
+ return nil, err
+ }
+ }
+ marker := d.tmp[1]
+ if marker == 0 {
+ // Treat "\xff\x00" as extraneous data.
+ continue
+ }
+ for marker == 0xff {
+ // Section B.1.1.2 says, "Any marker may optionally be preceded by any
+ // number of fill bytes, which are bytes assigned code X'FF'".
+ marker, err = d.readByte()
+ if err != nil {
+ return nil, err
+ }
+ }
+ if marker == eoiMarker { // End Of Image.
+ break
+ }
+ if rst0Marker <= marker && marker <= rst7Marker {
+ // Figures B.2 and B.16 of the specification suggest that restart markers should
+ // only occur between Entropy Coded Segments and not after the final ECS.
+ // However, some encoders may generate incorrect JPEGs with a final restart
+ // marker. That restart marker will be seen here instead of inside the processSOS
+ // method, and is ignored as a harmless error. Restart markers have no extra data,
+ // so we check for this before we read the 16-bit length of the segment.
+ continue
+ }
+
+ // Read the 16-bit length of the segment. The value includes the 2 bytes for the
+ // length itself, so we subtract 2 to get the number of remaining bytes.
+ if err = d.readFull(d.tmp[:2]); err != nil {
+ return nil, err
+ }
+ n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
+ if n < 0 {
+ return nil, FormatError("short segment length")
+ }
+
+ switch marker {
+ case sof0Marker, sof1Marker, sof2Marker:
+ d.baseline = marker == sof0Marker
+ d.progressive = marker == sof2Marker
+ err = d.processSOF(n)
+ if configOnly && d.jfif {
+ return nil, err
+ }
+ case dhtMarker:
+ if configOnly {
+ err = d.ignore(n)
+ } else {
+ err = d.processDHT(n)
+ }
+ case dqtMarker:
+ if configOnly {
+ err = d.ignore(n)
+ } else {
+ err = d.processDQT(n)
+ }
+ case sosMarker:
+ if configOnly {
+ return nil, nil
+ }
+ err = d.processSOS(n)
+ case driMarker:
+ if configOnly {
+ err = d.ignore(n)
+ } else {
+ err = d.processDRI(n)
+ }
+ case app0Marker:
+ err = d.processApp0Marker(n)
+ case app14Marker:
+ err = d.processApp14Marker(n)
+ default:
+ if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
+ err = d.ignore(n)
+ } else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
+ err = FormatError("unknown marker")
+ } else {
+ err = UnsupportedError("unknown marker")
+ }
+ }
+ if err != nil {
+ return nil, err
+ }
+ }
+
+ if d.progressive {
+ if err := d.reconstructProgressiveImage(); err != nil {
+ return nil, err
+ }
+ }
+ if d.img1 != nil {
+ return d.img1, nil
+ }
+ if d.img3 != nil {
+ if d.blackPix != nil {
+ return d.applyBlack()
+ } else if d.isRGB() {
+ return d.convertToRGB()
+ }
+ return d.img3, nil
+ }
+ return nil, FormatError("missing SOS marker")
+}
+
+// applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
+// used depends on whether the JPEG image is stored as CMYK or YCbCrK,
+// indicated by the APP14 (Adobe) metadata.
+//
+// Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
+// ink, so we apply "v = 255 - v" at various points. Note that a double
+// inversion is a no-op, so inversions might be implicit in the code below.
+func (d *decoder) applyBlack() (image.Image, error) {
+ if !d.adobeTransformValid {
+ return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
+ }
+
+ // If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
+ // or CMYK)" as per
+ // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
+ // we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
+ if d.adobeTransform != adobeTransformUnknown {
+ // Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
+ // CMY, and patch in the original K. The RGB to CMY inversion cancels
+ // out the 'Adobe inversion' described in the applyBlack doc comment
+ // above, so in practice, only the fourth channel (black) is inverted.
+ bounds := d.img3.Bounds()
+ img := image.NewRGBA(bounds)
+ imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
+ for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
+ for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
+ img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
+ }
+ }
+ return &image.CMYK{
+ Pix: img.Pix,
+ Stride: img.Stride,
+ Rect: img.Rect,
+ }, nil
+ }
+
+ // The first three channels (cyan, magenta, yellow) of the CMYK
+ // were decoded into d.img3, but each channel was decoded into a separate
+ // []byte slice, and some channels may be subsampled. We interleave the
+ // separate channels into an image.CMYK's single []byte slice containing 4
+ // contiguous bytes per pixel.
+ bounds := d.img3.Bounds()
+ img := image.NewCMYK(bounds)
+
+ translations := [4]struct {
+ src []byte
+ stride int
+ }{
+ {d.img3.Y, d.img3.YStride},
+ {d.img3.Cb, d.img3.CStride},
+ {d.img3.Cr, d.img3.CStride},
+ {d.blackPix, d.blackStride},
+ }
+ for t, translation := range translations {
+ subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
+ for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
+ sy := y - bounds.Min.Y
+ if subsample {
+ sy /= 2
+ }
+ for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
+ sx := x - bounds.Min.X
+ if subsample {
+ sx /= 2
+ }
+ img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
+ }
+ }
+ }
+ return img, nil
+}
+
+func (d *decoder) isRGB() bool {
+ if d.jfif {
+ return false
+ }
+ if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
+ // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
+ // says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
+ return true
+ }
+ return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
+}
+
+func (d *decoder) convertToRGB() (image.Image, error) {
+ cScale := d.comp[0].h / d.comp[1].h
+ bounds := d.img3.Bounds()
+ img := image.NewRGBA(bounds)
+ for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
+ po := img.PixOffset(bounds.Min.X, y)
+ yo := d.img3.YOffset(bounds.Min.X, y)
+ co := d.img3.COffset(bounds.Min.X, y)
+ for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
+ img.Pix[po+4*i+0] = d.img3.Y[yo+i]
+ img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
+ img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
+ img.Pix[po+4*i+3] = 255
+ }
+ }
+ return img, nil
+}
+
+// Decode reads a JPEG image from r and returns it as an image.Image.
+func Decode(r io.Reader) (image.Image, error) {
+ var d decoder
+ return d.decode(r, false)
+}
+
+// DecodeConfig returns the color model and dimensions of a JPEG image without
+// decoding the entire image.
+func DecodeConfig(r io.Reader) (image.Config, error) {
+ var d decoder
+ if _, err := d.decode(r, true); err != nil {
+ return image.Config{}, err
+ }
+ switch d.nComp {
+ case 1:
+ return image.Config{
+ ColorModel: color.GrayModel,
+ Width: d.width,
+ Height: d.height,
+ }, nil
+ case 3:
+ cm := color.YCbCrModel
+ if d.isRGB() {
+ cm = color.RGBAModel
+ }
+ return image.Config{
+ ColorModel: cm,
+ Width: d.width,
+ Height: d.height,
+ }, nil
+ case 4:
+ return image.Config{
+ ColorModel: color.CMYKModel,
+ Width: d.width,
+ Height: d.height,
+ }, nil
+ }
+ return image.Config{}, FormatError("missing SOF marker")
+}
+
+func init() {
+ image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
+}
diff --git a/src/image/jpeg/reader_test.go b/src/image/jpeg/reader_test.go
new file mode 100644
index 0000000..02a2eb6
--- /dev/null
+++ b/src/image/jpeg/reader_test.go
@@ -0,0 +1,516 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "bytes"
+ "encoding/base64"
+ "fmt"
+ "image"
+ "image/color"
+ "io"
+ "math/rand"
+ "os"
+ "runtime/debug"
+ "strings"
+ "testing"
+ "time"
+)
+
+// TestDecodeProgressive tests that decoding the baseline and progressive
+// versions of the same image result in exactly the same pixel data, in YCbCr
+// space for color images, and Y space for grayscale images.
+func TestDecodeProgressive(t *testing.T) {
+ testCases := []string{
+ "../testdata/video-001",
+ "../testdata/video-001.q50.410",
+ "../testdata/video-001.q50.411",
+ "../testdata/video-001.q50.420",
+ "../testdata/video-001.q50.422",
+ "../testdata/video-001.q50.440",
+ "../testdata/video-001.q50.444",
+ "../testdata/video-005.gray.q50",
+ "../testdata/video-005.gray.q50.2x2",
+ "../testdata/video-001.separate.dc.progression",
+ }
+ for _, tc := range testCases {
+ m0, err := decodeFile(tc + ".jpeg")
+ if err != nil {
+ t.Errorf("%s: %v", tc+".jpeg", err)
+ continue
+ }
+ m1, err := decodeFile(tc + ".progressive.jpeg")
+ if err != nil {
+ t.Errorf("%s: %v", tc+".progressive.jpeg", err)
+ continue
+ }
+ if m0.Bounds() != m1.Bounds() {
+ t.Errorf("%s: bounds differ: %v and %v", tc, m0.Bounds(), m1.Bounds())
+ continue
+ }
+ // All of the video-*.jpeg files are 150x103.
+ if m0.Bounds() != image.Rect(0, 0, 150, 103) {
+ t.Errorf("%s: bad bounds: %v", tc, m0.Bounds())
+ continue
+ }
+
+ switch m0 := m0.(type) {
+ case *image.YCbCr:
+ m1 := m1.(*image.YCbCr)
+ if err := check(m0.Bounds(), m0.Y, m1.Y, m0.YStride, m1.YStride); err != nil {
+ t.Errorf("%s (Y): %v", tc, err)
+ continue
+ }
+ if err := check(m0.Bounds(), m0.Cb, m1.Cb, m0.CStride, m1.CStride); err != nil {
+ t.Errorf("%s (Cb): %v", tc, err)
+ continue
+ }
+ if err := check(m0.Bounds(), m0.Cr, m1.Cr, m0.CStride, m1.CStride); err != nil {
+ t.Errorf("%s (Cr): %v", tc, err)
+ continue
+ }
+ case *image.Gray:
+ m1 := m1.(*image.Gray)
+ if err := check(m0.Bounds(), m0.Pix, m1.Pix, m0.Stride, m1.Stride); err != nil {
+ t.Errorf("%s: %v", tc, err)
+ continue
+ }
+ default:
+ t.Errorf("%s: unexpected image type %T", tc, m0)
+ continue
+ }
+ }
+}
+
+func decodeFile(filename string) (image.Image, error) {
+ f, err := os.Open(filename)
+ if err != nil {
+ return nil, err
+ }
+ defer f.Close()
+ return Decode(f)
+}
+
+type eofReader struct {
+ data []byte // deliver from Read without EOF
+ dataEOF []byte // then deliver from Read with EOF on last chunk
+ lenAtEOF int
+}
+
+func (r *eofReader) Read(b []byte) (n int, err error) {
+ if len(r.data) > 0 {
+ n = copy(b, r.data)
+ r.data = r.data[n:]
+ } else {
+ n = copy(b, r.dataEOF)
+ r.dataEOF = r.dataEOF[n:]
+ if len(r.dataEOF) == 0 {
+ err = io.EOF
+ if r.lenAtEOF == -1 {
+ r.lenAtEOF = n
+ }
+ }
+ }
+ return
+}
+
+func TestDecodeEOF(t *testing.T) {
+ // Check that if reader returns final data and EOF at same time, jpeg handles it.
+ data, err := os.ReadFile("../testdata/video-001.jpeg")
+ if err != nil {
+ t.Fatal(err)
+ }
+
+ n := len(data)
+ for i := 0; i < n; {
+ r := &eofReader{data[:n-i], data[n-i:], -1}
+ _, err := Decode(r)
+ if err != nil {
+ t.Errorf("Decode with Read() = %d, EOF: %v", r.lenAtEOF, err)
+ }
+ if i == 0 {
+ i = 1
+ } else {
+ i *= 2
+ }
+ }
+}
+
+// check checks that the two pix data are equal, within the given bounds.
+func check(bounds image.Rectangle, pix0, pix1 []byte, stride0, stride1 int) error {
+ if stride0 <= 0 || stride0%8 != 0 {
+ return fmt.Errorf("bad stride %d", stride0)
+ }
+ if stride1 <= 0 || stride1%8 != 0 {
+ return fmt.Errorf("bad stride %d", stride1)
+ }
+ // Compare the two pix data, one 8x8 block at a time.
+ for y := 0; y < len(pix0)/stride0 && y < len(pix1)/stride1; y += 8 {
+ for x := 0; x < stride0 && x < stride1; x += 8 {
+ if x >= bounds.Max.X || y >= bounds.Max.Y {
+ // We don't care if the two pix data differ if the 8x8 block is
+ // entirely outside of the image's bounds. For example, this can
+ // occur with a 4:2:0 chroma subsampling and a 1x1 image. Baseline
+ // decoding works on the one 16x16 MCU as a whole; progressive
+ // decoding's first pass works on that 16x16 MCU as a whole but
+ // refinement passes only process one 8x8 block within the MCU.
+ continue
+ }
+
+ for j := 0; j < 8; j++ {
+ for i := 0; i < 8; i++ {
+ index0 := (y+j)*stride0 + (x + i)
+ index1 := (y+j)*stride1 + (x + i)
+ if pix0[index0] != pix1[index1] {
+ return fmt.Errorf("blocks at (%d, %d) differ:\n%sand\n%s", x, y,
+ pixString(pix0, stride0, x, y),
+ pixString(pix1, stride1, x, y),
+ )
+ }
+ }
+ }
+ }
+ }
+ return nil
+}
+
+func pixString(pix []byte, stride, x, y int) string {
+ s := &strings.Builder{}
+ for j := 0; j < 8; j++ {
+ fmt.Fprintf(s, "\t")
+ for i := 0; i < 8; i++ {
+ fmt.Fprintf(s, "%02x ", pix[(y+j)*stride+(x+i)])
+ }
+ fmt.Fprintf(s, "\n")
+ }
+ return s.String()
+}
+
+func TestTruncatedSOSDataDoesntPanic(t *testing.T) {
+ b, err := os.ReadFile("../testdata/video-005.gray.q50.jpeg")
+ if err != nil {
+ t.Fatal(err)
+ }
+ sosMarker := []byte{0xff, 0xda}
+ i := bytes.Index(b, sosMarker)
+ if i < 0 {
+ t.Fatal("SOS marker not found")
+ }
+ i += len(sosMarker)
+ j := i + 10
+ if j > len(b) {
+ j = len(b)
+ }
+ for ; i < j; i++ {
+ Decode(bytes.NewReader(b[:i]))
+ }
+}
+
+func TestLargeImageWithShortData(t *testing.T) {
+ // This input is an invalid JPEG image, based on the fuzzer-generated image
+ // in issue 10413. It is only 504 bytes, and shouldn't take long for Decode
+ // to return an error. The Start Of Frame marker gives the image dimensions
+ // as 8192 wide and 8192 high, so even if an unreadByteStuffedByte bug
+ // doesn't technically lead to an infinite loop, such a bug can still cause
+ // an unreasonably long loop for such a short input.
+ const input = "" +
+ "\xff\xd8\xff\xe0\x00\x10\x4a\x46\x49\x46\x00\x01\x01\x00\x00\x01" +
+ "\x00\x01\x00\x00\xff\xdb\x00\x43\x00\x10\x0b\x0c\x0e\x0c\x0a\x10" +
+ "\x0e\x89\x0e\x12\x11\x10\x13\x18\xff\xd8\xff\xe0\x00\x10\x4a\x46" +
+ "\x49\x46\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00\xff\xdb\x00\x43" +
+ "\x00\x10\x0b\x0c\x0e\x0c\x0a\x10\x0e\x0d\x0e\x12\x11\x10\x13\x18" +
+ "\x28\x1a\x18\x16\x16\x18\x31\x23\x25\x1d\x28\x3a\x33\x3d\x3c\x39" +
+ "\x33\x38\x37\x40\x48\x5c\x4e\x40\x44\x57\x45\x37\x38\x50\x6d\x51" +
+ "\x57\x5f\x62\x67\x68\x67\x3e\x4d\x71\x79\x70\x64\x78\x5c\x65\x67" +
+ "\x63\xff\xc0\x00\x0b\x08\x20\x00\x20\x00\x01\x01\x11\x00\xff\xc4" +
+ "\x00\x1f\x00\x00\x01\x05\x01\x01\x01\x01\x01\x01\x00\x00\x00\x00" +
+ "\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\xff" +
+ "\xc4\x00\xb5\x10\x00\x02\x01\x03\x03\x02\x04\x03\x05\x05\x04\x04" +
+ "\x00\x00\x01\x7d\x01\x02\x03\x00\x04\x11\x05\x12\x21\x31\x01\x06" +
+ "\x13\x51\x61\x07\x22\x71\x14\x32\x81\x91\xa1\x08\x23\xd8\xff\xdd" +
+ "\x42\xb1\xc1\x15\x52\xd1\xf0\x24\x33\x62\x72\x82\x09\x0a\x16\x17" +
+ "\x18\x19\x1a\x25\x26\x27\x28\x29\x2a\x34\x35\x36\x37\x38\x39\x3a" +
+ "\x43\x44\x45\x46\x47\x48\x49\x4a\x53\x54\x55\x56\x57\x58\x59\x5a" +
+ "\x00\x63\x64\x65\x66\x67\x68\x69\x6a\x73\x74\x75\x76\x77\x78\x79" +
+ "\x7a\x83\x84\x85\x86\x87\x88\x89\x8a\x92\x93\x94\x95\x96\x97\x98" +
+ "\x99\x9a\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xb2\xb3\xb4\xb5\xb6" +
+ "\xb7\xb8\xb9\xba\xc2\xc3\xc4\xc5\xc6\xc7\xff\xd8\xff\xe0\x00\x10" +
+ "\x4a\x46\x49\x46\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00\xff\xdb" +
+ "\x00\x43\x00\x10\x0b\x0c\x0e\x0c\x0a\x10\x0e\x0d\x0e\x12\x11\x10" +
+ "\x13\x18\x28\x1a\x18\x16\x16\x18\x31\x23\x25\x1d\xc8\xc9\xca\xd2" +
+ "\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8" +
+ "\xe9\xea\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xff\xda\x00\x08" +
+ "\x01\x01\x00\x00\x3f\x00\xb9\xeb\x50\xb0\xdb\xc8\xa8\xe4\x63\x80" +
+ "\xdd\x31\xd6\x9d\xbb\xf2\xc5\x42\x1f\x6c\x6f\xf4\x34\xdd\x3c\xfc" +
+ "\xac\xe7\x3d\x80\xa9\xcc\x87\x34\xb3\x37\xfa\x2b\x9f\x6a\xad\x63" +
+ "\x20\x36\x9f\x78\x64\x75\xe6\xab\x7d\xb2\xde\x29\x70\xd3\x20\x27" +
+ "\xde\xaf\xa4\xf0\xca\x9f\x24\xa8\xdf\x46\xa8\x24\x84\x96\xe3\x77" +
+ "\xf9\x2e\xe0\x0a\x62\x7f\xdf\xd9"
+
+ timer := time.AfterFunc(30*time.Second, func() {
+ debug.SetTraceback("all")
+ panic("TestLargeImageWithShortData stuck in Decode")
+ })
+ defer timer.Stop()
+
+ _, err := Decode(strings.NewReader(input))
+ if err == nil {
+ t.Fatalf("got nil error, want non-nil")
+ }
+}
+
+func TestPaddedRSTMarker(t *testing.T) {
+ // This test image comes from golang.org/issue/28717
+ const base64EncodedImage = `
+/9j/4AAhQVZJMQABAQEAeAB4AAAAAAAAAAAAAAAAAAAAAAAAAP/bAEMABAIDAwMCBAMDAwQEBAQGCgYG
+BQUGDAgJBwoODA8PDgwODxASFxMQERURDQ4UGhQVFxgZGhkPExweHBkeFxkZGP/bAEMBBAQEBgUGCwYG
+CxgQDhAYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGP/EAaIA
+AAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKCxAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1Fh
+ByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNk
+ZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT
+1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6AQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgsRAAIB
+AgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBka
+JicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZ
+mqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/dAAQA
+Cv/gAAQAAP/AABEIALABQAMBIQACEQEDEQH/2gAMAwEAAhEDEQA/APnCFTk5BPPGKliAB718W7H2j3Ip
+VUuwJxzTfKXacde9VBhYRUBAyO3pTmUAbSMU5WGmybywzHGAMdelPVFC+n1qXZCuyaJADxjj2qzbBMAP
+xz1rKaVib6ltLcFvlIx2pLy0dwuAMMBnH1rFON9RNsszAZPFEYHldPzrOy3KewmBk9qUABugxjtTVmiW
+xWRcjp+VJtHXgVL3K6AgBDdM9eRTNzAZViOe1VyxaJavuf/Q8aW4mUcSGpo764AyHz+FfnnJBvVH1UsN
+CS1Q/wDte4Trip49ecA7g3FSqMW9zlqZandxJ4/EKADcSPqKni8QQMT865qOSUNjiqZdNbFiHWYXz84N
+WE1KNsfMKj2zirHHPDSj0JFvo2H36d9pUjg1sqykYOm0KbgY60omXPXmr9pFkco3zBnrQzjGcnrRzp9S
+bEbuOvao3fisZSXUpIYWGKGcbetTCSswsxnmACkYrtNSpJ2YNM//0fnK1BD7sDg9KmUHeOe/Svid3qfb
+SdmQ3AHmnr1pGBC5z19a0hohNiJkensM1J0yCKmY0yZR82e+BT1BxnpmpepN9SRCR0NSpweOoPWs6isr
+ijuWIZGBA/lVwzMVFY8ibuhXEfr+tOz8hIqUymhRnJGTSc5wBVRRDFPXBHJpB3qdmV0EX7vXmoyfl685
+p2dxWR//0vFsHZ9TQv3T618Bqz7PSwwn1phPXpSWrQEUhIx0NVXc7j0rSNwViCS4dWYpJj3BpBqVzGy7
+ZmHSq9kpblSpxkveQ+PX7uMf6wEDtU0fi24TAkX8jTeCjJaaHDUwFN7aFq28aL/GCMGrtr4xtHGGkA+t
+YTy+a+E82eAa2LsXiWzI5mXPHercOsW8hwJB+dcUqVSCOKVFxdmiwl7E2MOPzp4nQ9GH51jzNbmUoOIC
+TI4okOaUXoybDCevNBPHX8qIO4mf/9P52i4dix5zjp/n1qZFBCmviL6an2kt9CGcYnJznJpOBwegq4vQ
+L9xIUytSkfu/bv70p7j6EnQgjHSpFGVqXclkkaHb1+makUHgdazm7IFuSKOasrnjis2+oDm9qnIHlgd/
+es7gxqjkt1NLwH4xTTEhjkhutM3D15oGhkcnBGRTDKu3A7H1rS3cLn//1PEhJ8uM557UvmDaa/P7a3Ps
+xpZcZ6mo5WG45pdUC2K8ko5JIzWfcTqu7HPHrW9OLbKWhSluVLNz3wKrS3I3KfcV1Rg9CrpXK8l0F7io
+pLnLnJHGOldMYJGMpu5XNwuxjyRTBcAAjd1HWtfZmPORy3WAWWQDOM4PWtHRru6DFlmY88ZqKsVyXaKp
+QjOoa7axe28G/cWqhoHjO/n1WeJwSkS9c981wUcFCopPayFj8JC8VFbs6e38VldvmHHFaMHimAoCzDB6
+V5U8FKz5TlrZU4/CXYtdtnXIarEepW7jAcfnXGqEoKx5tfBzh0P/1fnqEAsc/wB6pI9owAD1618Qn3Ps
+35EE4UzHrx79aXaMcdaqAMWIADvj271IMeXg59KUmNLQkUDfjb1FSLxzg0pWJRLGAQAeMVIoA+uaxlaw
+0SoF/u1KowwwDUcwuo9wMjrUrY2ZPOKy0KY1T1NMdwG/CtBEFzMqnIPNUZ75FBJP5mtIQvYfoU21JFVs
+N271AurRE/e611xw73Yj/9b50GsQhOXHWnpq8JX7w4PWvjPq76H2fzHjVYCud9Q3GrRAZDUvq75kNbMz
+7vV0zjdjNZ82pqzMcj7tdlPDtIiVWKKct+AxwRxUbXi7VPJAIrZUdEZOsrsga8DFgelQtd98g5P6V0Qp
+GE6qIUut2cZ470kd2FjYc4Oce1bSpJ3Rzxq21GNcDZhSeg710ujKRbKzAg5rkxceWnqd+XtOo7bD9cl8
+qxLDPHasXwUvmyXU7Lgl8cegrnw2lGbZ14l3rU0bl3gMQCRgVU1y7WytUZQzMRwBXPRhzWRvVny3ZW8N
+6xPdXBikiZc5IOa6GG6nDsd5xnAyfaliqEacrGOHarx5pI//1/nuL754HWngEkYx1r4VWsfaMjk4mP8A
+OgnjPH1rRMLKwR4A2jH1FPA+TNRIa0ROvQcY4p4GF/pUskmi6+gqRACvPrWMnpca3JABjFSKCQOnFS2u
+o7E3XBOKcR8ucdKzUkDGSHGemKpXchVuP0rSmDMfUrl1J5rn9TvnVCc9OtelhoJtDekW0Yb6pId3zdRw
+RVT+0pAPvc57CvbhQVrHlTxD3P8A/9D4tbUpTH1I7cU/7ZdMnyqcdsV5vsErXPbWJbHLdXzYQDBY8c02
+6udQjyGVuD1FHsqfMridepZ6ED3s4IDqeD0I68VEt7J5hy3GO9aKkuhPt2BumeRjnv3pJLlgwBYE8ZqH
+T2GqujYLcuWYbhj0zTHm5B/vcGtVBLYzdRtEcUueoGB3FOjmBjcBhx2NNx1IhO+uwtqd93EgA5YcV32n
+IqwrnAz2rzMx+FI9nKldy+RmeMpfLs8DGTxTvBUKw6Csjry2WPbrXHB2wzfdnbUu8SvJF4xh1LDAJNU9
+UtVmDs3IiGB6CuenNx1R0yjfRGd4aRTqJdFG1ARXRgANg4/yK0xbvJehnhlaL9T/AP/R+e4x8xx609F+
+YZ718L6n2ju2RzqTKcYpQMjsc1pHTQWlgjUjGVH0qbkr0BqJSKRMi+uBx3p8a5HYVD8yb32JY15FSKpx
+nisp6RuNbj1BzUyrnkmo6FEqrz7U/advHOazvcRHIuSazNXDpbSSJjeqErnpmrp6CueeXusahO5zKi8c
+7VrPuGklUiSQtkd6+po0YQs0edVrTd1cqeSoJOB0xUCxpnouAecV33e558rbH//S+KdmFHTk1btywUqc
+YNcEnfc9SGl7DyAJ1AHIParx+YZ4/Guea2OmC1dhGjQn5kXNQtbQFiWiTlfSoTa2G0nuU5bG2aQ7V2jP
+JU+1RSaXC2GjuApyOorX2slYz9lF3sV/7MmViFljaoJLG6SQbkyDXQqiZzyg1Yg8i4jBJjIBpsaPyXXB
+Psea1TTMJJqysaeh2u/UUfP3QCBXdQJtTpivFzKV3FH0WURtCT8zmPHcrhkRSOWro7O28rRYIgOwGB3r
+mnph4+bOxNvEy8kWFi+ULxwKzNRkMemSPj/WMT+FckNWdLv0KPhCMmGSZl6k1ulC3zY5x2+la4r+IyKH
+wH//0/nuIHB9c9KevUAHk18La60PtHuRy/64+lOGBniqXcOlhUIxwB+NSrynSpndFImQc4A7d6lQccdR
+WcyUyWMccDnPSpVAwM1nLYaeo5BjrUyjFTugJIwd2Kfgkc59qyTs7Axkigqao3qBkYdiMVpTeugHmF7b
+hbhl2/dJB/OofJBTHfp9K+ppTbimeZOK5issYG5W7VWdBnHXB65rrjJs5JLof//U+LYtu7leM+lSpxIR
+7VwO90eskrNkqZLo3PXHoausxI4wa557o2p6JitnOCoqvI3zEkdF5qIrUuW2ogO1iWHeibazIQncHA+l
+DT0aCyaaZGNm8kA9PSl2qy9SB78Veq1ZCs9BkOGUrj86zdQGbllVMAe1bQdpGE1eBo+FoCbgtxkY966+
+E4hOeo5rycxleR72VwcaRx+t/wCmeJ7WAdDIOPpzXbSpt/dkcRr+tZ4j3aVNLzNKOteo/QjuiY7Jm6Ej
+ANYnitvL05YRxwOf8/WuXDK8l6nVUlaLZb8NQeXpijgZB/M1oIpyPzx74pV2nUbHTVoJH//V+fYhgnnv
+Txy4GBXwse59m7kMyEzkj8qkQfKatdgewIo7nIqdQAnXms52RSehMoHHPapY1wMAgVnKzFtqSwjjg4qR
+VJHXIzWc2rDiPVeeD+FSDqKh2sBKo54p+Pl61jbQG9RrDIPNU7teT6VpCztYDzfxGskWtXESdN5Pp15q
+gN2GZpB0r6ig17OL8jz535miCSPdnaxHHpVV48D7xIB7iu2LOOS7H//W+MCoeIDcc5p4VhIMDkDvXnpq
++p6zu0SwZZlVm6HJFWyRg89MdawmkmrG1NtpiMcY5OevFQ7AWOT0FSkkU9UKUPmEh8jt+VMdGLDLYAIz
+xUtrQfLo7Mj2SHjePrSspxgEk1rdGSTGJjymLEZArOjAd5GLHk9DW0NGznqa8qOj8IRHBbrnnmugu08u
+1ZiSMn868LGz/eH1GAVqKOW8LR/bfG4c8rCCx46HpXZspk88jHzMf04pY7eEfIjDO7nLz/yKmqh/sjwR
+EFwAemcVhamkmpTRxKpyCN2RWeFsveZ01FpbubsEaRWyqhAxnH5YpxIx8rf/AFuK5W3Jts2Wisf/1/n5
+SSxHOM+lP7jGa+EVz7R2IpATN1IIpwB55NaJ2FuhYzx3PvU69OQaio7sEiZOvfpU0YwmMVnJ26DRJH2G
+DipUyR361jN6FIeq8/0qUdBxWbkCRIg/D6U8j5e9Rza3ExrA8nmqt0Dkmri9BnnfjlSmvuwGQyhulYkr
+yL86DANfTYRp0o3PPr3UnYbBOWU4zz7VHIGIJVjkGu1x5Tl5ro//0Pi3fhgMHJPXFWCeQwLe9ec+jPXj
+1JIM7gw44qy+WPUjkcVjPdGsNmgdsNkjJFQ7mMhAB5FRHuXJ6WRIw+VwCc9KbtPy5JyCKgdmxhBDNj8s
+U1Cyr0J/rWultDOzTuMuSiWjlT97r7HFZ1nkk4bIPXiuiD3uc00rqzOy8Lw+XBuJPQcGrXiGYJYMwJHB
+xXz1d89U+sw8eWmkuxi/DGP/AEm+vHycYUE/jXXu6w2vzdcfiaMw1qpLsjnwi/dt+bKCn5nlw2W5Gacw
+GD2wB+dcq2O4AnyADoM80QLukUsp9f0qb6XHuf/R+fkOWNSfwjnivhUz7Nq2hFJ/retPA4PWrWuwul2L
+FjAA6VMMFeTms5PUpbEw6/hxUyfd4as5PUETRds9KlA+Xk96ym9FcaHJgGpOv1rPUpIkXg8mnNnGaz5r
+aCaEPeqtx1OT0rSL2sC1OG+ISquoQuT1UjP4/wD16wGEZUYGPevo8E26UThrpc7G7ICDzg+1ROmF+91O
+K7VKVrHNyxWx/9L4uuVAcH371JvKqScFPU1597pHqtWbZNZnc+QxI9atv8p4z9ayqPVI1pr3WyPBLDGf
+qKYnExyeQKlFPQXH7zgdetSk8rgEnis29i0lqxijLEjjt1poU7iVHHpVX3uRbsZl+2IvLX+I56U/TUUA
+KxGSfSulu0XY5oq80drpcZSzHvjpWd47fy9O2g8kjpXz0ZJ1kvM+skrUnbsSfDm1C+HlfJ/euXIPRq3b
+lleQRYBCg5HrSxk+au/IxwkbUokRw0u0cBFyR70wEEbm6sc/gK5YuyZ1PzFVgVG4ZIzmpbTaJMt07+3F
+Q9i7n//T+foic55yTipRkYBBxXwaPtXuRyZEg4pWII4qk7C6BFwAf51MhG31+lZ1Frca2LKHn8qlDY6L
+UNgl1Jo+2akQ9BWVR9xpDgffrUq+wrO7tdDsSIPUUpPHvUK1xMM8HA61WmwWOB+NXENjiPiMhE1sw9WH
+8q5vqRnjivosD/BXzOKv8QkKgZBA6ZpV27MkDOa7ObsYI//U+MdVGxlK9zninqd1sCQM45rzYaxR68vj
+YtgT5h6jvV6Q5X0+lZ1n7yLofCxhOenfFMTI3cdRzWV9DWw5ARI3qPSnMSqKCOSRUy6FRurjFLjPp9KA
+xx06n1q1qjO70Me6YtcOOcKcH1q9oqF5l75Oea6KtowOagnKol5neWcSJaocdgRzXGfEm53ERKfvEV89
+gvfxCPqcXLlw8/Q6fwkph0aCEg4VB/KrsDbmcnA4PWoxFnVkxUVaml5IgR9sMj4+ZzSTuTjcOB0/CsUt
+zo0VrhCQiF2GcAn/AD+dWLRlYZPQ8cVEk7aF+p//1fAIuvfOakxnr+NfBJ2SsfaN6jJRiUA9RSheCMfn
+VXEtgjUk/wBTVgfdBwOfSs5stbE6g7unYVLGpwAazYvUmjHHanqDx061lLazKuh6DHBFSID27VEthkin
+5cUHOPxqLvqJiEYziq8/FaQ8hHH/ABEVvIhYYyHNcsrSZG5RyOtfQYC3slfzOPEX5tAA+amHIjO31ruu
+rHNa7P8A/9b411QMIwSDnNR2xYQNkjnnkV5sLctj15JqRLZjBzweeSKuycHkD8qyq6tF0rqLI2OTnK5p
+sGWbBHQd6zWxo3qSdXLYxTpPvLnvjrWdr2LvuNYYUnj6Uxyu4/KMrVx6ky6GOGLSOwXIYmr9n58UQeFg
+svbcCRXTVty2ZzYZOVRcpvDW721tv9LsBIpAHmQNn9K4zxPqSX2sK6hljDDO6uHBYWKre0i9PxPTzDFS
+VDkmtX9x2mm65YG0REnTccAc1rx3EJgbbIpyvUGuDE0JxleSO+hXhUj7rGK/7uNcj1P6UmSU+fHPJrlS
+5bnXe9mA/wBSQDxzkfh/+qp7YbIipbaOufwrN7WLR//X8DTO7I9e9SJnAIHNfBPY+ze4yQEPnGacoHof
+amvIELCDnnqanXoBzUSaRSRMo5J744qRBxzUSelwRPEMingdsVk7pFLckA5p44OTUXuh2HqOKRskE4qV
+sKQADkYqvcj8aqD0shWOV8fqDYqc4w4rj5D365Fe7lz/AHdjlxC11CNhyRnp0pqkYOc9a9G/c5bLof/Q
++OdUH7sDnOeKrREgEN6V5tN+6exUT5rlm1IC9ec9qssBg5xzjNYzdpJmkNtRhJzgflSRDqD6flU7FkqZ
+55+holblfUVk90aLYYxJH3agvGCQPkjJ6DFaw7GMtrmdYpkcg1q6fsEwB6Ct8Q73M8DpKLZruu+3ZM43
+ADNctfeHt120cEjO3U7scmuDCVvZNux7GLw31iNmypLoN5byByrYzzxVfzdTtXcxzSAD3r0oYinW0Z41
+TB1cPrBlyy8S6nF9+QOMba1LbxepwsyFcYztrnrZdCabgb0MzlCyqGrZ+IbK4U7bgDg8E4rXtL+CQBfM
+VgTn9BXi1sJOno0e5SxVOqrxZ//R8DiGScip0HOAOa+CfkfaDJV+fpRjBIxT6iHRjnIHFTAYXBIqZ7lK
+1rEygZxUsYI68Gsm7gkSQ59PwqZRxx681lK/LYaHpjI7U8ge1ZK3Qdxw5XpijAOelGoNCDPOOaguOf8A
+CnFCOa8cJu0uTI6EHH41xLou3gYBr3culaLXmc2JV7DIx8pXHFNAxknGc16b0OM//9L44v8A/V5wMiqy
+/dbI6j1rzKb0PYq7li2C4HHHrVmT5Rx9ayqN8yLppKIwEj6+lPhAGfzNQ9rmqexKvcAYxTTjeM88isty
+xhI3mqWrNwqADB5ranozCo9GQaeBjByR1q2GIzjj2rasryMaErRVieK/kjwHbIGOBVrSbtZNRmlfAB+U
+ZP0/wrinQsnKPY9eljVJqM9zYgMTMAjoRnoRUV3ptrMrl4UY+o4rzIzcHc9Nx5kZc/hu1lUlBszWPqHh
+Z1lYxHJHQZr0cPmElpI87E5dCptoZl1o9zADuVhwfaqqz39tIPLeVMDoPpXqUqsKyPHr0KuGfun/0/Bo
+Rzlh+lToOBXwGltD7RjJQcjtSqODn9RVLyEEY96nVflzis6l3YpaEigdscCpl5XqeKiaVgJIhn/61Sgc
+AdOaylqkyluPXv7U8gZx/Koih9R+ML1ppHynIoRLEAqKYZ6njFVHRXBnP+Lk3aXN0yFz+tcM6j15r2cv
+ejOfEdLjMDb94ZHaoyvy9O/Y16mqOQ//1PjfUcBcnjJ9KqggRldo579682krxPWqO0i1AM7c59OlWJMA
+/lWVTdGtJaNiLg89afCMkjOOO1ZtGu5IpCs+emf6Uxug6Y45rO3UruiFmKydvrVK8ZZLogAn+ldNOPU5
+pvox1pH+7JzhumKlVfkOckmnNq5MI2SGScE5HTBqWDcBkMvJ6CpuraFWd+w3ULqW3gMsb4fOOO1VNP8A
+FGoxsyy7JFA6kYNKGDp1Y+8aSzCrh5e7qjesPE9s8eJh5eRnIrShvbG7AMUqZ+teVVwU6TbWqPaw+OpV
+0lezJWgV4yAVYc8GqV5pFpMMyW+O+V+lc1KtKD906q1KMlaR/9XwqPg9e9SqOQQetfnyfc+0Y2UfOKFy
+B25q1K+grCx564FTL93rilMaRKvXtz7U9OnfrWbtbQdyaLoOtSr/AFrOSstCl2HLnPNP5z1qNEA9s4FM
+7daSVhMAcZzTJlOD1prYDC8VoTpdzjP+rbH5V5w/nDkj9a9rK2mnc5sVeysQxmYMd4wDUkLM3LZFeu0u
+hxan/9b44v8AG35cnnNVArKM+tefS+HU9WoveuizCQCBuOT61ZcnGcgmsZrVG1N3TGrk4x3qWBQGPUHF
+RJspa7kjAFmwOp6Y9qSXPyDtkVgnsa9yFxhWYrj2rJUtJcFgB75rqpSvc5K0bWSRetV2Rg98c8d6UZCs
+M8AZPNTLWTuVFWiiIgjcBnDY5NToCsZAyDnqKUrtJDitWUfETbYI1Ixz7ZNYkXyzMAMevHSuvDfCceK3
+NKGIG0Ppj73pVdi0F2MMQDj7pog7uSYTXKotGxYajeQwA/aHOAeG5zV6HxJLCdk8KuvTK8dvSvNq4OFV
+6aM9ajmM6SSlqj//1/DIOpHGaljG4cYH4V+e62PtWEi45pvzcjIwKuLsS9RYwM9s1Jj5Md88molqUnYl
+Xlue1SryKlpodiWLGB6GpBWU9FcEPQd6eBgjNRYpCn7opDyM0Ru9RMQdxxzSODVR12F6mTryFrWVcfeU
+j9K82ctvxxXrZY7XRjiF7qEjUHgkYFQuuCeB19K9dO5xSSsf/9D44uwSmM556VXkXMJHGenFeZTvoexN
+Ilg4bBOTjrip5uQcY4x2qJ3ckVDSLQ6MdCPpT4uGIHGOaze1jRJbkjFgDgYpjEgqxI7dqyWhpuQ3rkQS
+HjpWfaR9/wCf1rqp6RZy1Peki8MGMfNx7d6jc7Yyc4ye1JptjvorjBneDw2QMVPEHBIOFwR3qbXF5ox/
+EDl71U4ODiqDrjJABIrsoaRSRx19ZNmrbD/RgScAjsag1CF9pcBTxWMXaTNZRbirDrF3CbSQTg9f5U+Z
+QJxwFBA/lRZc1yrvlsf/0fD4fvE1MnYk/nX5/wBD7R7iP1yMdaQLzRF9LCa7hGvOf0qXHy9qUtxkgXnt
+UqDk0pK7sCfYkUcYA6VKnIFYzWha7jhT1Hes42TsC1FIyOlNYEU4oT8hB3pGzt68U1tYVzP1IZQ56Yrz
+e6UC5lUrwGOB+Nepl3xNGddXiV0Y8jGPw6U1slSCec9a9m6OCx//0vji/wAiMY45qux3Rbh/KvNprRHr
+1N2iW3z5gHY81ZnA3AnipqfErF01aDuPhwXAPHSpME7jyOK53pKxt9kT5vmB4IPHFMkwcEnkkVPkPpqU
+75zt8sDBJ+tNtVCt8x59q6rWi7HKneSuTxAhCAQOcc0yQEA4br2FRfVqxfK7LUYw4weCu3n1qbdiNmOM
+EgY9KV9CXo2YF+VMyNx8zE5qMgsrhccdq7obK5xT3aRdtTi2VmPGMdc+lWJgr5XAGMfrWElq7G8XsmUx
+C8ZJjOQQcgdakVXZxv4PbjvijmTJlBr7z//T8RjIGPc1KhXqPXivzzdH2bWoSD5sg4INJwRzz9aEw2BM
+dM5qTjb60SdykSA88enepEOOKU31EkTREdqkH54NZT1Ra0Hd/SnHip0Q/IVjwPWmsePehPqiWC9T1pHH
+B5oTaFYoaiOOn415tqm4X842jiRh+tenlvxMzrfCV05JLDHTgD3ppYFCB6/Svb1aOHbc/wD/1PjnUv8A
+Vct3qq53IMeleZDZM9ipu0SRYDAkkewqxI24+w6VM90EL2aJYCN5AbgY/lU0R+9z+FZS0N076DZSNzc5
+yc0xyoUfh25qG9mU7XZnXLZuTgnaKsW4zjqRnriuiStHQ5Y/GOxgEVFuwpBA9+MVKsytUOjILcZ7daNQ
+ZEt3O7k8fjU3ldDbVmc/cPm4QYA/rS8gMD2zz6139EcF7tli2lVIAhVsYPap45lZiFG08DnrWLT1Ztde
+6kidMGMZHGD3pkqjcOcZ447cVjF6o0nZxbP/1fElB7HOD1qVQOOtfnSVj7VsRwNx60Ywp4PFOCVwvoIg
+HB9e1SAAjGcUpa7AiQDkf0qRRxgZGaUrWuwJYwOByalXGB6A1nOzRS3FAI70/GSOtTtuMVunemHGKUe1
+iRRgk0hwKqPkDZS1DkYFed+JEEWs3Q5GHz9M816GX6VPkZ1V7pQibOck8jrUbgDIA4r3epwJ6an/1vjf
+U9vl43YyelUwR5RGTxx0rzaauj1qrSlckiA3D5j071aYjccnHSlJXaHDZsntzkY3Z96lQjnnt9K55I3T
+GsRyDnI9ajfKKOemDxio7Iq+7M3JeVieSecYq7AMKF3Fj6V0zVlaxzQfvXGDpy2McdajjydwIO2h2Hd6
+ND41G8nAGMdD1qLV2zAFORl+R1qEtVcTdkzBl5vSCMgNwKlVG3MFJ4967r6I4bO7JY1BjJJ7Y6dDVqyQ
+CYkqTjvWEn7rN1unYtYQLntg9+tV2+aQBlbPTHrxWNPzNqux/9fxWMDP41IoUYr87WzPs3uEgBJ9uKAB
+tINCSbDoJGAMcdKkAG04/KiSXQpPQkXGcY7VINp56VLBbksYBxUgAx0rOadrDT7C45pxA4wKVkUhX7ZF
+NODzRG1iGAA5NIwGeB1FNLuBTvEBI7V5/wCNFP8Awkl1tIABUdP9kV35cl7VehFbWBlxbNuD8x9aY20Y
+xjOa96xwWstD/9D451XAhBOOTxVRlURdOa8ymrI9epu2SW23cMgDHb1qw4BcrgY9KJ25kOn8LLFsArYG
+McVIu3GdvOOTWLV2axeliOYgM+FzmoL1isAwME4GKVloDvqVoI9zEEAMMGrbIAmFUdcZrSbS0MqcWQBg
+0WMg4PalhCFCdpHWiXUFZtaDtqhywBwMY9Ko6sR5oXPTn2p09WianVIyEYebwMEnPNTL5eXBA4Hautp6
+WONSWt0TQMhUgjKj1q5bhQWKMDwBxWE20mbws3ElXy9pUEDqMd6hfaHUgE7B2HtWUO7NKiVrI//R8Vj4
+br37VMuT9TX55HY+ze+gMM5PSkzwR1AoWu4IRRg9akPC8HpSlfRFLXYeCN3TkipV60ulmBJGeR71IvTP
+Ws5K6Ghwp3FQkMH6elNJ461didOoq9SaRjxSjqwuVbgZkH1rzrxWwk8QXj9hIR+XFejl1nVt5EV/gM2I
+qCTjPTH50x+eRxya961tzzt9j//S+O9WJ+zjgDmqJYGDJYZNedSSaPXqu0tew+L7wPTvmrBO5x7Y5qZf
+EnYUPhZdhUZyO3pTgcOxGOR0rnbu7M6fhK9yVEvPy59O9QX75VBjnIoS+ETa95DLbdu6nnp7VYGSMk59
+vxrWemxlTZCvMe4BTg/nSRKHVsjGfpSe90C1VmTsG2H2x3rF1J1eVxgcHr+FVQWtyK7srFGAgOrHqDnp
+7VPGNzO/O3kkCut7pnGno0idCCNyt6Crca5ZiDjpgVzXsnc6X71rDyBgcbtucn8KhjBMpOfrz7VlTdtT
+Sqm7JH//2Q==
+`
+
+ data, err := base64.StdEncoding.DecodeString(base64EncodedImage)
+ if err != nil {
+ t.Fatalf("base64 DecodeString: %v", err)
+ }
+ if _, err = Decode(bytes.NewReader(data)); err != nil {
+ t.Fatalf("Decode: %v", err)
+ }
+}
+
+func TestExtraneousData(t *testing.T) {
+ // Encode a 1x1 red image.
+ src := image.NewRGBA(image.Rect(0, 0, 1, 1))
+ src.Set(0, 0, color.RGBA{0xff, 0x00, 0x00, 0xff})
+ buf := new(bytes.Buffer)
+ if err := Encode(buf, src, nil); err != nil {
+ t.Fatalf("encode: %v", err)
+ }
+ enc := buf.String()
+ // Sanity check that the encoded JPEG is long enough, that it ends in a
+ // "\xff\xd9" EOI marker, and that it contains a "\xff\xda" SOS marker
+ // somewhere in the final 64 bytes.
+ if len(enc) < 64 {
+ t.Fatalf("encoded JPEG is too short: %d bytes", len(enc))
+ }
+ if got, want := enc[len(enc)-2:], "\xff\xd9"; got != want {
+ t.Fatalf("encoded JPEG ends with %q, want %q", got, want)
+ }
+ if s := enc[len(enc)-64:]; !strings.Contains(s, "\xff\xda") {
+ t.Fatalf("encoded JPEG does not contain a SOS marker (ff da) near the end: % x", s)
+ }
+ // Test that adding some random junk between the SOS marker and the
+ // EOI marker does not affect the decoding.
+ rnd := rand.New(rand.NewSource(1))
+ for i, nerr := 0, 0; i < 1000 && nerr < 10; i++ {
+ buf.Reset()
+ // Write all but the trailing "\xff\xd9" EOI marker.
+ buf.WriteString(enc[:len(enc)-2])
+ // Write some random extraneous data.
+ for n := rnd.Intn(10); n > 0; n-- {
+ if x := byte(rnd.Intn(256)); x != 0xff {
+ buf.WriteByte(x)
+ } else {
+ // The JPEG format escapes a SOS 0xff data byte as "\xff\x00".
+ buf.WriteString("\xff\x00")
+ }
+ }
+ // Write the "\xff\xd9" EOI marker.
+ buf.WriteString("\xff\xd9")
+
+ // Check that we can still decode the resultant image.
+ got, err := Decode(buf)
+ if err != nil {
+ t.Errorf("could not decode image #%d: %v", i, err)
+ nerr++
+ continue
+ }
+ if got.Bounds() != src.Bounds() {
+ t.Errorf("image #%d, bounds differ: %v and %v", i, got.Bounds(), src.Bounds())
+ nerr++
+ continue
+ }
+ if averageDelta(got, src) > 2<<8 {
+ t.Errorf("image #%d changed too much after a round trip", i)
+ nerr++
+ continue
+ }
+ }
+}
+
+func benchmarkDecode(b *testing.B, filename string) {
+ data, err := os.ReadFile(filename)
+ if err != nil {
+ b.Fatal(err)
+ }
+ cfg, err := DecodeConfig(bytes.NewReader(data))
+ if err != nil {
+ b.Fatal(err)
+ }
+ b.SetBytes(int64(cfg.Width * cfg.Height * 4))
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ Decode(bytes.NewReader(data))
+ }
+}
+
+func BenchmarkDecodeBaseline(b *testing.B) {
+ benchmarkDecode(b, "../testdata/video-001.jpeg")
+}
+
+func BenchmarkDecodeProgressive(b *testing.B) {
+ benchmarkDecode(b, "../testdata/video-001.progressive.jpeg")
+}
diff --git a/src/image/jpeg/scan.go b/src/image/jpeg/scan.go
new file mode 100644
index 0000000..94f3d3a
--- /dev/null
+++ b/src/image/jpeg/scan.go
@@ -0,0 +1,523 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "image"
+)
+
+// makeImg allocates and initializes the destination image.
+func (d *decoder) makeImg(mxx, myy int) {
+ if d.nComp == 1 {
+ m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy))
+ d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray)
+ return
+ }
+
+ h0 := d.comp[0].h
+ v0 := d.comp[0].v
+ hRatio := h0 / d.comp[1].h
+ vRatio := v0 / d.comp[1].v
+ var subsampleRatio image.YCbCrSubsampleRatio
+ switch hRatio<<4 | vRatio {
+ case 0x11:
+ subsampleRatio = image.YCbCrSubsampleRatio444
+ case 0x12:
+ subsampleRatio = image.YCbCrSubsampleRatio440
+ case 0x21:
+ subsampleRatio = image.YCbCrSubsampleRatio422
+ case 0x22:
+ subsampleRatio = image.YCbCrSubsampleRatio420
+ case 0x41:
+ subsampleRatio = image.YCbCrSubsampleRatio411
+ case 0x42:
+ subsampleRatio = image.YCbCrSubsampleRatio410
+ default:
+ panic("unreachable")
+ }
+ m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio)
+ d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr)
+
+ if d.nComp == 4 {
+ h3, v3 := d.comp[3].h, d.comp[3].v
+ d.blackPix = make([]byte, 8*h3*mxx*8*v3*myy)
+ d.blackStride = 8 * h3 * mxx
+ }
+}
+
+// Specified in section B.2.3.
+func (d *decoder) processSOS(n int) error {
+ if d.nComp == 0 {
+ return FormatError("missing SOF marker")
+ }
+ if n < 6 || 4+2*d.nComp < n || n%2 != 0 {
+ return FormatError("SOS has wrong length")
+ }
+ if err := d.readFull(d.tmp[:n]); err != nil {
+ return err
+ }
+ nComp := int(d.tmp[0])
+ if n != 4+2*nComp {
+ return FormatError("SOS length inconsistent with number of components")
+ }
+ var scan [maxComponents]struct {
+ compIndex uint8
+ td uint8 // DC table selector.
+ ta uint8 // AC table selector.
+ }
+ totalHV := 0
+ for i := 0; i < nComp; i++ {
+ cs := d.tmp[1+2*i] // Component selector.
+ compIndex := -1
+ for j, comp := range d.comp[:d.nComp] {
+ if cs == comp.c {
+ compIndex = j
+ }
+ }
+ if compIndex < 0 {
+ return FormatError("unknown component selector")
+ }
+ scan[i].compIndex = uint8(compIndex)
+ // Section B.2.3 states that "the value of Cs_j shall be different from
+ // the values of Cs_1 through Cs_(j-1)". Since we have previously
+ // verified that a frame's component identifiers (C_i values in section
+ // B.2.2) are unique, it suffices to check that the implicit indexes
+ // into d.comp are unique.
+ for j := 0; j < i; j++ {
+ if scan[i].compIndex == scan[j].compIndex {
+ return FormatError("repeated component selector")
+ }
+ }
+ totalHV += d.comp[compIndex].h * d.comp[compIndex].v
+
+ // The baseline t <= 1 restriction is specified in table B.3.
+ scan[i].td = d.tmp[2+2*i] >> 4
+ if t := scan[i].td; t > maxTh || (d.baseline && t > 1) {
+ return FormatError("bad Td value")
+ }
+ scan[i].ta = d.tmp[2+2*i] & 0x0f
+ if t := scan[i].ta; t > maxTh || (d.baseline && t > 1) {
+ return FormatError("bad Ta value")
+ }
+ }
+ // Section B.2.3 states that if there is more than one component then the
+ // total H*V values in a scan must be <= 10.
+ if d.nComp > 1 && totalHV > 10 {
+ return FormatError("total sampling factors too large")
+ }
+
+ // zigStart and zigEnd are the spectral selection bounds.
+ // ah and al are the successive approximation high and low values.
+ // The spec calls these values Ss, Se, Ah and Al.
+ //
+ // For progressive JPEGs, these are the two more-or-less independent
+ // aspects of progression. Spectral selection progression is when not
+ // all of a block's 64 DCT coefficients are transmitted in one pass.
+ // For example, three passes could transmit coefficient 0 (the DC
+ // component), coefficients 1-5, and coefficients 6-63, in zig-zag
+ // order. Successive approximation is when not all of the bits of a
+ // band of coefficients are transmitted in one pass. For example,
+ // three passes could transmit the 6 most significant bits, followed
+ // by the second-least significant bit, followed by the least
+ // significant bit.
+ //
+ // For sequential JPEGs, these parameters are hard-coded to 0/63/0/0, as
+ // per table B.3.
+ zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0)
+ if d.progressive {
+ zigStart = int32(d.tmp[1+2*nComp])
+ zigEnd = int32(d.tmp[2+2*nComp])
+ ah = uint32(d.tmp[3+2*nComp] >> 4)
+ al = uint32(d.tmp[3+2*nComp] & 0x0f)
+ if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd {
+ return FormatError("bad spectral selection bounds")
+ }
+ if zigStart != 0 && nComp != 1 {
+ return FormatError("progressive AC coefficients for more than one component")
+ }
+ if ah != 0 && ah != al+1 {
+ return FormatError("bad successive approximation values")
+ }
+ }
+
+ // mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
+ h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components.
+ mxx := (d.width + 8*h0 - 1) / (8 * h0)
+ myy := (d.height + 8*v0 - 1) / (8 * v0)
+ if d.img1 == nil && d.img3 == nil {
+ d.makeImg(mxx, myy)
+ }
+ if d.progressive {
+ for i := 0; i < nComp; i++ {
+ compIndex := scan[i].compIndex
+ if d.progCoeffs[compIndex] == nil {
+ d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v)
+ }
+ }
+ }
+
+ d.bits = bits{}
+ mcu, expectedRST := 0, uint8(rst0Marker)
+ var (
+ // b is the decoded coefficients, in natural (not zig-zag) order.
+ b block
+ dc [maxComponents]int32
+ // bx and by are the location of the current block, in units of 8x8
+ // blocks: the third block in the first row has (bx, by) = (2, 0).
+ bx, by int
+ blockCount int
+ )
+ for my := 0; my < myy; my++ {
+ for mx := 0; mx < mxx; mx++ {
+ for i := 0; i < nComp; i++ {
+ compIndex := scan[i].compIndex
+ hi := d.comp[compIndex].h
+ vi := d.comp[compIndex].v
+ for j := 0; j < hi*vi; j++ {
+ // The blocks are traversed one MCU at a time. For 4:2:0 chroma
+ // subsampling, there are four Y 8x8 blocks in every 16x16 MCU.
+ //
+ // For a sequential 32x16 pixel image, the Y blocks visiting order is:
+ // 0 1 4 5
+ // 2 3 6 7
+ //
+ // For progressive images, the interleaved scans (those with nComp > 1)
+ // are traversed as above, but non-interleaved scans are traversed left
+ // to right, top to bottom:
+ // 0 1 2 3
+ // 4 5 6 7
+ // Only DC scans (zigStart == 0) can be interleaved. AC scans must have
+ // only one component.
+ //
+ // To further complicate matters, for non-interleaved scans, there is no
+ // data for any blocks that are inside the image at the MCU level but
+ // outside the image at the pixel level. For example, a 24x16 pixel 4:2:0
+ // progressive image consists of two 16x16 MCUs. The interleaved scans
+ // will process 8 Y blocks:
+ // 0 1 4 5
+ // 2 3 6 7
+ // The non-interleaved scans will process only 6 Y blocks:
+ // 0 1 2
+ // 3 4 5
+ if nComp != 1 {
+ bx = hi*mx + j%hi
+ by = vi*my + j/hi
+ } else {
+ q := mxx * hi
+ bx = blockCount % q
+ by = blockCount / q
+ blockCount++
+ if bx*8 >= d.width || by*8 >= d.height {
+ continue
+ }
+ }
+
+ // Load the previous partially decoded coefficients, if applicable.
+ if d.progressive {
+ b = d.progCoeffs[compIndex][by*mxx*hi+bx]
+ } else {
+ b = block{}
+ }
+
+ if ah != 0 {
+ if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil {
+ return err
+ }
+ } else {
+ zig := zigStart
+ if zig == 0 {
+ zig++
+ // Decode the DC coefficient, as specified in section F.2.2.1.
+ value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td])
+ if err != nil {
+ return err
+ }
+ if value > 16 {
+ return UnsupportedError("excessive DC component")
+ }
+ dcDelta, err := d.receiveExtend(value)
+ if err != nil {
+ return err
+ }
+ dc[compIndex] += dcDelta
+ b[0] = dc[compIndex] << al
+ }
+
+ if zig <= zigEnd && d.eobRun > 0 {
+ d.eobRun--
+ } else {
+ // Decode the AC coefficients, as specified in section F.2.2.2.
+ huff := &d.huff[acTable][scan[i].ta]
+ for ; zig <= zigEnd; zig++ {
+ value, err := d.decodeHuffman(huff)
+ if err != nil {
+ return err
+ }
+ val0 := value >> 4
+ val1 := value & 0x0f
+ if val1 != 0 {
+ zig += int32(val0)
+ if zig > zigEnd {
+ break
+ }
+ ac, err := d.receiveExtend(val1)
+ if err != nil {
+ return err
+ }
+ b[unzig[zig]] = ac << al
+ } else {
+ if val0 != 0x0f {
+ d.eobRun = uint16(1 << val0)
+ if val0 != 0 {
+ bits, err := d.decodeBits(int32(val0))
+ if err != nil {
+ return err
+ }
+ d.eobRun |= uint16(bits)
+ }
+ d.eobRun--
+ break
+ }
+ zig += 0x0f
+ }
+ }
+ }
+ }
+
+ if d.progressive {
+ // Save the coefficients.
+ d.progCoeffs[compIndex][by*mxx*hi+bx] = b
+ // At this point, we could call reconstructBlock to dequantize and perform the
+ // inverse DCT, to save early stages of a progressive image to the *image.YCbCr
+ // buffers (the whole point of progressive encoding), but in Go, the jpeg.Decode
+ // function does not return until the entire image is decoded, so we "continue"
+ // here to avoid wasted computation. Instead, reconstructBlock is called on each
+ // accumulated block by the reconstructProgressiveImage method after all of the
+ // SOS markers are processed.
+ continue
+ }
+ if err := d.reconstructBlock(&b, bx, by, int(compIndex)); err != nil {
+ return err
+ }
+ } // for j
+ } // for i
+ mcu++
+ if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
+ // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
+ // but this one assumes well-formed input, and hence the restart marker follows immediately.
+ if err := d.readFull(d.tmp[:2]); err != nil {
+ return err
+ }
+
+ // Section F.1.2.3 says that "Byte alignment of markers is
+ // achieved by padding incomplete bytes with 1-bits. If padding
+ // with 1-bits creates a X’FF’ value, a zero byte is stuffed
+ // before adding the marker."
+ //
+ // Seeing "\xff\x00" here is not spec compliant, as we are not
+ // expecting an *incomplete* byte (that needed padding). Still,
+ // some real world encoders (see golang.org/issue/28717) insert
+ // it, so we accept it and re-try the 2 byte read.
+ //
+ // libjpeg issues a warning (but not an error) for this:
+ // https://github.com/LuaDist/libjpeg/blob/6c0fcb8ddee365e7abc4d332662b06900612e923/jdmarker.c#L1041-L1046
+ if d.tmp[0] == 0xff && d.tmp[1] == 0x00 {
+ if err := d.readFull(d.tmp[:2]); err != nil {
+ return err
+ }
+ }
+
+ if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
+ return FormatError("bad RST marker")
+ }
+ expectedRST++
+ if expectedRST == rst7Marker+1 {
+ expectedRST = rst0Marker
+ }
+ // Reset the Huffman decoder.
+ d.bits = bits{}
+ // Reset the DC components, as per section F.2.1.3.1.
+ dc = [maxComponents]int32{}
+ // Reset the progressive decoder state, as per section G.1.2.2.
+ d.eobRun = 0
+ }
+ } // for mx
+ } // for my
+
+ return nil
+}
+
+// refine decodes a successive approximation refinement block, as specified in
+// section G.1.2.
+func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error {
+ // Refining a DC component is trivial.
+ if zigStart == 0 {
+ if zigEnd != 0 {
+ panic("unreachable")
+ }
+ bit, err := d.decodeBit()
+ if err != nil {
+ return err
+ }
+ if bit {
+ b[0] |= delta
+ }
+ return nil
+ }
+
+ // Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3.
+ zig := zigStart
+ if d.eobRun == 0 {
+ loop:
+ for ; zig <= zigEnd; zig++ {
+ z := int32(0)
+ value, err := d.decodeHuffman(h)
+ if err != nil {
+ return err
+ }
+ val0 := value >> 4
+ val1 := value & 0x0f
+
+ switch val1 {
+ case 0:
+ if val0 != 0x0f {
+ d.eobRun = uint16(1 << val0)
+ if val0 != 0 {
+ bits, err := d.decodeBits(int32(val0))
+ if err != nil {
+ return err
+ }
+ d.eobRun |= uint16(bits)
+ }
+ break loop
+ }
+ case 1:
+ z = delta
+ bit, err := d.decodeBit()
+ if err != nil {
+ return err
+ }
+ if !bit {
+ z = -z
+ }
+ default:
+ return FormatError("unexpected Huffman code")
+ }
+
+ zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta)
+ if err != nil {
+ return err
+ }
+ if zig > zigEnd {
+ return FormatError("too many coefficients")
+ }
+ if z != 0 {
+ b[unzig[zig]] = z
+ }
+ }
+ }
+ if d.eobRun > 0 {
+ d.eobRun--
+ if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+// refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0,
+// the first nz zero entries are skipped over.
+func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) {
+ for ; zig <= zigEnd; zig++ {
+ u := unzig[zig]
+ if b[u] == 0 {
+ if nz == 0 {
+ break
+ }
+ nz--
+ continue
+ }
+ bit, err := d.decodeBit()
+ if err != nil {
+ return 0, err
+ }
+ if !bit {
+ continue
+ }
+ if b[u] >= 0 {
+ b[u] += delta
+ } else {
+ b[u] -= delta
+ }
+ }
+ return zig, nil
+}
+
+func (d *decoder) reconstructProgressiveImage() error {
+ // The h0, mxx, by and bx variables have the same meaning as in the
+ // processSOS method.
+ h0 := d.comp[0].h
+ mxx := (d.width + 8*h0 - 1) / (8 * h0)
+ for i := 0; i < d.nComp; i++ {
+ if d.progCoeffs[i] == nil {
+ continue
+ }
+ v := 8 * d.comp[0].v / d.comp[i].v
+ h := 8 * d.comp[0].h / d.comp[i].h
+ stride := mxx * d.comp[i].h
+ for by := 0; by*v < d.height; by++ {
+ for bx := 0; bx*h < d.width; bx++ {
+ if err := d.reconstructBlock(&d.progCoeffs[i][by*stride+bx], bx, by, i); err != nil {
+ return err
+ }
+ }
+ }
+ }
+ return nil
+}
+
+// reconstructBlock dequantizes, performs the inverse DCT and stores the block
+// to the image.
+func (d *decoder) reconstructBlock(b *block, bx, by, compIndex int) error {
+ qt := &d.quant[d.comp[compIndex].tq]
+ for zig := 0; zig < blockSize; zig++ {
+ b[unzig[zig]] *= qt[zig]
+ }
+ idct(b)
+ dst, stride := []byte(nil), 0
+ if d.nComp == 1 {
+ dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride
+ } else {
+ switch compIndex {
+ case 0:
+ dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride
+ case 1:
+ dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride
+ case 2:
+ dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride
+ case 3:
+ dst, stride = d.blackPix[8*(by*d.blackStride+bx):], d.blackStride
+ default:
+ return UnsupportedError("too many components")
+ }
+ }
+ // Level shift by +128, clip to [0, 255], and write to dst.
+ for y := 0; y < 8; y++ {
+ y8 := y * 8
+ yStride := y * stride
+ for x := 0; x < 8; x++ {
+ c := b[y8+x]
+ if c < -128 {
+ c = 0
+ } else if c > 127 {
+ c = 255
+ } else {
+ c += 128
+ }
+ dst[yStride+x] = uint8(c)
+ }
+ }
+ return nil
+}
diff --git a/src/image/jpeg/writer.go b/src/image/jpeg/writer.go
new file mode 100644
index 0000000..0027f78
--- /dev/null
+++ b/src/image/jpeg/writer.go
@@ -0,0 +1,641 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "bufio"
+ "errors"
+ "image"
+ "image/color"
+ "io"
+)
+
+// min returns the minimum of two integers.
+func min(x, y int) int {
+ if x < y {
+ return x
+ }
+ return y
+}
+
+// div returns a/b rounded to the nearest integer, instead of rounded to zero.
+func div(a, b int32) int32 {
+ if a >= 0 {
+ return (a + (b >> 1)) / b
+ }
+ return -((-a + (b >> 1)) / b)
+}
+
+// bitCount counts the number of bits needed to hold an integer.
+var bitCount = [256]byte{
+ 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+}
+
+type quantIndex int
+
+const (
+ quantIndexLuminance quantIndex = iota
+ quantIndexChrominance
+ nQuantIndex
+)
+
+// unscaledQuant are the unscaled quantization tables in zig-zag order. Each
+// encoder copies and scales the tables according to its quality parameter.
+// The values are derived from section K.1 after converting from natural to
+// zig-zag order.
+var unscaledQuant = [nQuantIndex][blockSize]byte{
+ // Luminance.
+ {
+ 16, 11, 12, 14, 12, 10, 16, 14,
+ 13, 14, 18, 17, 16, 19, 24, 40,
+ 26, 24, 22, 22, 24, 49, 35, 37,
+ 29, 40, 58, 51, 61, 60, 57, 51,
+ 56, 55, 64, 72, 92, 78, 64, 68,
+ 87, 69, 55, 56, 80, 109, 81, 87,
+ 95, 98, 103, 104, 103, 62, 77, 113,
+ 121, 112, 100, 120, 92, 101, 103, 99,
+ },
+ // Chrominance.
+ {
+ 17, 18, 18, 24, 21, 24, 47, 26,
+ 26, 47, 99, 66, 56, 66, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ },
+}
+
+type huffIndex int
+
+const (
+ huffIndexLuminanceDC huffIndex = iota
+ huffIndexLuminanceAC
+ huffIndexChrominanceDC
+ huffIndexChrominanceAC
+ nHuffIndex
+)
+
+// huffmanSpec specifies a Huffman encoding.
+type huffmanSpec struct {
+ // count[i] is the number of codes of length i bits.
+ count [16]byte
+ // value[i] is the decoded value of the i'th codeword.
+ value []byte
+}
+
+// theHuffmanSpec is the Huffman encoding specifications.
+// This encoder uses the same Huffman encoding for all images.
+var theHuffmanSpec = [nHuffIndex]huffmanSpec{
+ // Luminance DC.
+ {
+ [16]byte{0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0},
+ []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
+ },
+ // Luminance AC.
+ {
+ [16]byte{0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125},
+ []byte{
+ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
+ 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
+ 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
+ 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
+ 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
+ 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
+ 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
+ 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
+ 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
+ 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
+ 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
+ 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
+ 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
+ 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+ 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
+ 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
+ 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
+ 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
+ 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
+ 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+ 0xf9, 0xfa,
+ },
+ },
+ // Chrominance DC.
+ {
+ [16]byte{0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0},
+ []byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
+ },
+ // Chrominance AC.
+ {
+ [16]byte{0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119},
+ []byte{
+ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
+ 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
+ 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
+ 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
+ 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
+ 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
+ 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
+ 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
+ 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
+ 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
+ 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+ 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
+ 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
+ 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
+ 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
+ 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
+ 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
+ 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
+ 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+ 0xf9, 0xfa,
+ },
+ },
+}
+
+// huffmanLUT is a compiled look-up table representation of a huffmanSpec.
+// Each value maps to a uint32 of which the 8 most significant bits hold the
+// codeword size in bits and the 24 least significant bits hold the codeword.
+// The maximum codeword size is 16 bits.
+type huffmanLUT []uint32
+
+func (h *huffmanLUT) init(s huffmanSpec) {
+ maxValue := 0
+ for _, v := range s.value {
+ if int(v) > maxValue {
+ maxValue = int(v)
+ }
+ }
+ *h = make([]uint32, maxValue+1)
+ code, k := uint32(0), 0
+ for i := 0; i < len(s.count); i++ {
+ nBits := uint32(i+1) << 24
+ for j := uint8(0); j < s.count[i]; j++ {
+ (*h)[s.value[k]] = nBits | code
+ code++
+ k++
+ }
+ code <<= 1
+ }
+}
+
+// theHuffmanLUT are compiled representations of theHuffmanSpec.
+var theHuffmanLUT [4]huffmanLUT
+
+func init() {
+ for i, s := range theHuffmanSpec {
+ theHuffmanLUT[i].init(s)
+ }
+}
+
+// writer is a buffered writer.
+type writer interface {
+ Flush() error
+ io.Writer
+ io.ByteWriter
+}
+
+// encoder encodes an image to the JPEG format.
+type encoder struct {
+ // w is the writer to write to. err is the first error encountered during
+ // writing. All attempted writes after the first error become no-ops.
+ w writer
+ err error
+ // buf is a scratch buffer.
+ buf [16]byte
+ // bits and nBits are accumulated bits to write to w.
+ bits, nBits uint32
+ // quant is the scaled quantization tables, in zig-zag order.
+ quant [nQuantIndex][blockSize]byte
+}
+
+func (e *encoder) flush() {
+ if e.err != nil {
+ return
+ }
+ e.err = e.w.Flush()
+}
+
+func (e *encoder) write(p []byte) {
+ if e.err != nil {
+ return
+ }
+ _, e.err = e.w.Write(p)
+}
+
+func (e *encoder) writeByte(b byte) {
+ if e.err != nil {
+ return
+ }
+ e.err = e.w.WriteByte(b)
+}
+
+// emit emits the least significant nBits bits of bits to the bit-stream.
+// The precondition is bits < 1<<nBits && nBits <= 16.
+func (e *encoder) emit(bits, nBits uint32) {
+ nBits += e.nBits
+ bits <<= 32 - nBits
+ bits |= e.bits
+ for nBits >= 8 {
+ b := uint8(bits >> 24)
+ e.writeByte(b)
+ if b == 0xff {
+ e.writeByte(0x00)
+ }
+ bits <<= 8
+ nBits -= 8
+ }
+ e.bits, e.nBits = bits, nBits
+}
+
+// emitHuff emits the given value with the given Huffman encoder.
+func (e *encoder) emitHuff(h huffIndex, value int32) {
+ x := theHuffmanLUT[h][value]
+ e.emit(x&(1<<24-1), x>>24)
+}
+
+// emitHuffRLE emits a run of runLength copies of value encoded with the given
+// Huffman encoder.
+func (e *encoder) emitHuffRLE(h huffIndex, runLength, value int32) {
+ a, b := value, value
+ if a < 0 {
+ a, b = -value, value-1
+ }
+ var nBits uint32
+ if a < 0x100 {
+ nBits = uint32(bitCount[a])
+ } else {
+ nBits = 8 + uint32(bitCount[a>>8])
+ }
+ e.emitHuff(h, runLength<<4|int32(nBits))
+ if nBits > 0 {
+ e.emit(uint32(b)&(1<<nBits-1), nBits)
+ }
+}
+
+// writeMarkerHeader writes the header for a marker with the given length.
+func (e *encoder) writeMarkerHeader(marker uint8, markerlen int) {
+ e.buf[0] = 0xff
+ e.buf[1] = marker
+ e.buf[2] = uint8(markerlen >> 8)
+ e.buf[3] = uint8(markerlen & 0xff)
+ e.write(e.buf[:4])
+}
+
+// writeDQT writes the Define Quantization Table marker.
+func (e *encoder) writeDQT() {
+ const markerlen = 2 + int(nQuantIndex)*(1+blockSize)
+ e.writeMarkerHeader(dqtMarker, markerlen)
+ for i := range e.quant {
+ e.writeByte(uint8(i))
+ e.write(e.quant[i][:])
+ }
+}
+
+// writeSOF0 writes the Start Of Frame (Baseline Sequential) marker.
+func (e *encoder) writeSOF0(size image.Point, nComponent int) {
+ markerlen := 8 + 3*nComponent
+ e.writeMarkerHeader(sof0Marker, markerlen)
+ e.buf[0] = 8 // 8-bit color.
+ e.buf[1] = uint8(size.Y >> 8)
+ e.buf[2] = uint8(size.Y & 0xff)
+ e.buf[3] = uint8(size.X >> 8)
+ e.buf[4] = uint8(size.X & 0xff)
+ e.buf[5] = uint8(nComponent)
+ if nComponent == 1 {
+ e.buf[6] = 1
+ // No subsampling for grayscale image.
+ e.buf[7] = 0x11
+ e.buf[8] = 0x00
+ } else {
+ for i := 0; i < nComponent; i++ {
+ e.buf[3*i+6] = uint8(i + 1)
+ // We use 4:2:0 chroma subsampling.
+ e.buf[3*i+7] = "\x22\x11\x11"[i]
+ e.buf[3*i+8] = "\x00\x01\x01"[i]
+ }
+ }
+ e.write(e.buf[:3*(nComponent-1)+9])
+}
+
+// writeDHT writes the Define Huffman Table marker.
+func (e *encoder) writeDHT(nComponent int) {
+ markerlen := 2
+ specs := theHuffmanSpec[:]
+ if nComponent == 1 {
+ // Drop the Chrominance tables.
+ specs = specs[:2]
+ }
+ for _, s := range specs {
+ markerlen += 1 + 16 + len(s.value)
+ }
+ e.writeMarkerHeader(dhtMarker, markerlen)
+ for i, s := range specs {
+ e.writeByte("\x00\x10\x01\x11"[i])
+ e.write(s.count[:])
+ e.write(s.value)
+ }
+}
+
+// writeBlock writes a block of pixel data using the given quantization table,
+// returning the post-quantized DC value of the DCT-transformed block. b is in
+// natural (not zig-zag) order.
+func (e *encoder) writeBlock(b *block, q quantIndex, prevDC int32) int32 {
+ fdct(b)
+ // Emit the DC delta.
+ dc := div(b[0], 8*int32(e.quant[q][0]))
+ e.emitHuffRLE(huffIndex(2*q+0), 0, dc-prevDC)
+ // Emit the AC components.
+ h, runLength := huffIndex(2*q+1), int32(0)
+ for zig := 1; zig < blockSize; zig++ {
+ ac := div(b[unzig[zig]], 8*int32(e.quant[q][zig]))
+ if ac == 0 {
+ runLength++
+ } else {
+ for runLength > 15 {
+ e.emitHuff(h, 0xf0)
+ runLength -= 16
+ }
+ e.emitHuffRLE(h, runLength, ac)
+ runLength = 0
+ }
+ }
+ if runLength > 0 {
+ e.emitHuff(h, 0x00)
+ }
+ return dc
+}
+
+// toYCbCr converts the 8x8 region of m whose top-left corner is p to its
+// YCbCr values.
+func toYCbCr(m image.Image, p image.Point, yBlock, cbBlock, crBlock *block) {
+ b := m.Bounds()
+ xmax := b.Max.X - 1
+ ymax := b.Max.Y - 1
+ for j := 0; j < 8; j++ {
+ for i := 0; i < 8; i++ {
+ r, g, b, _ := m.At(min(p.X+i, xmax), min(p.Y+j, ymax)).RGBA()
+ yy, cb, cr := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
+ yBlock[8*j+i] = int32(yy)
+ cbBlock[8*j+i] = int32(cb)
+ crBlock[8*j+i] = int32(cr)
+ }
+ }
+}
+
+// grayToY stores the 8x8 region of m whose top-left corner is p in yBlock.
+func grayToY(m *image.Gray, p image.Point, yBlock *block) {
+ b := m.Bounds()
+ xmax := b.Max.X - 1
+ ymax := b.Max.Y - 1
+ pix := m.Pix
+ for j := 0; j < 8; j++ {
+ for i := 0; i < 8; i++ {
+ idx := m.PixOffset(min(p.X+i, xmax), min(p.Y+j, ymax))
+ yBlock[8*j+i] = int32(pix[idx])
+ }
+ }
+}
+
+// rgbaToYCbCr is a specialized version of toYCbCr for image.RGBA images.
+func rgbaToYCbCr(m *image.RGBA, p image.Point, yBlock, cbBlock, crBlock *block) {
+ b := m.Bounds()
+ xmax := b.Max.X - 1
+ ymax := b.Max.Y - 1
+ for j := 0; j < 8; j++ {
+ sj := p.Y + j
+ if sj > ymax {
+ sj = ymax
+ }
+ offset := (sj-b.Min.Y)*m.Stride - b.Min.X*4
+ for i := 0; i < 8; i++ {
+ sx := p.X + i
+ if sx > xmax {
+ sx = xmax
+ }
+ pix := m.Pix[offset+sx*4:]
+ yy, cb, cr := color.RGBToYCbCr(pix[0], pix[1], pix[2])
+ yBlock[8*j+i] = int32(yy)
+ cbBlock[8*j+i] = int32(cb)
+ crBlock[8*j+i] = int32(cr)
+ }
+ }
+}
+
+// yCbCrToYCbCr is a specialized version of toYCbCr for image.YCbCr images.
+func yCbCrToYCbCr(m *image.YCbCr, p image.Point, yBlock, cbBlock, crBlock *block) {
+ b := m.Bounds()
+ xmax := b.Max.X - 1
+ ymax := b.Max.Y - 1
+ for j := 0; j < 8; j++ {
+ sy := p.Y + j
+ if sy > ymax {
+ sy = ymax
+ }
+ for i := 0; i < 8; i++ {
+ sx := p.X + i
+ if sx > xmax {
+ sx = xmax
+ }
+ yi := m.YOffset(sx, sy)
+ ci := m.COffset(sx, sy)
+ yBlock[8*j+i] = int32(m.Y[yi])
+ cbBlock[8*j+i] = int32(m.Cb[ci])
+ crBlock[8*j+i] = int32(m.Cr[ci])
+ }
+ }
+}
+
+// scale scales the 16x16 region represented by the 4 src blocks to the 8x8
+// dst block.
+func scale(dst *block, src *[4]block) {
+ for i := 0; i < 4; i++ {
+ dstOff := (i&2)<<4 | (i&1)<<2
+ for y := 0; y < 4; y++ {
+ for x := 0; x < 4; x++ {
+ j := 16*y + 2*x
+ sum := src[i][j] + src[i][j+1] + src[i][j+8] + src[i][j+9]
+ dst[8*y+x+dstOff] = (sum + 2) >> 2
+ }
+ }
+ }
+}
+
+// sosHeaderY is the SOS marker "\xff\xda" followed by 8 bytes:
+// - the marker length "\x00\x08",
+// - the number of components "\x01",
+// - component 1 uses DC table 0 and AC table 0 "\x01\x00",
+// - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for
+// sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al)
+// should be 0x00, 0x3f, 0x00<<4 | 0x00.
+var sosHeaderY = []byte{
+ 0xff, 0xda, 0x00, 0x08, 0x01, 0x01, 0x00, 0x00, 0x3f, 0x00,
+}
+
+// sosHeaderYCbCr is the SOS marker "\xff\xda" followed by 12 bytes:
+// - the marker length "\x00\x0c",
+// - the number of components "\x03",
+// - component 1 uses DC table 0 and AC table 0 "\x01\x00",
+// - component 2 uses DC table 1 and AC table 1 "\x02\x11",
+// - component 3 uses DC table 1 and AC table 1 "\x03\x11",
+// - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for
+// sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al)
+// should be 0x00, 0x3f, 0x00<<4 | 0x00.
+var sosHeaderYCbCr = []byte{
+ 0xff, 0xda, 0x00, 0x0c, 0x03, 0x01, 0x00, 0x02,
+ 0x11, 0x03, 0x11, 0x00, 0x3f, 0x00,
+}
+
+// writeSOS writes the StartOfScan marker.
+func (e *encoder) writeSOS(m image.Image) {
+ switch m.(type) {
+ case *image.Gray:
+ e.write(sosHeaderY)
+ default:
+ e.write(sosHeaderYCbCr)
+ }
+ var (
+ // Scratch buffers to hold the YCbCr values.
+ // The blocks are in natural (not zig-zag) order.
+ b block
+ cb, cr [4]block
+ // DC components are delta-encoded.
+ prevDCY, prevDCCb, prevDCCr int32
+ )
+ bounds := m.Bounds()
+ switch m := m.(type) {
+ // TODO(wathiede): switch on m.ColorModel() instead of type.
+ case *image.Gray:
+ for y := bounds.Min.Y; y < bounds.Max.Y; y += 8 {
+ for x := bounds.Min.X; x < bounds.Max.X; x += 8 {
+ p := image.Pt(x, y)
+ grayToY(m, p, &b)
+ prevDCY = e.writeBlock(&b, 0, prevDCY)
+ }
+ }
+ default:
+ rgba, _ := m.(*image.RGBA)
+ ycbcr, _ := m.(*image.YCbCr)
+ for y := bounds.Min.Y; y < bounds.Max.Y; y += 16 {
+ for x := bounds.Min.X; x < bounds.Max.X; x += 16 {
+ for i := 0; i < 4; i++ {
+ xOff := (i & 1) * 8
+ yOff := (i & 2) * 4
+ p := image.Pt(x+xOff, y+yOff)
+ if rgba != nil {
+ rgbaToYCbCr(rgba, p, &b, &cb[i], &cr[i])
+ } else if ycbcr != nil {
+ yCbCrToYCbCr(ycbcr, p, &b, &cb[i], &cr[i])
+ } else {
+ toYCbCr(m, p, &b, &cb[i], &cr[i])
+ }
+ prevDCY = e.writeBlock(&b, 0, prevDCY)
+ }
+ scale(&b, &cb)
+ prevDCCb = e.writeBlock(&b, 1, prevDCCb)
+ scale(&b, &cr)
+ prevDCCr = e.writeBlock(&b, 1, prevDCCr)
+ }
+ }
+ }
+ // Pad the last byte with 1's.
+ e.emit(0x7f, 7)
+}
+
+// DefaultQuality is the default quality encoding parameter.
+const DefaultQuality = 75
+
+// Options are the encoding parameters.
+// Quality ranges from 1 to 100 inclusive, higher is better.
+type Options struct {
+ Quality int
+}
+
+// Encode writes the Image m to w in JPEG 4:2:0 baseline format with the given
+// options. Default parameters are used if a nil *Options is passed.
+func Encode(w io.Writer, m image.Image, o *Options) error {
+ b := m.Bounds()
+ if b.Dx() >= 1<<16 || b.Dy() >= 1<<16 {
+ return errors.New("jpeg: image is too large to encode")
+ }
+ var e encoder
+ if ww, ok := w.(writer); ok {
+ e.w = ww
+ } else {
+ e.w = bufio.NewWriter(w)
+ }
+ // Clip quality to [1, 100].
+ quality := DefaultQuality
+ if o != nil {
+ quality = o.Quality
+ if quality < 1 {
+ quality = 1
+ } else if quality > 100 {
+ quality = 100
+ }
+ }
+ // Convert from a quality rating to a scaling factor.
+ var scale int
+ if quality < 50 {
+ scale = 5000 / quality
+ } else {
+ scale = 200 - quality*2
+ }
+ // Initialize the quantization tables.
+ for i := range e.quant {
+ for j := range e.quant[i] {
+ x := int(unscaledQuant[i][j])
+ x = (x*scale + 50) / 100
+ if x < 1 {
+ x = 1
+ } else if x > 255 {
+ x = 255
+ }
+ e.quant[i][j] = uint8(x)
+ }
+ }
+ // Compute number of components based on input image type.
+ nComponent := 3
+ switch m.(type) {
+ // TODO(wathiede): switch on m.ColorModel() instead of type.
+ case *image.Gray:
+ nComponent = 1
+ }
+ // Write the Start Of Image marker.
+ e.buf[0] = 0xff
+ e.buf[1] = 0xd8
+ e.write(e.buf[:2])
+ // Write the quantization tables.
+ e.writeDQT()
+ // Write the image dimensions.
+ e.writeSOF0(b.Size(), nComponent)
+ // Write the Huffman tables.
+ e.writeDHT(nComponent)
+ // Write the image data.
+ e.writeSOS(m)
+ // Write the End Of Image marker.
+ e.buf[0] = 0xff
+ e.buf[1] = 0xd9
+ e.write(e.buf[:2])
+ e.flush()
+ return e.err
+}
diff --git a/src/image/jpeg/writer_test.go b/src/image/jpeg/writer_test.go
new file mode 100644
index 0000000..3414770
--- /dev/null
+++ b/src/image/jpeg/writer_test.go
@@ -0,0 +1,289 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "bytes"
+ "fmt"
+ "image"
+ "image/color"
+ "image/png"
+ "io"
+ "math/rand"
+ "os"
+ "strings"
+ "testing"
+)
+
+// zigzag maps from the natural ordering to the zig-zag ordering. For example,
+// zigzag[0*8 + 3] is the zig-zag sequence number of the element in the fourth
+// column and first row.
+var zigzag = [blockSize]int{
+ 0, 1, 5, 6, 14, 15, 27, 28,
+ 2, 4, 7, 13, 16, 26, 29, 42,
+ 3, 8, 12, 17, 25, 30, 41, 43,
+ 9, 11, 18, 24, 31, 40, 44, 53,
+ 10, 19, 23, 32, 39, 45, 52, 54,
+ 20, 22, 33, 38, 46, 51, 55, 60,
+ 21, 34, 37, 47, 50, 56, 59, 61,
+ 35, 36, 48, 49, 57, 58, 62, 63,
+}
+
+func TestZigUnzig(t *testing.T) {
+ for i := 0; i < blockSize; i++ {
+ if unzig[zigzag[i]] != i {
+ t.Errorf("unzig[zigzag[%d]] == %d", i, unzig[zigzag[i]])
+ }
+ if zigzag[unzig[i]] != i {
+ t.Errorf("zigzag[unzig[%d]] == %d", i, zigzag[unzig[i]])
+ }
+ }
+}
+
+// unscaledQuantInNaturalOrder are the unscaled quantization tables in
+// natural (not zig-zag) order, as specified in section K.1.
+var unscaledQuantInNaturalOrder = [nQuantIndex][blockSize]byte{
+ // Luminance.
+ {
+ 16, 11, 10, 16, 24, 40, 51, 61,
+ 12, 12, 14, 19, 26, 58, 60, 55,
+ 14, 13, 16, 24, 40, 57, 69, 56,
+ 14, 17, 22, 29, 51, 87, 80, 62,
+ 18, 22, 37, 56, 68, 109, 103, 77,
+ 24, 35, 55, 64, 81, 104, 113, 92,
+ 49, 64, 78, 87, 103, 121, 120, 101,
+ 72, 92, 95, 98, 112, 100, 103, 99,
+ },
+ // Chrominance.
+ {
+ 17, 18, 24, 47, 99, 99, 99, 99,
+ 18, 21, 26, 66, 99, 99, 99, 99,
+ 24, 26, 56, 99, 99, 99, 99, 99,
+ 47, 66, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ 99, 99, 99, 99, 99, 99, 99, 99,
+ },
+}
+
+func TestUnscaledQuant(t *testing.T) {
+ bad := false
+ for i := quantIndex(0); i < nQuantIndex; i++ {
+ for zig := 0; zig < blockSize; zig++ {
+ got := unscaledQuant[i][zig]
+ want := unscaledQuantInNaturalOrder[i][unzig[zig]]
+ if got != want {
+ t.Errorf("i=%d, zig=%d: got %d, want %d", i, zig, got, want)
+ bad = true
+ }
+ }
+ }
+ if bad {
+ names := [nQuantIndex]string{"Luminance", "Chrominance"}
+ buf := &strings.Builder{}
+ for i, name := range names {
+ fmt.Fprintf(buf, "// %s.\n{\n", name)
+ for zig := 0; zig < blockSize; zig++ {
+ fmt.Fprintf(buf, "%d, ", unscaledQuantInNaturalOrder[i][unzig[zig]])
+ if zig%8 == 7 {
+ buf.WriteString("\n")
+ }
+ }
+ buf.WriteString("},\n")
+ }
+ t.Logf("expected unscaledQuant values:\n%s", buf.String())
+ }
+}
+
+var testCase = []struct {
+ filename string
+ quality int
+ tolerance int64
+}{
+ {"../testdata/video-001.png", 1, 24 << 8},
+ {"../testdata/video-001.png", 20, 12 << 8},
+ {"../testdata/video-001.png", 60, 8 << 8},
+ {"../testdata/video-001.png", 80, 6 << 8},
+ {"../testdata/video-001.png", 90, 4 << 8},
+ {"../testdata/video-001.png", 100, 2 << 8},
+}
+
+func delta(u0, u1 uint32) int64 {
+ d := int64(u0) - int64(u1)
+ if d < 0 {
+ return -d
+ }
+ return d
+}
+
+func readPng(filename string) (image.Image, error) {
+ f, err := os.Open(filename)
+ if err != nil {
+ return nil, err
+ }
+ defer f.Close()
+ return png.Decode(f)
+}
+
+func TestWriter(t *testing.T) {
+ for _, tc := range testCase {
+ // Read the image.
+ m0, err := readPng(tc.filename)
+ if err != nil {
+ t.Error(tc.filename, err)
+ continue
+ }
+ // Encode that image as JPEG.
+ var buf bytes.Buffer
+ err = Encode(&buf, m0, &Options{Quality: tc.quality})
+ if err != nil {
+ t.Error(tc.filename, err)
+ continue
+ }
+ // Decode that JPEG.
+ m1, err := Decode(&buf)
+ if err != nil {
+ t.Error(tc.filename, err)
+ continue
+ }
+ if m0.Bounds() != m1.Bounds() {
+ t.Errorf("%s, bounds differ: %v and %v", tc.filename, m0.Bounds(), m1.Bounds())
+ continue
+ }
+ // Compare the average delta to the tolerance level.
+ if averageDelta(m0, m1) > tc.tolerance {
+ t.Errorf("%s, quality=%d: average delta is too high", tc.filename, tc.quality)
+ continue
+ }
+ }
+}
+
+// TestWriteGrayscale tests that a grayscale images survives a round-trip
+// through encode/decode cycle.
+func TestWriteGrayscale(t *testing.T) {
+ m0 := image.NewGray(image.Rect(0, 0, 32, 32))
+ for i := range m0.Pix {
+ m0.Pix[i] = uint8(i)
+ }
+ var buf bytes.Buffer
+ if err := Encode(&buf, m0, nil); err != nil {
+ t.Fatal(err)
+ }
+ m1, err := Decode(&buf)
+ if err != nil {
+ t.Fatal(err)
+ }
+ if m0.Bounds() != m1.Bounds() {
+ t.Fatalf("bounds differ: %v and %v", m0.Bounds(), m1.Bounds())
+ }
+ if _, ok := m1.(*image.Gray); !ok {
+ t.Errorf("got %T, want *image.Gray", m1)
+ }
+ // Compare the average delta to the tolerance level.
+ want := int64(2 << 8)
+ if got := averageDelta(m0, m1); got > want {
+ t.Errorf("average delta too high; got %d, want <= %d", got, want)
+ }
+}
+
+// averageDelta returns the average delta in RGB space. The two images must
+// have the same bounds.
+func averageDelta(m0, m1 image.Image) int64 {
+ b := m0.Bounds()
+ var sum, n int64
+ for y := b.Min.Y; y < b.Max.Y; y++ {
+ for x := b.Min.X; x < b.Max.X; x++ {
+ c0 := m0.At(x, y)
+ c1 := m1.At(x, y)
+ r0, g0, b0, _ := c0.RGBA()
+ r1, g1, b1, _ := c1.RGBA()
+ sum += delta(r0, r1)
+ sum += delta(g0, g1)
+ sum += delta(b0, b1)
+ n += 3
+ }
+ }
+ return sum / n
+}
+
+func TestEncodeYCbCr(t *testing.T) {
+ bo := image.Rect(0, 0, 640, 480)
+ imgRGBA := image.NewRGBA(bo)
+ // Must use 444 subsampling to avoid lossy RGBA to YCbCr conversion.
+ imgYCbCr := image.NewYCbCr(bo, image.YCbCrSubsampleRatio444)
+ rnd := rand.New(rand.NewSource(123))
+ // Create identical rgba and ycbcr images.
+ for y := bo.Min.Y; y < bo.Max.Y; y++ {
+ for x := bo.Min.X; x < bo.Max.X; x++ {
+ col := color.RGBA{
+ uint8(rnd.Intn(256)),
+ uint8(rnd.Intn(256)),
+ uint8(rnd.Intn(256)),
+ 255,
+ }
+ imgRGBA.SetRGBA(x, y, col)
+ yo := imgYCbCr.YOffset(x, y)
+ co := imgYCbCr.COffset(x, y)
+ cy, ccr, ccb := color.RGBToYCbCr(col.R, col.G, col.B)
+ imgYCbCr.Y[yo] = cy
+ imgYCbCr.Cb[co] = ccr
+ imgYCbCr.Cr[co] = ccb
+ }
+ }
+
+ // Now check that both images are identical after an encode.
+ var bufRGBA, bufYCbCr bytes.Buffer
+ Encode(&bufRGBA, imgRGBA, nil)
+ Encode(&bufYCbCr, imgYCbCr, nil)
+ if !bytes.Equal(bufRGBA.Bytes(), bufYCbCr.Bytes()) {
+ t.Errorf("RGBA and YCbCr encoded bytes differ")
+ }
+}
+
+func BenchmarkEncodeRGBA(b *testing.B) {
+ img := image.NewRGBA(image.Rect(0, 0, 640, 480))
+ bo := img.Bounds()
+ rnd := rand.New(rand.NewSource(123))
+ for y := bo.Min.Y; y < bo.Max.Y; y++ {
+ for x := bo.Min.X; x < bo.Max.X; x++ {
+ img.SetRGBA(x, y, color.RGBA{
+ uint8(rnd.Intn(256)),
+ uint8(rnd.Intn(256)),
+ uint8(rnd.Intn(256)),
+ 255,
+ })
+ }
+ }
+ b.SetBytes(640 * 480 * 4)
+ b.ReportAllocs()
+ b.ResetTimer()
+ options := &Options{Quality: 90}
+ for i := 0; i < b.N; i++ {
+ Encode(io.Discard, img, options)
+ }
+}
+
+func BenchmarkEncodeYCbCr(b *testing.B) {
+ img := image.NewYCbCr(image.Rect(0, 0, 640, 480), image.YCbCrSubsampleRatio420)
+ bo := img.Bounds()
+ rnd := rand.New(rand.NewSource(123))
+ for y := bo.Min.Y; y < bo.Max.Y; y++ {
+ for x := bo.Min.X; x < bo.Max.X; x++ {
+ cy := img.YOffset(x, y)
+ ci := img.COffset(x, y)
+ img.Y[cy] = uint8(rnd.Intn(256))
+ img.Cb[ci] = uint8(rnd.Intn(256))
+ img.Cr[ci] = uint8(rnd.Intn(256))
+ }
+ }
+ b.SetBytes(640 * 480 * 3)
+ b.ReportAllocs()
+ b.ResetTimer()
+ options := &Options{Quality: 90}
+ for i := 0; i < b.N; i++ {
+ Encode(io.Discard, img, options)
+ }
+}