summaryrefslogtreecommitdiffstats
path: root/src/math/sqrt.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/sqrt.go')
-rw-r--r--src/math/sqrt.go145
1 files changed, 145 insertions, 0 deletions
diff --git a/src/math/sqrt.go b/src/math/sqrt.go
new file mode 100644
index 0000000..54929eb
--- /dev/null
+++ b/src/math/sqrt.go
@@ -0,0 +1,145 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// The original C code and the long comment below are
+// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
+// came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// __ieee754_sqrt(x)
+// Return correctly rounded sqrt.
+// -----------------------------------------
+// | Use the hardware sqrt if you have one |
+// -----------------------------------------
+// Method:
+// Bit by bit method using integer arithmetic. (Slow, but portable)
+// 1. Normalization
+// Scale x to y in [1,4) with even powers of 2:
+// find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
+// sqrt(x) = 2**k * sqrt(y)
+// 2. Bit by bit computation
+// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
+// i 0
+// i+1 2
+// s = 2*q , and y = 2 * ( y - q ). (1)
+// i i i i
+//
+// To compute q from q , one checks whether
+// i+1 i
+//
+// -(i+1) 2
+// (q + 2 ) <= y. (2)
+// i
+// -(i+1)
+// If (2) is false, then q = q ; otherwise q = q + 2 .
+// i+1 i i+1 i
+//
+// With some algebraic manipulation, it is not difficult to see
+// that (2) is equivalent to
+// -(i+1)
+// s + 2 <= y (3)
+// i i
+//
+// The advantage of (3) is that s and y can be computed by
+// i i
+// the following recurrence formula:
+// if (3) is false
+//
+// s = s , y = y ; (4)
+// i+1 i i+1 i
+//
+// otherwise,
+// -i -(i+1)
+// s = s + 2 , y = y - s - 2 (5)
+// i+1 i i+1 i i
+//
+// One may easily use induction to prove (4) and (5).
+// Note. Since the left hand side of (3) contain only i+2 bits,
+// it is not necessary to do a full (53-bit) comparison
+// in (3).
+// 3. Final rounding
+// After generating the 53 bits result, we compute one more bit.
+// Together with the remainder, we can decide whether the
+// result is exact, bigger than 1/2ulp, or less than 1/2ulp
+// (it will never equal to 1/2ulp).
+// The rounding mode can be detected by checking whether
+// huge + tiny is equal to huge, and whether huge - tiny is
+// equal to huge for some floating point number "huge" and "tiny".
+//
+//
+// Notes: Rounding mode detection omitted. The constants "mask", "shift",
+// and "bias" are found in src/math/bits.go
+
+// Sqrt returns the square root of x.
+//
+// Special cases are:
+//
+// Sqrt(+Inf) = +Inf
+// Sqrt(±0) = ±0
+// Sqrt(x < 0) = NaN
+// Sqrt(NaN) = NaN
+func Sqrt(x float64) float64 {
+ return sqrt(x)
+}
+
+// Note: On systems where Sqrt is a single instruction, the compiler
+// may turn a direct call into a direct use of that instruction instead.
+
+func sqrt(x float64) float64 {
+ // special cases
+ switch {
+ case x == 0 || IsNaN(x) || IsInf(x, 1):
+ return x
+ case x < 0:
+ return NaN()
+ }
+ ix := Float64bits(x)
+ // normalize x
+ exp := int((ix >> shift) & mask)
+ if exp == 0 { // subnormal x
+ for ix&(1<<shift) == 0 {
+ ix <<= 1
+ exp--
+ }
+ exp++
+ }
+ exp -= bias // unbias exponent
+ ix &^= mask << shift
+ ix |= 1 << shift
+ if exp&1 == 1 { // odd exp, double x to make it even
+ ix <<= 1
+ }
+ exp >>= 1 // exp = exp/2, exponent of square root
+ // generate sqrt(x) bit by bit
+ ix <<= 1
+ var q, s uint64 // q = sqrt(x)
+ r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
+ for r != 0 {
+ t := s + r
+ if t <= ix {
+ s = t + r
+ ix -= t
+ q += r
+ }
+ ix <<= 1
+ r >>= 1
+ }
+ // final rounding
+ if ix != 0 { // remainder, result not exact
+ q += q & 1 // round according to extra bit
+ }
+ ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
+ return Float64frombits(ix)
+}