diff options
Diffstat (limited to 'src/math/big/int.go')
-rw-r--r-- | src/math/big/int.go | 1293 |
1 files changed, 1293 insertions, 0 deletions
diff --git a/src/math/big/int.go b/src/math/big/int.go new file mode 100644 index 0000000..76d6eb9 --- /dev/null +++ b/src/math/big/int.go @@ -0,0 +1,1293 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file implements signed multi-precision integers. + +package big + +import ( + "fmt" + "io" + "math/rand" + "strings" +) + +// An Int represents a signed multi-precision integer. +// The zero value for an Int represents the value 0. +// +// Operations always take pointer arguments (*Int) rather +// than Int values, and each unique Int value requires +// its own unique *Int pointer. To "copy" an Int value, +// an existing (or newly allocated) Int must be set to +// a new value using the Int.Set method; shallow copies +// of Ints are not supported and may lead to errors. +type Int struct { + neg bool // sign + abs nat // absolute value of the integer +} + +var intOne = &Int{false, natOne} + +// Sign returns: +// +// -1 if x < 0 +// 0 if x == 0 +// +1 if x > 0 +func (x *Int) Sign() int { + // This function is used in cryptographic operations. It must not leak + // anything but the Int's sign and bit size through side-channels. Any + // changes must be reviewed by a security expert. + if len(x.abs) == 0 { + return 0 + } + if x.neg { + return -1 + } + return 1 +} + +// SetInt64 sets z to x and returns z. +func (z *Int) SetInt64(x int64) *Int { + neg := false + if x < 0 { + neg = true + x = -x + } + z.abs = z.abs.setUint64(uint64(x)) + z.neg = neg + return z +} + +// SetUint64 sets z to x and returns z. +func (z *Int) SetUint64(x uint64) *Int { + z.abs = z.abs.setUint64(x) + z.neg = false + return z +} + +// NewInt allocates and returns a new Int set to x. +func NewInt(x int64) *Int { + // This code is arranged to be inlineable and produce + // zero allocations when inlined. See issue 29951. + u := uint64(x) + if x < 0 { + u = -u + } + var abs []Word + if x == 0 { + } else if _W == 32 && u>>32 != 0 { + abs = []Word{Word(u), Word(u >> 32)} + } else { + abs = []Word{Word(u)} + } + return &Int{neg: x < 0, abs: abs} +} + +// Set sets z to x and returns z. +func (z *Int) Set(x *Int) *Int { + if z != x { + z.abs = z.abs.set(x.abs) + z.neg = x.neg + } + return z +} + +// Bits provides raw (unchecked but fast) access to x by returning its +// absolute value as a little-endian Word slice. The result and x share +// the same underlying array. +// Bits is intended to support implementation of missing low-level Int +// functionality outside this package; it should be avoided otherwise. +func (x *Int) Bits() []Word { + // This function is used in cryptographic operations. It must not leak + // anything but the Int's sign and bit size through side-channels. Any + // changes must be reviewed by a security expert. + return x.abs +} + +// SetBits provides raw (unchecked but fast) access to z by setting its +// value to abs, interpreted as a little-endian Word slice, and returning +// z. The result and abs share the same underlying array. +// SetBits is intended to support implementation of missing low-level Int +// functionality outside this package; it should be avoided otherwise. +func (z *Int) SetBits(abs []Word) *Int { + z.abs = nat(abs).norm() + z.neg = false + return z +} + +// Abs sets z to |x| (the absolute value of x) and returns z. +func (z *Int) Abs(x *Int) *Int { + z.Set(x) + z.neg = false + return z +} + +// Neg sets z to -x and returns z. +func (z *Int) Neg(x *Int) *Int { + z.Set(x) + z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign + return z +} + +// Add sets z to the sum x+y and returns z. +func (z *Int) Add(x, y *Int) *Int { + neg := x.neg + if x.neg == y.neg { + // x + y == x + y + // (-x) + (-y) == -(x + y) + z.abs = z.abs.add(x.abs, y.abs) + } else { + // x + (-y) == x - y == -(y - x) + // (-x) + y == y - x == -(x - y) + if x.abs.cmp(y.abs) >= 0 { + z.abs = z.abs.sub(x.abs, y.abs) + } else { + neg = !neg + z.abs = z.abs.sub(y.abs, x.abs) + } + } + z.neg = len(z.abs) > 0 && neg // 0 has no sign + return z +} + +// Sub sets z to the difference x-y and returns z. +func (z *Int) Sub(x, y *Int) *Int { + neg := x.neg + if x.neg != y.neg { + // x - (-y) == x + y + // (-x) - y == -(x + y) + z.abs = z.abs.add(x.abs, y.abs) + } else { + // x - y == x - y == -(y - x) + // (-x) - (-y) == y - x == -(x - y) + if x.abs.cmp(y.abs) >= 0 { + z.abs = z.abs.sub(x.abs, y.abs) + } else { + neg = !neg + z.abs = z.abs.sub(y.abs, x.abs) + } + } + z.neg = len(z.abs) > 0 && neg // 0 has no sign + return z +} + +// Mul sets z to the product x*y and returns z. +func (z *Int) Mul(x, y *Int) *Int { + // x * y == x * y + // x * (-y) == -(x * y) + // (-x) * y == -(x * y) + // (-x) * (-y) == x * y + if x == y { + z.abs = z.abs.sqr(x.abs) + z.neg = false + return z + } + z.abs = z.abs.mul(x.abs, y.abs) + z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign + return z +} + +// MulRange sets z to the product of all integers +// in the range [a, b] inclusively and returns z. +// If a > b (empty range), the result is 1. +func (z *Int) MulRange(a, b int64) *Int { + switch { + case a > b: + return z.SetInt64(1) // empty range + case a <= 0 && b >= 0: + return z.SetInt64(0) // range includes 0 + } + // a <= b && (b < 0 || a > 0) + + neg := false + if a < 0 { + neg = (b-a)&1 == 0 + a, b = -b, -a + } + + z.abs = z.abs.mulRange(uint64(a), uint64(b)) + z.neg = neg + return z +} + +// Binomial sets z to the binomial coefficient C(n, k) and returns z. +func (z *Int) Binomial(n, k int64) *Int { + if k > n { + return z.SetInt64(0) + } + // reduce the number of multiplications by reducing k + if k > n-k { + k = n - k // C(n, k) == C(n, n-k) + } + // C(n, k) == n * (n-1) * ... * (n-k+1) / k * (k-1) * ... * 1 + // == n * (n-1) * ... * (n-k+1) / 1 * (1+1) * ... * k + // + // Using the multiplicative formula produces smaller values + // at each step, requiring fewer allocations and computations: + // + // z = 1 + // for i := 0; i < k; i = i+1 { + // z *= n-i + // z /= i+1 + // } + // + // finally to avoid computing i+1 twice per loop: + // + // z = 1 + // i := 0 + // for i < k { + // z *= n-i + // i++ + // z /= i + // } + var N, K, i, t Int + N.SetInt64(n) + K.SetInt64(k) + z.Set(intOne) + for i.Cmp(&K) < 0 { + z.Mul(z, t.Sub(&N, &i)) + i.Add(&i, intOne) + z.Quo(z, &i) + } + return z +} + +// Quo sets z to the quotient x/y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// Quo implements truncated division (like Go); see QuoRem for more details. +func (z *Int) Quo(x, y *Int) *Int { + z.abs, _ = z.abs.div(nil, x.abs, y.abs) + z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign + return z +} + +// Rem sets z to the remainder x%y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// Rem implements truncated modulus (like Go); see QuoRem for more details. +func (z *Int) Rem(x, y *Int) *Int { + _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) + z.neg = len(z.abs) > 0 && x.neg // 0 has no sign + return z +} + +// QuoRem sets z to the quotient x/y and r to the remainder x%y +// and returns the pair (z, r) for y != 0. +// If y == 0, a division-by-zero run-time panic occurs. +// +// QuoRem implements T-division and modulus (like Go): +// +// q = x/y with the result truncated to zero +// r = x - y*q +// +// (See Daan Leijen, “Division and Modulus for Computer Scientists”.) +// See DivMod for Euclidean division and modulus (unlike Go). +func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { + z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) + z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign + return z, r +} + +// Div sets z to the quotient x/y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// Div implements Euclidean division (unlike Go); see DivMod for more details. +func (z *Int) Div(x, y *Int) *Int { + y_neg := y.neg // z may be an alias for y + var r Int + z.QuoRem(x, y, &r) + if r.neg { + if y_neg { + z.Add(z, intOne) + } else { + z.Sub(z, intOne) + } + } + return z +} + +// Mod sets z to the modulus x%y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// Mod implements Euclidean modulus (unlike Go); see DivMod for more details. +func (z *Int) Mod(x, y *Int) *Int { + y0 := y // save y + if z == y || alias(z.abs, y.abs) { + y0 = new(Int).Set(y) + } + var q Int + q.QuoRem(x, y, z) + if z.neg { + if y0.neg { + z.Sub(z, y0) + } else { + z.Add(z, y0) + } + } + return z +} + +// DivMod sets z to the quotient x div y and m to the modulus x mod y +// and returns the pair (z, m) for y != 0. +// If y == 0, a division-by-zero run-time panic occurs. +// +// DivMod implements Euclidean division and modulus (unlike Go): +// +// q = x div y such that +// m = x - y*q with 0 <= m < |y| +// +// (See Raymond T. Boute, “The Euclidean definition of the functions +// div and mod”. ACM Transactions on Programming Languages and +// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. +// ACM press.) +// See QuoRem for T-division and modulus (like Go). +func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { + y0 := y // save y + if z == y || alias(z.abs, y.abs) { + y0 = new(Int).Set(y) + } + z.QuoRem(x, y, m) + if m.neg { + if y0.neg { + z.Add(z, intOne) + m.Sub(m, y0) + } else { + z.Sub(z, intOne) + m.Add(m, y0) + } + } + return z, m +} + +// Cmp compares x and y and returns: +// +// -1 if x < y +// 0 if x == y +// +1 if x > y +func (x *Int) Cmp(y *Int) (r int) { + // x cmp y == x cmp y + // x cmp (-y) == x + // (-x) cmp y == y + // (-x) cmp (-y) == -(x cmp y) + switch { + case x == y: + // nothing to do + case x.neg == y.neg: + r = x.abs.cmp(y.abs) + if x.neg { + r = -r + } + case x.neg: + r = -1 + default: + r = 1 + } + return +} + +// CmpAbs compares the absolute values of x and y and returns: +// +// -1 if |x| < |y| +// 0 if |x| == |y| +// +1 if |x| > |y| +func (x *Int) CmpAbs(y *Int) int { + return x.abs.cmp(y.abs) +} + +// low32 returns the least significant 32 bits of x. +func low32(x nat) uint32 { + if len(x) == 0 { + return 0 + } + return uint32(x[0]) +} + +// low64 returns the least significant 64 bits of x. +func low64(x nat) uint64 { + if len(x) == 0 { + return 0 + } + v := uint64(x[0]) + if _W == 32 && len(x) > 1 { + return uint64(x[1])<<32 | v + } + return v +} + +// Int64 returns the int64 representation of x. +// If x cannot be represented in an int64, the result is undefined. +func (x *Int) Int64() int64 { + v := int64(low64(x.abs)) + if x.neg { + v = -v + } + return v +} + +// Uint64 returns the uint64 representation of x. +// If x cannot be represented in a uint64, the result is undefined. +func (x *Int) Uint64() uint64 { + return low64(x.abs) +} + +// IsInt64 reports whether x can be represented as an int64. +func (x *Int) IsInt64() bool { + if len(x.abs) <= 64/_W { + w := int64(low64(x.abs)) + return w >= 0 || x.neg && w == -w + } + return false +} + +// IsUint64 reports whether x can be represented as a uint64. +func (x *Int) IsUint64() bool { + return !x.neg && len(x.abs) <= 64/_W +} + +// SetString sets z to the value of s, interpreted in the given base, +// and returns z and a boolean indicating success. The entire string +// (not just a prefix) must be valid for success. If SetString fails, +// the value of z is undefined but the returned value is nil. +// +// The base argument must be 0 or a value between 2 and MaxBase. +// For base 0, the number prefix determines the actual base: A prefix of +// “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8, +// and “0x” or “0X” selects base 16. Otherwise, the selected base is 10 +// and no prefix is accepted. +// +// For bases <= 36, lower and upper case letters are considered the same: +// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35. +// For bases > 36, the upper case letters 'A' to 'Z' represent the digit +// values 36 to 61. +// +// For base 0, an underscore character “_” may appear between a base +// prefix and an adjacent digit, and between successive digits; such +// underscores do not change the value of the number. +// Incorrect placement of underscores is reported as an error if there +// are no other errors. If base != 0, underscores are not recognized +// and act like any other character that is not a valid digit. +func (z *Int) SetString(s string, base int) (*Int, bool) { + return z.setFromScanner(strings.NewReader(s), base) +} + +// setFromScanner implements SetString given an io.ByteScanner. +// For documentation see comments of SetString. +func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) { + if _, _, err := z.scan(r, base); err != nil { + return nil, false + } + // entire content must have been consumed + if _, err := r.ReadByte(); err != io.EOF { + return nil, false + } + return z, true // err == io.EOF => scan consumed all content of r +} + +// SetBytes interprets buf as the bytes of a big-endian unsigned +// integer, sets z to that value, and returns z. +func (z *Int) SetBytes(buf []byte) *Int { + z.abs = z.abs.setBytes(buf) + z.neg = false + return z +} + +// Bytes returns the absolute value of x as a big-endian byte slice. +// +// To use a fixed length slice, or a preallocated one, use FillBytes. +func (x *Int) Bytes() []byte { + // This function is used in cryptographic operations. It must not leak + // anything but the Int's sign and bit size through side-channels. Any + // changes must be reviewed by a security expert. + buf := make([]byte, len(x.abs)*_S) + return buf[x.abs.bytes(buf):] +} + +// FillBytes sets buf to the absolute value of x, storing it as a zero-extended +// big-endian byte slice, and returns buf. +// +// If the absolute value of x doesn't fit in buf, FillBytes will panic. +func (x *Int) FillBytes(buf []byte) []byte { + // Clear whole buffer. (This gets optimized into a memclr.) + for i := range buf { + buf[i] = 0 + } + x.abs.bytes(buf) + return buf +} + +// BitLen returns the length of the absolute value of x in bits. +// The bit length of 0 is 0. +func (x *Int) BitLen() int { + // This function is used in cryptographic operations. It must not leak + // anything but the Int's sign and bit size through side-channels. Any + // changes must be reviewed by a security expert. + return x.abs.bitLen() +} + +// TrailingZeroBits returns the number of consecutive least significant zero +// bits of |x|. +func (x *Int) TrailingZeroBits() uint { + return x.abs.trailingZeroBits() +} + +// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. +// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0, +// and x and m are not relatively prime, z is unchanged and nil is returned. +// +// Modular exponentiation of inputs of a particular size is not a +// cryptographically constant-time operation. +func (z *Int) Exp(x, y, m *Int) *Int { + return z.exp(x, y, m, false) +} + +func (z *Int) expSlow(x, y, m *Int) *Int { + return z.exp(x, y, m, true) +} + +func (z *Int) exp(x, y, m *Int, slow bool) *Int { + // See Knuth, volume 2, section 4.6.3. + xWords := x.abs + if y.neg { + if m == nil || len(m.abs) == 0 { + return z.SetInt64(1) + } + // for y < 0: x**y mod m == (x**(-1))**|y| mod m + inverse := new(Int).ModInverse(x, m) + if inverse == nil { + return nil + } + xWords = inverse.abs + } + yWords := y.abs + + var mWords nat + if m != nil { + if z == m || alias(z.abs, m.abs) { + m = new(Int).Set(m) + } + mWords = m.abs // m.abs may be nil for m == 0 + } + + z.abs = z.abs.expNN(xWords, yWords, mWords, slow) + z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign + if z.neg && len(mWords) > 0 { + // make modulus result positive + z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m| + z.neg = false + } + + return z +} + +// GCD sets z to the greatest common divisor of a and b and returns z. +// If x or y are not nil, GCD sets their value such that z = a*x + b*y. +// +// a and b may be positive, zero or negative. (Before Go 1.14 both had +// to be > 0.) Regardless of the signs of a and b, z is always >= 0. +// +// If a == b == 0, GCD sets z = x = y = 0. +// +// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1. +// +// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0. +func (z *Int) GCD(x, y, a, b *Int) *Int { + if len(a.abs) == 0 || len(b.abs) == 0 { + lenA, lenB, negA, negB := len(a.abs), len(b.abs), a.neg, b.neg + if lenA == 0 { + z.Set(b) + } else { + z.Set(a) + } + z.neg = false + if x != nil { + if lenA == 0 { + x.SetUint64(0) + } else { + x.SetUint64(1) + x.neg = negA + } + } + if y != nil { + if lenB == 0 { + y.SetUint64(0) + } else { + y.SetUint64(1) + y.neg = negB + } + } + return z + } + + return z.lehmerGCD(x, y, a, b) +} + +// lehmerSimulate attempts to simulate several Euclidean update steps +// using the leading digits of A and B. It returns u0, u1, v0, v1 +// such that A and B can be updated as: +// +// A = u0*A + v0*B +// B = u1*A + v1*B +// +// Requirements: A >= B and len(B.abs) >= 2 +// Since we are calculating with full words to avoid overflow, +// we use 'even' to track the sign of the cosequences. +// For even iterations: u0, v1 >= 0 && u1, v0 <= 0 +// For odd iterations: u0, v1 <= 0 && u1, v0 >= 0 +func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) { + // initialize the digits + var a1, a2, u2, v2 Word + + m := len(B.abs) // m >= 2 + n := len(A.abs) // n >= m >= 2 + + // extract the top Word of bits from A and B + h := nlz(A.abs[n-1]) + a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h) + // B may have implicit zero words in the high bits if the lengths differ + switch { + case n == m: + a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h) + case n == m+1: + a2 = B.abs[n-2] >> (_W - h) + default: + a2 = 0 + } + + // Since we are calculating with full words to avoid overflow, + // we use 'even' to track the sign of the cosequences. + // For even iterations: u0, v1 >= 0 && u1, v0 <= 0 + // For odd iterations: u0, v1 <= 0 && u1, v0 >= 0 + // The first iteration starts with k=1 (odd). + even = false + // variables to track the cosequences + u0, u1, u2 = 0, 1, 0 + v0, v1, v2 = 0, 0, 1 + + // Calculate the quotient and cosequences using Collins' stopping condition. + // Note that overflow of a Word is not possible when computing the remainder + // sequence and cosequences since the cosequence size is bounded by the input size. + // See section 4.2 of Jebelean for details. + for a2 >= v2 && a1-a2 >= v1+v2 { + q, r := a1/a2, a1%a2 + a1, a2 = a2, r + u0, u1, u2 = u1, u2, u1+q*u2 + v0, v1, v2 = v1, v2, v1+q*v2 + even = !even + } + return +} + +// lehmerUpdate updates the inputs A and B such that: +// +// A = u0*A + v0*B +// B = u1*A + v1*B +// +// where the signs of u0, u1, v0, v1 are given by even +// For even == true: u0, v1 >= 0 && u1, v0 <= 0 +// For even == false: u0, v1 <= 0 && u1, v0 >= 0 +// q, r, s, t are temporary variables to avoid allocations in the multiplication. +func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) { + + t.abs = t.abs.setWord(u0) + s.abs = s.abs.setWord(v0) + t.neg = !even + s.neg = even + + t.Mul(A, t) + s.Mul(B, s) + + r.abs = r.abs.setWord(u1) + q.abs = q.abs.setWord(v1) + r.neg = even + q.neg = !even + + r.Mul(A, r) + q.Mul(B, q) + + A.Add(t, s) + B.Add(r, q) +} + +// euclidUpdate performs a single step of the Euclidean GCD algorithm +// if extended is true, it also updates the cosequence Ua, Ub. +func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) { + q, r = q.QuoRem(A, B, r) + + *A, *B, *r = *B, *r, *A + + if extended { + // Ua, Ub = Ub, Ua - q*Ub + t.Set(Ub) + s.Mul(Ub, q) + Ub.Sub(Ua, s) + Ua.Set(t) + } +} + +// lehmerGCD sets z to the greatest common divisor of a and b, +// which both must be != 0, and returns z. +// If x or y are not nil, their values are set such that z = a*x + b*y. +// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L. +// This implementation uses the improved condition by Collins requiring only one +// quotient and avoiding the possibility of single Word overflow. +// See Jebelean, "Improving the multiprecision Euclidean algorithm", +// Design and Implementation of Symbolic Computation Systems, pp 45-58. +// The cosequences are updated according to Algorithm 10.45 from +// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192. +func (z *Int) lehmerGCD(x, y, a, b *Int) *Int { + var A, B, Ua, Ub *Int + + A = new(Int).Abs(a) + B = new(Int).Abs(b) + + extended := x != nil || y != nil + + if extended { + // Ua (Ub) tracks how many times input a has been accumulated into A (B). + Ua = new(Int).SetInt64(1) + Ub = new(Int) + } + + // temp variables for multiprecision update + q := new(Int) + r := new(Int) + s := new(Int) + t := new(Int) + + // ensure A >= B + if A.abs.cmp(B.abs) < 0 { + A, B = B, A + Ub, Ua = Ua, Ub + } + + // loop invariant A >= B + for len(B.abs) > 1 { + // Attempt to calculate in single-precision using leading words of A and B. + u0, u1, v0, v1, even := lehmerSimulate(A, B) + + // multiprecision Step + if v0 != 0 { + // Simulate the effect of the single-precision steps using the cosequences. + // A = u0*A + v0*B + // B = u1*A + v1*B + lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even) + + if extended { + // Ua = u0*Ua + v0*Ub + // Ub = u1*Ua + v1*Ub + lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even) + } + + } else { + // Single-digit calculations failed to simulate any quotients. + // Do a standard Euclidean step. + euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended) + } + } + + if len(B.abs) > 0 { + // extended Euclidean algorithm base case if B is a single Word + if len(A.abs) > 1 { + // A is longer than a single Word, so one update is needed. + euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended) + } + if len(B.abs) > 0 { + // A and B are both a single Word. + aWord, bWord := A.abs[0], B.abs[0] + if extended { + var ua, ub, va, vb Word + ua, ub = 1, 0 + va, vb = 0, 1 + even := true + for bWord != 0 { + q, r := aWord/bWord, aWord%bWord + aWord, bWord = bWord, r + ua, ub = ub, ua+q*ub + va, vb = vb, va+q*vb + even = !even + } + + t.abs = t.abs.setWord(ua) + s.abs = s.abs.setWord(va) + t.neg = !even + s.neg = even + + t.Mul(Ua, t) + s.Mul(Ub, s) + + Ua.Add(t, s) + } else { + for bWord != 0 { + aWord, bWord = bWord, aWord%bWord + } + } + A.abs[0] = aWord + } + } + negA := a.neg + if y != nil { + // avoid aliasing b needed in the division below + if y == b { + B.Set(b) + } else { + B = b + } + // y = (z - a*x)/b + y.Mul(a, Ua) // y can safely alias a + if negA { + y.neg = !y.neg + } + y.Sub(A, y) + y.Div(y, B) + } + + if x != nil { + *x = *Ua + if negA { + x.neg = !x.neg + } + } + + *z = *A + + return z +} + +// Rand sets z to a pseudo-random number in [0, n) and returns z. +// +// As this uses the math/rand package, it must not be used for +// security-sensitive work. Use crypto/rand.Int instead. +func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { + // z.neg is not modified before the if check, because z and n might alias. + if n.neg || len(n.abs) == 0 { + z.neg = false + z.abs = nil + return z + } + z.neg = false + z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) + return z +} + +// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ +// and returns z. If g and n are not relatively prime, g has no multiplicative +// inverse in the ring ℤ/nℤ. In this case, z is unchanged and the return value +// is nil. If n == 0, a division-by-zero run-time panic occurs. +func (z *Int) ModInverse(g, n *Int) *Int { + // GCD expects parameters a and b to be > 0. + if n.neg { + var n2 Int + n = n2.Neg(n) + } + if g.neg { + var g2 Int + g = g2.Mod(g, n) + } + var d, x Int + d.GCD(&x, nil, g, n) + + // if and only if d==1, g and n are relatively prime + if d.Cmp(intOne) != 0 { + return nil + } + + // x and y are such that g*x + n*y = 1, therefore x is the inverse element, + // but it may be negative, so convert to the range 0 <= z < |n| + if x.neg { + z.Add(&x, n) + } else { + z.Set(&x) + } + return z +} + +func (z nat) modInverse(g, n nat) nat { + // TODO(rsc): ModInverse should be implemented in terms of this function. + return (&Int{abs: z}).ModInverse(&Int{abs: g}, &Int{abs: n}).abs +} + +// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0. +// The y argument must be an odd integer. +func Jacobi(x, y *Int) int { + if len(y.abs) == 0 || y.abs[0]&1 == 0 { + panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y.String())) + } + + // We use the formulation described in chapter 2, section 2.4, + // "The Yacas Book of Algorithms": + // http://yacas.sourceforge.net/Algo.book.pdf + + var a, b, c Int + a.Set(x) + b.Set(y) + j := 1 + + if b.neg { + if a.neg { + j = -1 + } + b.neg = false + } + + for { + if b.Cmp(intOne) == 0 { + return j + } + if len(a.abs) == 0 { + return 0 + } + a.Mod(&a, &b) + if len(a.abs) == 0 { + return 0 + } + // a > 0 + + // handle factors of 2 in 'a' + s := a.abs.trailingZeroBits() + if s&1 != 0 { + bmod8 := b.abs[0] & 7 + if bmod8 == 3 || bmod8 == 5 { + j = -j + } + } + c.Rsh(&a, s) // a = 2^s*c + + // swap numerator and denominator + if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 { + j = -j + } + a.Set(&b) + b.Set(&c) + } +} + +// modSqrt3Mod4 uses the identity +// +// (a^((p+1)/4))^2 mod p +// == u^(p+1) mod p +// == u^2 mod p +// +// to calculate the square root of any quadratic residue mod p quickly for 3 +// mod 4 primes. +func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int { + e := new(Int).Add(p, intOne) // e = p + 1 + e.Rsh(e, 2) // e = (p + 1) / 4 + z.Exp(x, e, p) // z = x^e mod p + return z +} + +// modSqrt5Mod8 uses Atkin's observation that 2 is not a square mod p +// +// alpha == (2*a)^((p-5)/8) mod p +// beta == 2*a*alpha^2 mod p is a square root of -1 +// b == a*alpha*(beta-1) mod p is a square root of a +// +// to calculate the square root of any quadratic residue mod p quickly for 5 +// mod 8 primes. +func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int { + // p == 5 mod 8 implies p = e*8 + 5 + // e is the quotient and 5 the remainder on division by 8 + e := new(Int).Rsh(p, 3) // e = (p - 5) / 8 + tx := new(Int).Lsh(x, 1) // tx = 2*x + alpha := new(Int).Exp(tx, e, p) + beta := new(Int).Mul(alpha, alpha) + beta.Mod(beta, p) + beta.Mul(beta, tx) + beta.Mod(beta, p) + beta.Sub(beta, intOne) + beta.Mul(beta, x) + beta.Mod(beta, p) + beta.Mul(beta, alpha) + z.Mod(beta, p) + return z +} + +// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square +// root of a quadratic residue modulo any prime. +func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int { + // Break p-1 into s*2^e such that s is odd. + var s Int + s.Sub(p, intOne) + e := s.abs.trailingZeroBits() + s.Rsh(&s, e) + + // find some non-square n + var n Int + n.SetInt64(2) + for Jacobi(&n, p) != -1 { + n.Add(&n, intOne) + } + + // Core of the Tonelli-Shanks algorithm. Follows the description in + // section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra + // Brown: + // https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf + var y, b, g, t Int + y.Add(&s, intOne) + y.Rsh(&y, 1) + y.Exp(x, &y, p) // y = x^((s+1)/2) + b.Exp(x, &s, p) // b = x^s + g.Exp(&n, &s, p) // g = n^s + r := e + for { + // find the least m such that ord_p(b) = 2^m + var m uint + t.Set(&b) + for t.Cmp(intOne) != 0 { + t.Mul(&t, &t).Mod(&t, p) + m++ + } + + if m == 0 { + return z.Set(&y) + } + + t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p) + // t = g^(2^(r-m-1)) mod p + g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p + y.Mul(&y, &t).Mod(&y, p) + b.Mul(&b, &g).Mod(&b, p) + r = m + } +} + +// ModSqrt sets z to a square root of x mod p if such a square root exists, and +// returns z. The modulus p must be an odd prime. If x is not a square mod p, +// ModSqrt leaves z unchanged and returns nil. This function panics if p is +// not an odd integer, its behavior is undefined if p is odd but not prime. +func (z *Int) ModSqrt(x, p *Int) *Int { + switch Jacobi(x, p) { + case -1: + return nil // x is not a square mod p + case 0: + return z.SetInt64(0) // sqrt(0) mod p = 0 + case 1: + break + } + if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p + x = new(Int).Mod(x, p) + } + + switch { + case p.abs[0]%4 == 3: + // Check whether p is 3 mod 4, and if so, use the faster algorithm. + return z.modSqrt3Mod4Prime(x, p) + case p.abs[0]%8 == 5: + // Check whether p is 5 mod 8, use Atkin's algorithm. + return z.modSqrt5Mod8Prime(x, p) + default: + // Otherwise, use Tonelli-Shanks. + return z.modSqrtTonelliShanks(x, p) + } +} + +// Lsh sets z = x << n and returns z. +func (z *Int) Lsh(x *Int, n uint) *Int { + z.abs = z.abs.shl(x.abs, n) + z.neg = x.neg + return z +} + +// Rsh sets z = x >> n and returns z. +func (z *Int) Rsh(x *Int, n uint) *Int { + if x.neg { + // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) + t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 + t = t.shr(t, n) + z.abs = t.add(t, natOne) + z.neg = true // z cannot be zero if x is negative + return z + } + + z.abs = z.abs.shr(x.abs, n) + z.neg = false + return z +} + +// Bit returns the value of the i'th bit of x. That is, it +// returns (x>>i)&1. The bit index i must be >= 0. +func (x *Int) Bit(i int) uint { + if i == 0 { + // optimization for common case: odd/even test of x + if len(x.abs) > 0 { + return uint(x.abs[0] & 1) // bit 0 is same for -x + } + return 0 + } + if i < 0 { + panic("negative bit index") + } + if x.neg { + t := nat(nil).sub(x.abs, natOne) + return t.bit(uint(i)) ^ 1 + } + + return x.abs.bit(uint(i)) +} + +// SetBit sets z to x, with x's i'th bit set to b (0 or 1). +// That is, if b is 1 SetBit sets z = x | (1 << i); +// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, +// SetBit will panic. +func (z *Int) SetBit(x *Int, i int, b uint) *Int { + if i < 0 { + panic("negative bit index") + } + if x.neg { + t := z.abs.sub(x.abs, natOne) + t = t.setBit(t, uint(i), b^1) + z.abs = t.add(t, natOne) + z.neg = len(z.abs) > 0 + return z + } + z.abs = z.abs.setBit(x.abs, uint(i), b) + z.neg = false + return z +} + +// And sets z = x & y and returns z. +func (z *Int) And(x, y *Int) *Int { + if x.neg == y.neg { + if x.neg { + // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) + x1 := nat(nil).sub(x.abs, natOne) + y1 := nat(nil).sub(y.abs, natOne) + z.abs = z.abs.add(z.abs.or(x1, y1), natOne) + z.neg = true // z cannot be zero if x and y are negative + return z + } + + // x & y == x & y + z.abs = z.abs.and(x.abs, y.abs) + z.neg = false + return z + } + + // x.neg != y.neg + if x.neg { + x, y = y, x // & is symmetric + } + + // x & (-y) == x & ^(y-1) == x &^ (y-1) + y1 := nat(nil).sub(y.abs, natOne) + z.abs = z.abs.andNot(x.abs, y1) + z.neg = false + return z +} + +// AndNot sets z = x &^ y and returns z. +func (z *Int) AndNot(x, y *Int) *Int { + if x.neg == y.neg { + if x.neg { + // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) + x1 := nat(nil).sub(x.abs, natOne) + y1 := nat(nil).sub(y.abs, natOne) + z.abs = z.abs.andNot(y1, x1) + z.neg = false + return z + } + + // x &^ y == x &^ y + z.abs = z.abs.andNot(x.abs, y.abs) + z.neg = false + return z + } + + if x.neg { + // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) + x1 := nat(nil).sub(x.abs, natOne) + z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) + z.neg = true // z cannot be zero if x is negative and y is positive + return z + } + + // x &^ (-y) == x &^ ^(y-1) == x & (y-1) + y1 := nat(nil).sub(y.abs, natOne) + z.abs = z.abs.and(x.abs, y1) + z.neg = false + return z +} + +// Or sets z = x | y and returns z. +func (z *Int) Or(x, y *Int) *Int { + if x.neg == y.neg { + if x.neg { + // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) + x1 := nat(nil).sub(x.abs, natOne) + y1 := nat(nil).sub(y.abs, natOne) + z.abs = z.abs.add(z.abs.and(x1, y1), natOne) + z.neg = true // z cannot be zero if x and y are negative + return z + } + + // x | y == x | y + z.abs = z.abs.or(x.abs, y.abs) + z.neg = false + return z + } + + // x.neg != y.neg + if x.neg { + x, y = y, x // | is symmetric + } + + // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) + y1 := nat(nil).sub(y.abs, natOne) + z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) + z.neg = true // z cannot be zero if one of x or y is negative + return z +} + +// Xor sets z = x ^ y and returns z. +func (z *Int) Xor(x, y *Int) *Int { + if x.neg == y.neg { + if x.neg { + // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) + x1 := nat(nil).sub(x.abs, natOne) + y1 := nat(nil).sub(y.abs, natOne) + z.abs = z.abs.xor(x1, y1) + z.neg = false + return z + } + + // x ^ y == x ^ y + z.abs = z.abs.xor(x.abs, y.abs) + z.neg = false + return z + } + + // x.neg != y.neg + if x.neg { + x, y = y, x // ^ is symmetric + } + + // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) + y1 := nat(nil).sub(y.abs, natOne) + z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) + z.neg = true // z cannot be zero if only one of x or y is negative + return z +} + +// Not sets z = ^x and returns z. +func (z *Int) Not(x *Int) *Int { + if x.neg { + // ^(-x) == ^(^(x-1)) == x-1 + z.abs = z.abs.sub(x.abs, natOne) + z.neg = false + return z + } + + // ^x == -x-1 == -(x+1) + z.abs = z.abs.add(x.abs, natOne) + z.neg = true // z cannot be zero if x is positive + return z +} + +// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z. +// It panics if x is negative. +func (z *Int) Sqrt(x *Int) *Int { + if x.neg { + panic("square root of negative number") + } + z.neg = false + z.abs = z.abs.sqrt(x.abs) + return z +} |