diff options
Diffstat (limited to 'src/math/big/natconv.go')
-rw-r--r-- | src/math/big/natconv.go | 511 |
1 files changed, 511 insertions, 0 deletions
diff --git a/src/math/big/natconv.go b/src/math/big/natconv.go new file mode 100644 index 0000000..ce94f2c --- /dev/null +++ b/src/math/big/natconv.go @@ -0,0 +1,511 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file implements nat-to-string conversion functions. + +package big + +import ( + "errors" + "fmt" + "io" + "math" + "math/bits" + "sync" +) + +const digits = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" + +// Note: MaxBase = len(digits), but it must remain an untyped rune constant +// for API compatibility. + +// MaxBase is the largest number base accepted for string conversions. +const MaxBase = 10 + ('z' - 'a' + 1) + ('Z' - 'A' + 1) +const maxBaseSmall = 10 + ('z' - 'a' + 1) + +// maxPow returns (b**n, n) such that b**n is the largest power b**n <= _M. +// For instance maxPow(10) == (1e19, 19) for 19 decimal digits in a 64bit Word. +// In other words, at most n digits in base b fit into a Word. +// TODO(gri) replace this with a table, generated at build time. +func maxPow(b Word) (p Word, n int) { + p, n = b, 1 // assuming b <= _M + for max := _M / b; p <= max; { + // p == b**n && p <= max + p *= b + n++ + } + // p == b**n && p <= _M + return +} + +// pow returns x**n for n > 0, and 1 otherwise. +func pow(x Word, n int) (p Word) { + // n == sum of bi * 2**i, for 0 <= i < imax, and bi is 0 or 1 + // thus x**n == product of x**(2**i) for all i where bi == 1 + // (Russian Peasant Method for exponentiation) + p = 1 + for n > 0 { + if n&1 != 0 { + p *= x + } + x *= x + n >>= 1 + } + return +} + +// scan errors +var ( + errNoDigits = errors.New("number has no digits") + errInvalSep = errors.New("'_' must separate successive digits") +) + +// scan scans the number corresponding to the longest possible prefix +// from r representing an unsigned number in a given conversion base. +// scan returns the corresponding natural number res, the actual base b, +// a digit count, and a read or syntax error err, if any. +// +// For base 0, an underscore character “_” may appear between a base +// prefix and an adjacent digit, and between successive digits; such +// underscores do not change the value of the number, or the returned +// digit count. Incorrect placement of underscores is reported as an +// error if there are no other errors. If base != 0, underscores are +// not recognized and thus terminate scanning like any other character +// that is not a valid radix point or digit. +// +// number = mantissa | prefix pmantissa . +// prefix = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] . +// mantissa = digits "." [ digits ] | digits | "." digits . +// pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits . +// digits = digit { [ "_" ] digit } . +// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" . +// +// Unless fracOk is set, the base argument must be 0 or a value between +// 2 and MaxBase. If fracOk is set, the base argument must be one of +// 0, 2, 8, 10, or 16. Providing an invalid base argument leads to a run- +// time panic. +// +// For base 0, the number prefix determines the actual base: A prefix of +// “0b” or “0B” selects base 2, “0o” or “0O” selects base 8, and +// “0x” or “0X” selects base 16. If fracOk is false, a “0” prefix +// (immediately followed by digits) selects base 8 as well. Otherwise, +// the selected base is 10 and no prefix is accepted. +// +// If fracOk is set, a period followed by a fractional part is permitted. +// The result value is computed as if there were no period present; and +// the count value is used to determine the fractional part. +// +// For bases <= 36, lower and upper case letters are considered the same: +// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35. +// For bases > 36, the upper case letters 'A' to 'Z' represent the digit +// values 36 to 61. +// +// A result digit count > 0 corresponds to the number of (non-prefix) digits +// parsed. A digit count <= 0 indicates the presence of a period (if fracOk +// is set, only), and -count is the number of fractional digits found. +// In this case, the actual value of the scanned number is res * b**count. +func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) { + // reject invalid bases + baseOk := base == 0 || + !fracOk && 2 <= base && base <= MaxBase || + fracOk && (base == 2 || base == 8 || base == 10 || base == 16) + if !baseOk { + panic(fmt.Sprintf("invalid number base %d", base)) + } + + // prev encodes the previously seen char: it is one + // of '_', '0' (a digit), or '.' (anything else). A + // valid separator '_' may only occur after a digit + // and if base == 0. + prev := '.' + invalSep := false + + // one char look-ahead + ch, err := r.ReadByte() + + // determine actual base + b, prefix := base, 0 + if base == 0 { + // actual base is 10 unless there's a base prefix + b = 10 + if err == nil && ch == '0' { + prev = '0' + count = 1 + ch, err = r.ReadByte() + if err == nil { + // possibly one of 0b, 0B, 0o, 0O, 0x, 0X + switch ch { + case 'b', 'B': + b, prefix = 2, 'b' + case 'o', 'O': + b, prefix = 8, 'o' + case 'x', 'X': + b, prefix = 16, 'x' + default: + if !fracOk { + b, prefix = 8, '0' + } + } + if prefix != 0 { + count = 0 // prefix is not counted + if prefix != '0' { + ch, err = r.ReadByte() + } + } + } + } + } + + // convert string + // Algorithm: Collect digits in groups of at most n digits in di + // and then use mulAddWW for every such group to add them to the + // result. + z = z[:0] + b1 := Word(b) + bn, n := maxPow(b1) // at most n digits in base b1 fit into Word + di := Word(0) // 0 <= di < b1**i < bn + i := 0 // 0 <= i < n + dp := -1 // position of decimal point + for err == nil { + if ch == '.' && fracOk { + fracOk = false + if prev == '_' { + invalSep = true + } + prev = '.' + dp = count + } else if ch == '_' && base == 0 { + if prev != '0' { + invalSep = true + } + prev = '_' + } else { + // convert rune into digit value d1 + var d1 Word + switch { + case '0' <= ch && ch <= '9': + d1 = Word(ch - '0') + case 'a' <= ch && ch <= 'z': + d1 = Word(ch - 'a' + 10) + case 'A' <= ch && ch <= 'Z': + if b <= maxBaseSmall { + d1 = Word(ch - 'A' + 10) + } else { + d1 = Word(ch - 'A' + maxBaseSmall) + } + default: + d1 = MaxBase + 1 + } + if d1 >= b1 { + r.UnreadByte() // ch does not belong to number anymore + break + } + prev = '0' + count++ + + // collect d1 in di + di = di*b1 + d1 + i++ + + // if di is "full", add it to the result + if i == n { + z = z.mulAddWW(z, bn, di) + di = 0 + i = 0 + } + } + + ch, err = r.ReadByte() + } + + if err == io.EOF { + err = nil + } + + // other errors take precedence over invalid separators + if err == nil && (invalSep || prev == '_') { + err = errInvalSep + } + + if count == 0 { + // no digits found + if prefix == '0' { + // there was only the octal prefix 0 (possibly followed by separators and digits > 7); + // interpret as decimal 0 + return z[:0], 10, 1, err + } + err = errNoDigits // fall through; result will be 0 + } + + // add remaining digits to result + if i > 0 { + z = z.mulAddWW(z, pow(b1, i), di) + } + res = z.norm() + + // adjust count for fraction, if any + if dp >= 0 { + // 0 <= dp <= count + count = dp - count + } + + return +} + +// utoa converts x to an ASCII representation in the given base; +// base must be between 2 and MaxBase, inclusive. +func (x nat) utoa(base int) []byte { + return x.itoa(false, base) +} + +// itoa is like utoa but it prepends a '-' if neg && x != 0. +func (x nat) itoa(neg bool, base int) []byte { + if base < 2 || base > MaxBase { + panic("invalid base") + } + + // x == 0 + if len(x) == 0 { + return []byte("0") + } + // len(x) > 0 + + // allocate buffer for conversion + i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most + if neg { + i++ + } + s := make([]byte, i) + + // convert power of two and non power of two bases separately + if b := Word(base); b == b&-b { + // shift is base b digit size in bits + shift := uint(bits.TrailingZeros(uint(b))) // shift > 0 because b >= 2 + mask := Word(1<<shift - 1) + w := x[0] // current word + nbits := uint(_W) // number of unprocessed bits in w + + // convert less-significant words (include leading zeros) + for k := 1; k < len(x); k++ { + // convert full digits + for nbits >= shift { + i-- + s[i] = digits[w&mask] + w >>= shift + nbits -= shift + } + + // convert any partial leading digit and advance to next word + if nbits == 0 { + // no partial digit remaining, just advance + w = x[k] + nbits = _W + } else { + // partial digit in current word w (== x[k-1]) and next word x[k] + w |= x[k] << nbits + i-- + s[i] = digits[w&mask] + + // advance + w = x[k] >> (shift - nbits) + nbits = _W - (shift - nbits) + } + } + + // convert digits of most-significant word w (omit leading zeros) + for w != 0 { + i-- + s[i] = digits[w&mask] + w >>= shift + } + + } else { + bb, ndigits := maxPow(b) + + // construct table of successive squares of bb*leafSize to use in subdivisions + // result (table != nil) <=> (len(x) > leafSize > 0) + table := divisors(len(x), b, ndigits, bb) + + // preserve x, create local copy for use by convertWords + q := nat(nil).set(x) + + // convert q to string s in base b + q.convertWords(s, b, ndigits, bb, table) + + // strip leading zeros + // (x != 0; thus s must contain at least one non-zero digit + // and the loop will terminate) + i = 0 + for s[i] == '0' { + i++ + } + } + + if neg { + i-- + s[i] = '-' + } + + return s[i:] +} + +// Convert words of q to base b digits in s. If q is large, it is recursively "split in half" +// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using +// repeated nat/Word division. +// +// The iterative method processes n Words by n divW() calls, each of which visits every Word in the +// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s. +// Recursive conversion divides q by its approximate square root, yielding two parts, each half +// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s +// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and +// is made better by splitting the subblocks recursively. Best is to split blocks until one more +// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the +// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the +// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and +// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for +// specific hardware. +func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) { + // split larger blocks recursively + if table != nil { + // len(q) > leafSize > 0 + var r nat + index := len(table) - 1 + for len(q) > leafSize { + // find divisor close to sqrt(q) if possible, but in any case < q + maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length + minLength := maxLength >> 1 // ~= log2 sqrt(q) + for index > 0 && table[index-1].nbits > minLength { + index-- // desired + } + if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 { + index-- + if index < 0 { + panic("internal inconsistency") + } + } + + // split q into the two digit number (q'*bbb + r) to form independent subblocks + q, r = q.div(r, q, table[index].bbb) + + // convert subblocks and collect results in s[:h] and s[h:] + h := len(s) - table[index].ndigits + r.convertWords(s[h:], b, ndigits, bb, table[0:index]) + s = s[:h] // == q.convertWords(s, b, ndigits, bb, table[0:index+1]) + } + } + + // having split any large blocks now process the remaining (small) block iteratively + i := len(s) + var r Word + if b == 10 { + // hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants) + for len(q) > 0 { + // extract least significant, base bb "digit" + q, r = q.divW(q, bb) + for j := 0; j < ndigits && i > 0; j++ { + i-- + // avoid % computation since r%10 == r - int(r/10)*10; + // this appears to be faster for BenchmarkString10000Base10 + // and smaller strings (but a bit slower for larger ones) + t := r / 10 + s[i] = '0' + byte(r-t*10) + r = t + } + } + } else { + for len(q) > 0 { + // extract least significant, base bb "digit" + q, r = q.divW(q, bb) + for j := 0; j < ndigits && i > 0; j++ { + i-- + s[i] = digits[r%b] + r /= b + } + } + } + + // prepend high-order zeros + for i > 0 { // while need more leading zeros + i-- + s[i] = '0' + } +} + +// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion) +// Benchmark and configure leafSize using: go test -bench="Leaf" +// +// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines) +// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU +var leafSize int = 8 // number of Word-size binary values treat as a monolithic block + +type divisor struct { + bbb nat // divisor + nbits int // bit length of divisor (discounting leading zeros) ~= log2(bbb) + ndigits int // digit length of divisor in terms of output base digits +} + +var cacheBase10 struct { + sync.Mutex + table [64]divisor // cached divisors for base 10 +} + +// expWW computes x**y +func (z nat) expWW(x, y Word) nat { + return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil, false) +} + +// construct table of powers of bb*leafSize to use in subdivisions. +func divisors(m int, b Word, ndigits int, bb Word) []divisor { + // only compute table when recursive conversion is enabled and x is large + if leafSize == 0 || m <= leafSize { + return nil + } + + // determine k where (bb**leafSize)**(2**k) >= sqrt(x) + k := 1 + for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 { + k++ + } + + // reuse and extend existing table of divisors or create new table as appropriate + var table []divisor // for b == 10, table overlaps with cacheBase10.table + if b == 10 { + cacheBase10.Lock() + table = cacheBase10.table[0:k] // reuse old table for this conversion + } else { + table = make([]divisor, k) // create new table for this conversion + } + + // extend table + if table[k-1].ndigits == 0 { + // add new entries as needed + var larger nat + for i := 0; i < k; i++ { + if table[i].ndigits == 0 { + if i == 0 { + table[0].bbb = nat(nil).expWW(bb, Word(leafSize)) + table[0].ndigits = ndigits * leafSize + } else { + table[i].bbb = nat(nil).sqr(table[i-1].bbb) + table[i].ndigits = 2 * table[i-1].ndigits + } + + // optimization: exploit aggregated extra bits in macro blocks + larger = nat(nil).set(table[i].bbb) + for mulAddVWW(larger, larger, b, 0) == 0 { + table[i].bbb = table[i].bbb.set(larger) + table[i].ndigits++ + } + + table[i].nbits = table[i].bbb.bitLen() + } + } + } + + if b == 10 { + cacheBase10.Unlock() + } + + return table +} |