summaryrefslogtreecommitdiffstats
path: root/src/math/big/int.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/big/int.go')
-rw-r--r--src/math/big/int.go1293
1 files changed, 1293 insertions, 0 deletions
diff --git a/src/math/big/int.go b/src/math/big/int.go
new file mode 100644
index 0000000..76d6eb9
--- /dev/null
+++ b/src/math/big/int.go
@@ -0,0 +1,1293 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements signed multi-precision integers.
+
+package big
+
+import (
+ "fmt"
+ "io"
+ "math/rand"
+ "strings"
+)
+
+// An Int represents a signed multi-precision integer.
+// The zero value for an Int represents the value 0.
+//
+// Operations always take pointer arguments (*Int) rather
+// than Int values, and each unique Int value requires
+// its own unique *Int pointer. To "copy" an Int value,
+// an existing (or newly allocated) Int must be set to
+// a new value using the Int.Set method; shallow copies
+// of Ints are not supported and may lead to errors.
+type Int struct {
+ neg bool // sign
+ abs nat // absolute value of the integer
+}
+
+var intOne = &Int{false, natOne}
+
+// Sign returns:
+//
+// -1 if x < 0
+// 0 if x == 0
+// +1 if x > 0
+func (x *Int) Sign() int {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ if len(x.abs) == 0 {
+ return 0
+ }
+ if x.neg {
+ return -1
+ }
+ return 1
+}
+
+// SetInt64 sets z to x and returns z.
+func (z *Int) SetInt64(x int64) *Int {
+ neg := false
+ if x < 0 {
+ neg = true
+ x = -x
+ }
+ z.abs = z.abs.setUint64(uint64(x))
+ z.neg = neg
+ return z
+}
+
+// SetUint64 sets z to x and returns z.
+func (z *Int) SetUint64(x uint64) *Int {
+ z.abs = z.abs.setUint64(x)
+ z.neg = false
+ return z
+}
+
+// NewInt allocates and returns a new Int set to x.
+func NewInt(x int64) *Int {
+ // This code is arranged to be inlineable and produce
+ // zero allocations when inlined. See issue 29951.
+ u := uint64(x)
+ if x < 0 {
+ u = -u
+ }
+ var abs []Word
+ if x == 0 {
+ } else if _W == 32 && u>>32 != 0 {
+ abs = []Word{Word(u), Word(u >> 32)}
+ } else {
+ abs = []Word{Word(u)}
+ }
+ return &Int{neg: x < 0, abs: abs}
+}
+
+// Set sets z to x and returns z.
+func (z *Int) Set(x *Int) *Int {
+ if z != x {
+ z.abs = z.abs.set(x.abs)
+ z.neg = x.neg
+ }
+ return z
+}
+
+// Bits provides raw (unchecked but fast) access to x by returning its
+// absolute value as a little-endian Word slice. The result and x share
+// the same underlying array.
+// Bits is intended to support implementation of missing low-level Int
+// functionality outside this package; it should be avoided otherwise.
+func (x *Int) Bits() []Word {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ return x.abs
+}
+
+// SetBits provides raw (unchecked but fast) access to z by setting its
+// value to abs, interpreted as a little-endian Word slice, and returning
+// z. The result and abs share the same underlying array.
+// SetBits is intended to support implementation of missing low-level Int
+// functionality outside this package; it should be avoided otherwise.
+func (z *Int) SetBits(abs []Word) *Int {
+ z.abs = nat(abs).norm()
+ z.neg = false
+ return z
+}
+
+// Abs sets z to |x| (the absolute value of x) and returns z.
+func (z *Int) Abs(x *Int) *Int {
+ z.Set(x)
+ z.neg = false
+ return z
+}
+
+// Neg sets z to -x and returns z.
+func (z *Int) Neg(x *Int) *Int {
+ z.Set(x)
+ z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
+ return z
+}
+
+// Add sets z to the sum x+y and returns z.
+func (z *Int) Add(x, y *Int) *Int {
+ neg := x.neg
+ if x.neg == y.neg {
+ // x + y == x + y
+ // (-x) + (-y) == -(x + y)
+ z.abs = z.abs.add(x.abs, y.abs)
+ } else {
+ // x + (-y) == x - y == -(y - x)
+ // (-x) + y == y - x == -(x - y)
+ if x.abs.cmp(y.abs) >= 0 {
+ z.abs = z.abs.sub(x.abs, y.abs)
+ } else {
+ neg = !neg
+ z.abs = z.abs.sub(y.abs, x.abs)
+ }
+ }
+ z.neg = len(z.abs) > 0 && neg // 0 has no sign
+ return z
+}
+
+// Sub sets z to the difference x-y and returns z.
+func (z *Int) Sub(x, y *Int) *Int {
+ neg := x.neg
+ if x.neg != y.neg {
+ // x - (-y) == x + y
+ // (-x) - y == -(x + y)
+ z.abs = z.abs.add(x.abs, y.abs)
+ } else {
+ // x - y == x - y == -(y - x)
+ // (-x) - (-y) == y - x == -(x - y)
+ if x.abs.cmp(y.abs) >= 0 {
+ z.abs = z.abs.sub(x.abs, y.abs)
+ } else {
+ neg = !neg
+ z.abs = z.abs.sub(y.abs, x.abs)
+ }
+ }
+ z.neg = len(z.abs) > 0 && neg // 0 has no sign
+ return z
+}
+
+// Mul sets z to the product x*y and returns z.
+func (z *Int) Mul(x, y *Int) *Int {
+ // x * y == x * y
+ // x * (-y) == -(x * y)
+ // (-x) * y == -(x * y)
+ // (-x) * (-y) == x * y
+ if x == y {
+ z.abs = z.abs.sqr(x.abs)
+ z.neg = false
+ return z
+ }
+ z.abs = z.abs.mul(x.abs, y.abs)
+ z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
+ return z
+}
+
+// MulRange sets z to the product of all integers
+// in the range [a, b] inclusively and returns z.
+// If a > b (empty range), the result is 1.
+func (z *Int) MulRange(a, b int64) *Int {
+ switch {
+ case a > b:
+ return z.SetInt64(1) // empty range
+ case a <= 0 && b >= 0:
+ return z.SetInt64(0) // range includes 0
+ }
+ // a <= b && (b < 0 || a > 0)
+
+ neg := false
+ if a < 0 {
+ neg = (b-a)&1 == 0
+ a, b = -b, -a
+ }
+
+ z.abs = z.abs.mulRange(uint64(a), uint64(b))
+ z.neg = neg
+ return z
+}
+
+// Binomial sets z to the binomial coefficient C(n, k) and returns z.
+func (z *Int) Binomial(n, k int64) *Int {
+ if k > n {
+ return z.SetInt64(0)
+ }
+ // reduce the number of multiplications by reducing k
+ if k > n-k {
+ k = n - k // C(n, k) == C(n, n-k)
+ }
+ // C(n, k) == n * (n-1) * ... * (n-k+1) / k * (k-1) * ... * 1
+ // == n * (n-1) * ... * (n-k+1) / 1 * (1+1) * ... * k
+ //
+ // Using the multiplicative formula produces smaller values
+ // at each step, requiring fewer allocations and computations:
+ //
+ // z = 1
+ // for i := 0; i < k; i = i+1 {
+ // z *= n-i
+ // z /= i+1
+ // }
+ //
+ // finally to avoid computing i+1 twice per loop:
+ //
+ // z = 1
+ // i := 0
+ // for i < k {
+ // z *= n-i
+ // i++
+ // z /= i
+ // }
+ var N, K, i, t Int
+ N.SetInt64(n)
+ K.SetInt64(k)
+ z.Set(intOne)
+ for i.Cmp(&K) < 0 {
+ z.Mul(z, t.Sub(&N, &i))
+ i.Add(&i, intOne)
+ z.Quo(z, &i)
+ }
+ return z
+}
+
+// Quo sets z to the quotient x/y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Quo implements truncated division (like Go); see QuoRem for more details.
+func (z *Int) Quo(x, y *Int) *Int {
+ z.abs, _ = z.abs.div(nil, x.abs, y.abs)
+ z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
+ return z
+}
+
+// Rem sets z to the remainder x%y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Rem implements truncated modulus (like Go); see QuoRem for more details.
+func (z *Int) Rem(x, y *Int) *Int {
+ _, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
+ z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
+ return z
+}
+
+// QuoRem sets z to the quotient x/y and r to the remainder x%y
+// and returns the pair (z, r) for y != 0.
+// If y == 0, a division-by-zero run-time panic occurs.
+//
+// QuoRem implements T-division and modulus (like Go):
+//
+// q = x/y with the result truncated to zero
+// r = x - y*q
+//
+// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
+// See DivMod for Euclidean division and modulus (unlike Go).
+func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
+ z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
+ z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
+ return z, r
+}
+
+// Div sets z to the quotient x/y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Div implements Euclidean division (unlike Go); see DivMod for more details.
+func (z *Int) Div(x, y *Int) *Int {
+ y_neg := y.neg // z may be an alias for y
+ var r Int
+ z.QuoRem(x, y, &r)
+ if r.neg {
+ if y_neg {
+ z.Add(z, intOne)
+ } else {
+ z.Sub(z, intOne)
+ }
+ }
+ return z
+}
+
+// Mod sets z to the modulus x%y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
+func (z *Int) Mod(x, y *Int) *Int {
+ y0 := y // save y
+ if z == y || alias(z.abs, y.abs) {
+ y0 = new(Int).Set(y)
+ }
+ var q Int
+ q.QuoRem(x, y, z)
+ if z.neg {
+ if y0.neg {
+ z.Sub(z, y0)
+ } else {
+ z.Add(z, y0)
+ }
+ }
+ return z
+}
+
+// DivMod sets z to the quotient x div y and m to the modulus x mod y
+// and returns the pair (z, m) for y != 0.
+// If y == 0, a division-by-zero run-time panic occurs.
+//
+// DivMod implements Euclidean division and modulus (unlike Go):
+//
+// q = x div y such that
+// m = x - y*q with 0 <= m < |y|
+//
+// (See Raymond T. Boute, “The Euclidean definition of the functions
+// div and mod”. ACM Transactions on Programming Languages and
+// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
+// ACM press.)
+// See QuoRem for T-division and modulus (like Go).
+func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
+ y0 := y // save y
+ if z == y || alias(z.abs, y.abs) {
+ y0 = new(Int).Set(y)
+ }
+ z.QuoRem(x, y, m)
+ if m.neg {
+ if y0.neg {
+ z.Add(z, intOne)
+ m.Sub(m, y0)
+ } else {
+ z.Sub(z, intOne)
+ m.Add(m, y0)
+ }
+ }
+ return z, m
+}
+
+// Cmp compares x and y and returns:
+//
+// -1 if x < y
+// 0 if x == y
+// +1 if x > y
+func (x *Int) Cmp(y *Int) (r int) {
+ // x cmp y == x cmp y
+ // x cmp (-y) == x
+ // (-x) cmp y == y
+ // (-x) cmp (-y) == -(x cmp y)
+ switch {
+ case x == y:
+ // nothing to do
+ case x.neg == y.neg:
+ r = x.abs.cmp(y.abs)
+ if x.neg {
+ r = -r
+ }
+ case x.neg:
+ r = -1
+ default:
+ r = 1
+ }
+ return
+}
+
+// CmpAbs compares the absolute values of x and y and returns:
+//
+// -1 if |x| < |y|
+// 0 if |x| == |y|
+// +1 if |x| > |y|
+func (x *Int) CmpAbs(y *Int) int {
+ return x.abs.cmp(y.abs)
+}
+
+// low32 returns the least significant 32 bits of x.
+func low32(x nat) uint32 {
+ if len(x) == 0 {
+ return 0
+ }
+ return uint32(x[0])
+}
+
+// low64 returns the least significant 64 bits of x.
+func low64(x nat) uint64 {
+ if len(x) == 0 {
+ return 0
+ }
+ v := uint64(x[0])
+ if _W == 32 && len(x) > 1 {
+ return uint64(x[1])<<32 | v
+ }
+ return v
+}
+
+// Int64 returns the int64 representation of x.
+// If x cannot be represented in an int64, the result is undefined.
+func (x *Int) Int64() int64 {
+ v := int64(low64(x.abs))
+ if x.neg {
+ v = -v
+ }
+ return v
+}
+
+// Uint64 returns the uint64 representation of x.
+// If x cannot be represented in a uint64, the result is undefined.
+func (x *Int) Uint64() uint64 {
+ return low64(x.abs)
+}
+
+// IsInt64 reports whether x can be represented as an int64.
+func (x *Int) IsInt64() bool {
+ if len(x.abs) <= 64/_W {
+ w := int64(low64(x.abs))
+ return w >= 0 || x.neg && w == -w
+ }
+ return false
+}
+
+// IsUint64 reports whether x can be represented as a uint64.
+func (x *Int) IsUint64() bool {
+ return !x.neg && len(x.abs) <= 64/_W
+}
+
+// SetString sets z to the value of s, interpreted in the given base,
+// and returns z and a boolean indicating success. The entire string
+// (not just a prefix) must be valid for success. If SetString fails,
+// the value of z is undefined but the returned value is nil.
+//
+// The base argument must be 0 or a value between 2 and MaxBase.
+// For base 0, the number prefix determines the actual base: A prefix of
+// “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8,
+// and “0x” or “0X” selects base 16. Otherwise, the selected base is 10
+// and no prefix is accepted.
+//
+// For bases <= 36, lower and upper case letters are considered the same:
+// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
+// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
+// values 36 to 61.
+//
+// For base 0, an underscore character “_” may appear between a base
+// prefix and an adjacent digit, and between successive digits; such
+// underscores do not change the value of the number.
+// Incorrect placement of underscores is reported as an error if there
+// are no other errors. If base != 0, underscores are not recognized
+// and act like any other character that is not a valid digit.
+func (z *Int) SetString(s string, base int) (*Int, bool) {
+ return z.setFromScanner(strings.NewReader(s), base)
+}
+
+// setFromScanner implements SetString given an io.ByteScanner.
+// For documentation see comments of SetString.
+func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
+ if _, _, err := z.scan(r, base); err != nil {
+ return nil, false
+ }
+ // entire content must have been consumed
+ if _, err := r.ReadByte(); err != io.EOF {
+ return nil, false
+ }
+ return z, true // err == io.EOF => scan consumed all content of r
+}
+
+// SetBytes interprets buf as the bytes of a big-endian unsigned
+// integer, sets z to that value, and returns z.
+func (z *Int) SetBytes(buf []byte) *Int {
+ z.abs = z.abs.setBytes(buf)
+ z.neg = false
+ return z
+}
+
+// Bytes returns the absolute value of x as a big-endian byte slice.
+//
+// To use a fixed length slice, or a preallocated one, use FillBytes.
+func (x *Int) Bytes() []byte {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ buf := make([]byte, len(x.abs)*_S)
+ return buf[x.abs.bytes(buf):]
+}
+
+// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
+// big-endian byte slice, and returns buf.
+//
+// If the absolute value of x doesn't fit in buf, FillBytes will panic.
+func (x *Int) FillBytes(buf []byte) []byte {
+ // Clear whole buffer. (This gets optimized into a memclr.)
+ for i := range buf {
+ buf[i] = 0
+ }
+ x.abs.bytes(buf)
+ return buf
+}
+
+// BitLen returns the length of the absolute value of x in bits.
+// The bit length of 0 is 0.
+func (x *Int) BitLen() int {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ return x.abs.bitLen()
+}
+
+// TrailingZeroBits returns the number of consecutive least significant zero
+// bits of |x|.
+func (x *Int) TrailingZeroBits() uint {
+ return x.abs.trailingZeroBits()
+}
+
+// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
+// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
+// and x and m are not relatively prime, z is unchanged and nil is returned.
+//
+// Modular exponentiation of inputs of a particular size is not a
+// cryptographically constant-time operation.
+func (z *Int) Exp(x, y, m *Int) *Int {
+ return z.exp(x, y, m, false)
+}
+
+func (z *Int) expSlow(x, y, m *Int) *Int {
+ return z.exp(x, y, m, true)
+}
+
+func (z *Int) exp(x, y, m *Int, slow bool) *Int {
+ // See Knuth, volume 2, section 4.6.3.
+ xWords := x.abs
+ if y.neg {
+ if m == nil || len(m.abs) == 0 {
+ return z.SetInt64(1)
+ }
+ // for y < 0: x**y mod m == (x**(-1))**|y| mod m
+ inverse := new(Int).ModInverse(x, m)
+ if inverse == nil {
+ return nil
+ }
+ xWords = inverse.abs
+ }
+ yWords := y.abs
+
+ var mWords nat
+ if m != nil {
+ if z == m || alias(z.abs, m.abs) {
+ m = new(Int).Set(m)
+ }
+ mWords = m.abs // m.abs may be nil for m == 0
+ }
+
+ z.abs = z.abs.expNN(xWords, yWords, mWords, slow)
+ z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
+ if z.neg && len(mWords) > 0 {
+ // make modulus result positive
+ z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
+ z.neg = false
+ }
+
+ return z
+}
+
+// GCD sets z to the greatest common divisor of a and b and returns z.
+// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
+//
+// a and b may be positive, zero or negative. (Before Go 1.14 both had
+// to be > 0.) Regardless of the signs of a and b, z is always >= 0.
+//
+// If a == b == 0, GCD sets z = x = y = 0.
+//
+// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
+//
+// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
+func (z *Int) GCD(x, y, a, b *Int) *Int {
+ if len(a.abs) == 0 || len(b.abs) == 0 {
+ lenA, lenB, negA, negB := len(a.abs), len(b.abs), a.neg, b.neg
+ if lenA == 0 {
+ z.Set(b)
+ } else {
+ z.Set(a)
+ }
+ z.neg = false
+ if x != nil {
+ if lenA == 0 {
+ x.SetUint64(0)
+ } else {
+ x.SetUint64(1)
+ x.neg = negA
+ }
+ }
+ if y != nil {
+ if lenB == 0 {
+ y.SetUint64(0)
+ } else {
+ y.SetUint64(1)
+ y.neg = negB
+ }
+ }
+ return z
+ }
+
+ return z.lehmerGCD(x, y, a, b)
+}
+
+// lehmerSimulate attempts to simulate several Euclidean update steps
+// using the leading digits of A and B. It returns u0, u1, v0, v1
+// such that A and B can be updated as:
+//
+// A = u0*A + v0*B
+// B = u1*A + v1*B
+//
+// Requirements: A >= B and len(B.abs) >= 2
+// Since we are calculating with full words to avoid overflow,
+// we use 'even' to track the sign of the cosequences.
+// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
+// For odd iterations: u0, v1 <= 0 && u1, v0 >= 0
+func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
+ // initialize the digits
+ var a1, a2, u2, v2 Word
+
+ m := len(B.abs) // m >= 2
+ n := len(A.abs) // n >= m >= 2
+
+ // extract the top Word of bits from A and B
+ h := nlz(A.abs[n-1])
+ a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h)
+ // B may have implicit zero words in the high bits if the lengths differ
+ switch {
+ case n == m:
+ a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h)
+ case n == m+1:
+ a2 = B.abs[n-2] >> (_W - h)
+ default:
+ a2 = 0
+ }
+
+ // Since we are calculating with full words to avoid overflow,
+ // we use 'even' to track the sign of the cosequences.
+ // For even iterations: u0, v1 >= 0 && u1, v0 <= 0
+ // For odd iterations: u0, v1 <= 0 && u1, v0 >= 0
+ // The first iteration starts with k=1 (odd).
+ even = false
+ // variables to track the cosequences
+ u0, u1, u2 = 0, 1, 0
+ v0, v1, v2 = 0, 0, 1
+
+ // Calculate the quotient and cosequences using Collins' stopping condition.
+ // Note that overflow of a Word is not possible when computing the remainder
+ // sequence and cosequences since the cosequence size is bounded by the input size.
+ // See section 4.2 of Jebelean for details.
+ for a2 >= v2 && a1-a2 >= v1+v2 {
+ q, r := a1/a2, a1%a2
+ a1, a2 = a2, r
+ u0, u1, u2 = u1, u2, u1+q*u2
+ v0, v1, v2 = v1, v2, v1+q*v2
+ even = !even
+ }
+ return
+}
+
+// lehmerUpdate updates the inputs A and B such that:
+//
+// A = u0*A + v0*B
+// B = u1*A + v1*B
+//
+// where the signs of u0, u1, v0, v1 are given by even
+// For even == true: u0, v1 >= 0 && u1, v0 <= 0
+// For even == false: u0, v1 <= 0 && u1, v0 >= 0
+// q, r, s, t are temporary variables to avoid allocations in the multiplication.
+func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {
+
+ t.abs = t.abs.setWord(u0)
+ s.abs = s.abs.setWord(v0)
+ t.neg = !even
+ s.neg = even
+
+ t.Mul(A, t)
+ s.Mul(B, s)
+
+ r.abs = r.abs.setWord(u1)
+ q.abs = q.abs.setWord(v1)
+ r.neg = even
+ q.neg = !even
+
+ r.Mul(A, r)
+ q.Mul(B, q)
+
+ A.Add(t, s)
+ B.Add(r, q)
+}
+
+// euclidUpdate performs a single step of the Euclidean GCD algorithm
+// if extended is true, it also updates the cosequence Ua, Ub.
+func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {
+ q, r = q.QuoRem(A, B, r)
+
+ *A, *B, *r = *B, *r, *A
+
+ if extended {
+ // Ua, Ub = Ub, Ua - q*Ub
+ t.Set(Ub)
+ s.Mul(Ub, q)
+ Ub.Sub(Ua, s)
+ Ua.Set(t)
+ }
+}
+
+// lehmerGCD sets z to the greatest common divisor of a and b,
+// which both must be != 0, and returns z.
+// If x or y are not nil, their values are set such that z = a*x + b*y.
+// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
+// This implementation uses the improved condition by Collins requiring only one
+// quotient and avoiding the possibility of single Word overflow.
+// See Jebelean, "Improving the multiprecision Euclidean algorithm",
+// Design and Implementation of Symbolic Computation Systems, pp 45-58.
+// The cosequences are updated according to Algorithm 10.45 from
+// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
+func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
+ var A, B, Ua, Ub *Int
+
+ A = new(Int).Abs(a)
+ B = new(Int).Abs(b)
+
+ extended := x != nil || y != nil
+
+ if extended {
+ // Ua (Ub) tracks how many times input a has been accumulated into A (B).
+ Ua = new(Int).SetInt64(1)
+ Ub = new(Int)
+ }
+
+ // temp variables for multiprecision update
+ q := new(Int)
+ r := new(Int)
+ s := new(Int)
+ t := new(Int)
+
+ // ensure A >= B
+ if A.abs.cmp(B.abs) < 0 {
+ A, B = B, A
+ Ub, Ua = Ua, Ub
+ }
+
+ // loop invariant A >= B
+ for len(B.abs) > 1 {
+ // Attempt to calculate in single-precision using leading words of A and B.
+ u0, u1, v0, v1, even := lehmerSimulate(A, B)
+
+ // multiprecision Step
+ if v0 != 0 {
+ // Simulate the effect of the single-precision steps using the cosequences.
+ // A = u0*A + v0*B
+ // B = u1*A + v1*B
+ lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even)
+
+ if extended {
+ // Ua = u0*Ua + v0*Ub
+ // Ub = u1*Ua + v1*Ub
+ lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even)
+ }
+
+ } else {
+ // Single-digit calculations failed to simulate any quotients.
+ // Do a standard Euclidean step.
+ euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
+ }
+ }
+
+ if len(B.abs) > 0 {
+ // extended Euclidean algorithm base case if B is a single Word
+ if len(A.abs) > 1 {
+ // A is longer than a single Word, so one update is needed.
+ euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
+ }
+ if len(B.abs) > 0 {
+ // A and B are both a single Word.
+ aWord, bWord := A.abs[0], B.abs[0]
+ if extended {
+ var ua, ub, va, vb Word
+ ua, ub = 1, 0
+ va, vb = 0, 1
+ even := true
+ for bWord != 0 {
+ q, r := aWord/bWord, aWord%bWord
+ aWord, bWord = bWord, r
+ ua, ub = ub, ua+q*ub
+ va, vb = vb, va+q*vb
+ even = !even
+ }
+
+ t.abs = t.abs.setWord(ua)
+ s.abs = s.abs.setWord(va)
+ t.neg = !even
+ s.neg = even
+
+ t.Mul(Ua, t)
+ s.Mul(Ub, s)
+
+ Ua.Add(t, s)
+ } else {
+ for bWord != 0 {
+ aWord, bWord = bWord, aWord%bWord
+ }
+ }
+ A.abs[0] = aWord
+ }
+ }
+ negA := a.neg
+ if y != nil {
+ // avoid aliasing b needed in the division below
+ if y == b {
+ B.Set(b)
+ } else {
+ B = b
+ }
+ // y = (z - a*x)/b
+ y.Mul(a, Ua) // y can safely alias a
+ if negA {
+ y.neg = !y.neg
+ }
+ y.Sub(A, y)
+ y.Div(y, B)
+ }
+
+ if x != nil {
+ *x = *Ua
+ if negA {
+ x.neg = !x.neg
+ }
+ }
+
+ *z = *A
+
+ return z
+}
+
+// Rand sets z to a pseudo-random number in [0, n) and returns z.
+//
+// As this uses the math/rand package, it must not be used for
+// security-sensitive work. Use crypto/rand.Int instead.
+func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
+ // z.neg is not modified before the if check, because z and n might alias.
+ if n.neg || len(n.abs) == 0 {
+ z.neg = false
+ z.abs = nil
+ return z
+ }
+ z.neg = false
+ z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
+ return z
+}
+
+// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
+// and returns z. If g and n are not relatively prime, g has no multiplicative
+// inverse in the ring ℤ/nℤ. In this case, z is unchanged and the return value
+// is nil. If n == 0, a division-by-zero run-time panic occurs.
+func (z *Int) ModInverse(g, n *Int) *Int {
+ // GCD expects parameters a and b to be > 0.
+ if n.neg {
+ var n2 Int
+ n = n2.Neg(n)
+ }
+ if g.neg {
+ var g2 Int
+ g = g2.Mod(g, n)
+ }
+ var d, x Int
+ d.GCD(&x, nil, g, n)
+
+ // if and only if d==1, g and n are relatively prime
+ if d.Cmp(intOne) != 0 {
+ return nil
+ }
+
+ // x and y are such that g*x + n*y = 1, therefore x is the inverse element,
+ // but it may be negative, so convert to the range 0 <= z < |n|
+ if x.neg {
+ z.Add(&x, n)
+ } else {
+ z.Set(&x)
+ }
+ return z
+}
+
+func (z nat) modInverse(g, n nat) nat {
+ // TODO(rsc): ModInverse should be implemented in terms of this function.
+ return (&Int{abs: z}).ModInverse(&Int{abs: g}, &Int{abs: n}).abs
+}
+
+// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
+// The y argument must be an odd integer.
+func Jacobi(x, y *Int) int {
+ if len(y.abs) == 0 || y.abs[0]&1 == 0 {
+ panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y.String()))
+ }
+
+ // We use the formulation described in chapter 2, section 2.4,
+ // "The Yacas Book of Algorithms":
+ // http://yacas.sourceforge.net/Algo.book.pdf
+
+ var a, b, c Int
+ a.Set(x)
+ b.Set(y)
+ j := 1
+
+ if b.neg {
+ if a.neg {
+ j = -1
+ }
+ b.neg = false
+ }
+
+ for {
+ if b.Cmp(intOne) == 0 {
+ return j
+ }
+ if len(a.abs) == 0 {
+ return 0
+ }
+ a.Mod(&a, &b)
+ if len(a.abs) == 0 {
+ return 0
+ }
+ // a > 0
+
+ // handle factors of 2 in 'a'
+ s := a.abs.trailingZeroBits()
+ if s&1 != 0 {
+ bmod8 := b.abs[0] & 7
+ if bmod8 == 3 || bmod8 == 5 {
+ j = -j
+ }
+ }
+ c.Rsh(&a, s) // a = 2^s*c
+
+ // swap numerator and denominator
+ if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
+ j = -j
+ }
+ a.Set(&b)
+ b.Set(&c)
+ }
+}
+
+// modSqrt3Mod4 uses the identity
+//
+// (a^((p+1)/4))^2 mod p
+// == u^(p+1) mod p
+// == u^2 mod p
+//
+// to calculate the square root of any quadratic residue mod p quickly for 3
+// mod 4 primes.
+func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
+ e := new(Int).Add(p, intOne) // e = p + 1
+ e.Rsh(e, 2) // e = (p + 1) / 4
+ z.Exp(x, e, p) // z = x^e mod p
+ return z
+}
+
+// modSqrt5Mod8 uses Atkin's observation that 2 is not a square mod p
+//
+// alpha == (2*a)^((p-5)/8) mod p
+// beta == 2*a*alpha^2 mod p is a square root of -1
+// b == a*alpha*(beta-1) mod p is a square root of a
+//
+// to calculate the square root of any quadratic residue mod p quickly for 5
+// mod 8 primes.
+func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {
+ // p == 5 mod 8 implies p = e*8 + 5
+ // e is the quotient and 5 the remainder on division by 8
+ e := new(Int).Rsh(p, 3) // e = (p - 5) / 8
+ tx := new(Int).Lsh(x, 1) // tx = 2*x
+ alpha := new(Int).Exp(tx, e, p)
+ beta := new(Int).Mul(alpha, alpha)
+ beta.Mod(beta, p)
+ beta.Mul(beta, tx)
+ beta.Mod(beta, p)
+ beta.Sub(beta, intOne)
+ beta.Mul(beta, x)
+ beta.Mod(beta, p)
+ beta.Mul(beta, alpha)
+ z.Mod(beta, p)
+ return z
+}
+
+// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
+// root of a quadratic residue modulo any prime.
+func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
+ // Break p-1 into s*2^e such that s is odd.
+ var s Int
+ s.Sub(p, intOne)
+ e := s.abs.trailingZeroBits()
+ s.Rsh(&s, e)
+
+ // find some non-square n
+ var n Int
+ n.SetInt64(2)
+ for Jacobi(&n, p) != -1 {
+ n.Add(&n, intOne)
+ }
+
+ // Core of the Tonelli-Shanks algorithm. Follows the description in
+ // section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
+ // Brown:
+ // https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
+ var y, b, g, t Int
+ y.Add(&s, intOne)
+ y.Rsh(&y, 1)
+ y.Exp(x, &y, p) // y = x^((s+1)/2)
+ b.Exp(x, &s, p) // b = x^s
+ g.Exp(&n, &s, p) // g = n^s
+ r := e
+ for {
+ // find the least m such that ord_p(b) = 2^m
+ var m uint
+ t.Set(&b)
+ for t.Cmp(intOne) != 0 {
+ t.Mul(&t, &t).Mod(&t, p)
+ m++
+ }
+
+ if m == 0 {
+ return z.Set(&y)
+ }
+
+ t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
+ // t = g^(2^(r-m-1)) mod p
+ g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
+ y.Mul(&y, &t).Mod(&y, p)
+ b.Mul(&b, &g).Mod(&b, p)
+ r = m
+ }
+}
+
+// ModSqrt sets z to a square root of x mod p if such a square root exists, and
+// returns z. The modulus p must be an odd prime. If x is not a square mod p,
+// ModSqrt leaves z unchanged and returns nil. This function panics if p is
+// not an odd integer, its behavior is undefined if p is odd but not prime.
+func (z *Int) ModSqrt(x, p *Int) *Int {
+ switch Jacobi(x, p) {
+ case -1:
+ return nil // x is not a square mod p
+ case 0:
+ return z.SetInt64(0) // sqrt(0) mod p = 0
+ case 1:
+ break
+ }
+ if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
+ x = new(Int).Mod(x, p)
+ }
+
+ switch {
+ case p.abs[0]%4 == 3:
+ // Check whether p is 3 mod 4, and if so, use the faster algorithm.
+ return z.modSqrt3Mod4Prime(x, p)
+ case p.abs[0]%8 == 5:
+ // Check whether p is 5 mod 8, use Atkin's algorithm.
+ return z.modSqrt5Mod8Prime(x, p)
+ default:
+ // Otherwise, use Tonelli-Shanks.
+ return z.modSqrtTonelliShanks(x, p)
+ }
+}
+
+// Lsh sets z = x << n and returns z.
+func (z *Int) Lsh(x *Int, n uint) *Int {
+ z.abs = z.abs.shl(x.abs, n)
+ z.neg = x.neg
+ return z
+}
+
+// Rsh sets z = x >> n and returns z.
+func (z *Int) Rsh(x *Int, n uint) *Int {
+ if x.neg {
+ // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
+ t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
+ t = t.shr(t, n)
+ z.abs = t.add(t, natOne)
+ z.neg = true // z cannot be zero if x is negative
+ return z
+ }
+
+ z.abs = z.abs.shr(x.abs, n)
+ z.neg = false
+ return z
+}
+
+// Bit returns the value of the i'th bit of x. That is, it
+// returns (x>>i)&1. The bit index i must be >= 0.
+func (x *Int) Bit(i int) uint {
+ if i == 0 {
+ // optimization for common case: odd/even test of x
+ if len(x.abs) > 0 {
+ return uint(x.abs[0] & 1) // bit 0 is same for -x
+ }
+ return 0
+ }
+ if i < 0 {
+ panic("negative bit index")
+ }
+ if x.neg {
+ t := nat(nil).sub(x.abs, natOne)
+ return t.bit(uint(i)) ^ 1
+ }
+
+ return x.abs.bit(uint(i))
+}
+
+// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
+// That is, if b is 1 SetBit sets z = x | (1 << i);
+// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
+// SetBit will panic.
+func (z *Int) SetBit(x *Int, i int, b uint) *Int {
+ if i < 0 {
+ panic("negative bit index")
+ }
+ if x.neg {
+ t := z.abs.sub(x.abs, natOne)
+ t = t.setBit(t, uint(i), b^1)
+ z.abs = t.add(t, natOne)
+ z.neg = len(z.abs) > 0
+ return z
+ }
+ z.abs = z.abs.setBit(x.abs, uint(i), b)
+ z.neg = false
+ return z
+}
+
+// And sets z = x & y and returns z.
+func (z *Int) And(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
+ z.neg = true // z cannot be zero if x and y are negative
+ return z
+ }
+
+ // x & y == x & y
+ z.abs = z.abs.and(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ // x.neg != y.neg
+ if x.neg {
+ x, y = y, x // & is symmetric
+ }
+
+ // x & (-y) == x & ^(y-1) == x &^ (y-1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.andNot(x.abs, y1)
+ z.neg = false
+ return z
+}
+
+// AndNot sets z = x &^ y and returns z.
+func (z *Int) AndNot(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.andNot(y1, x1)
+ z.neg = false
+ return z
+ }
+
+ // x &^ y == x &^ y
+ z.abs = z.abs.andNot(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ if x.neg {
+ // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
+ z.neg = true // z cannot be zero if x is negative and y is positive
+ return z
+ }
+
+ // x &^ (-y) == x &^ ^(y-1) == x & (y-1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.and(x.abs, y1)
+ z.neg = false
+ return z
+}
+
+// Or sets z = x | y and returns z.
+func (z *Int) Or(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
+ z.neg = true // z cannot be zero if x and y are negative
+ return z
+ }
+
+ // x | y == x | y
+ z.abs = z.abs.or(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ // x.neg != y.neg
+ if x.neg {
+ x, y = y, x // | is symmetric
+ }
+
+ // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
+ z.neg = true // z cannot be zero if one of x or y is negative
+ return z
+}
+
+// Xor sets z = x ^ y and returns z.
+func (z *Int) Xor(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.xor(x1, y1)
+ z.neg = false
+ return z
+ }
+
+ // x ^ y == x ^ y
+ z.abs = z.abs.xor(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ // x.neg != y.neg
+ if x.neg {
+ x, y = y, x // ^ is symmetric
+ }
+
+ // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
+ z.neg = true // z cannot be zero if only one of x or y is negative
+ return z
+}
+
+// Not sets z = ^x and returns z.
+func (z *Int) Not(x *Int) *Int {
+ if x.neg {
+ // ^(-x) == ^(^(x-1)) == x-1
+ z.abs = z.abs.sub(x.abs, natOne)
+ z.neg = false
+ return z
+ }
+
+ // ^x == -x-1 == -(x+1)
+ z.abs = z.abs.add(x.abs, natOne)
+ z.neg = true // z cannot be zero if x is positive
+ return z
+}
+
+// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
+// It panics if x is negative.
+func (z *Int) Sqrt(x *Int) *Int {
+ if x.neg {
+ panic("square root of negative number")
+ }
+ z.neg = false
+ z.abs = z.abs.sqrt(x.abs)
+ return z
+}