summaryrefslogtreecommitdiffstats
path: root/src/reflect/all_test.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/reflect/all_test.go')
-rw-r--r--src/reflect/all_test.go8362
1 files changed, 8362 insertions, 0 deletions
diff --git a/src/reflect/all_test.go b/src/reflect/all_test.go
new file mode 100644
index 0000000..28a7640
--- /dev/null
+++ b/src/reflect/all_test.go
@@ -0,0 +1,8362 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflect_test
+
+import (
+ "bytes"
+ "encoding/base64"
+ "flag"
+ "fmt"
+ "go/token"
+ "internal/goarch"
+ "internal/testenv"
+ "io"
+ "math"
+ "math/rand"
+ "net"
+ "os"
+ . "reflect"
+ "reflect/internal/example1"
+ "reflect/internal/example2"
+ "runtime"
+ "sort"
+ "strconv"
+ "strings"
+ "sync"
+ "sync/atomic"
+ "testing"
+ "time"
+ "unsafe"
+)
+
+var sink any
+
+func TestBool(t *testing.T) {
+ v := ValueOf(true)
+ if v.Bool() != true {
+ t.Fatal("ValueOf(true).Bool() = false")
+ }
+}
+
+type integer int
+type T struct {
+ a int
+ b float64
+ c string
+ d *int
+}
+
+var _ = T{} == T{} // tests depend on T being comparable
+
+type pair struct {
+ i any
+ s string
+}
+
+func assert(t *testing.T, s, want string) {
+ if s != want {
+ t.Errorf("have %#q want %#q", s, want)
+ }
+}
+
+var typeTests = []pair{
+ {struct{ x int }{}, "int"},
+ {struct{ x int8 }{}, "int8"},
+ {struct{ x int16 }{}, "int16"},
+ {struct{ x int32 }{}, "int32"},
+ {struct{ x int64 }{}, "int64"},
+ {struct{ x uint }{}, "uint"},
+ {struct{ x uint8 }{}, "uint8"},
+ {struct{ x uint16 }{}, "uint16"},
+ {struct{ x uint32 }{}, "uint32"},
+ {struct{ x uint64 }{}, "uint64"},
+ {struct{ x float32 }{}, "float32"},
+ {struct{ x float64 }{}, "float64"},
+ {struct{ x int8 }{}, "int8"},
+ {struct{ x (**int8) }{}, "**int8"},
+ {struct{ x (**integer) }{}, "**reflect_test.integer"},
+ {struct{ x ([32]int32) }{}, "[32]int32"},
+ {struct{ x ([]int8) }{}, "[]int8"},
+ {struct{ x (map[string]int32) }{}, "map[string]int32"},
+ {struct{ x (chan<- string) }{}, "chan<- string"},
+ {struct{ x (chan<- chan string) }{}, "chan<- chan string"},
+ {struct{ x (chan<- <-chan string) }{}, "chan<- <-chan string"},
+ {struct{ x (<-chan <-chan string) }{}, "<-chan <-chan string"},
+ {struct{ x (chan (<-chan string)) }{}, "chan (<-chan string)"},
+ {struct {
+ x struct {
+ c chan *int32
+ d float32
+ }
+ }{},
+ "struct { c chan *int32; d float32 }",
+ },
+ {struct{ x (func(a int8, b int32)) }{}, "func(int8, int32)"},
+ {struct {
+ x struct {
+ c func(chan *integer, *int8)
+ }
+ }{},
+ "struct { c func(chan *reflect_test.integer, *int8) }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int32
+ }
+ }{},
+ "struct { a int8; b int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int32
+ }
+ }{},
+ "struct { a int8; b int8; c int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int8
+ e int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int8; e int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int8
+ e int8
+ f int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int8; e int8; f int32 }",
+ },
+ {struct {
+ x struct {
+ a int8 `reflect:"hi there"`
+ }
+ }{},
+ `struct { a int8 "reflect:\"hi there\"" }`,
+ },
+ {struct {
+ x struct {
+ a int8 `reflect:"hi \x00there\t\n\"\\"`
+ }
+ }{},
+ `struct { a int8 "reflect:\"hi \\x00there\\t\\n\\\"\\\\\"" }`,
+ },
+ {struct {
+ x struct {
+ f func(args ...int)
+ }
+ }{},
+ "struct { f func(...int) }",
+ },
+ {struct {
+ x (interface {
+ a(func(func(int) int) func(func(int)) int)
+ b()
+ })
+ }{},
+ "interface { reflect_test.a(func(func(int) int) func(func(int)) int); reflect_test.b() }",
+ },
+ {struct {
+ x struct {
+ int32
+ int64
+ }
+ }{},
+ "struct { int32; int64 }",
+ },
+}
+
+var valueTests = []pair{
+ {new(int), "132"},
+ {new(int8), "8"},
+ {new(int16), "16"},
+ {new(int32), "32"},
+ {new(int64), "64"},
+ {new(uint), "132"},
+ {new(uint8), "8"},
+ {new(uint16), "16"},
+ {new(uint32), "32"},
+ {new(uint64), "64"},
+ {new(float32), "256.25"},
+ {new(float64), "512.125"},
+ {new(complex64), "532.125+10i"},
+ {new(complex128), "564.25+1i"},
+ {new(string), "stringy cheese"},
+ {new(bool), "true"},
+ {new(*int8), "*int8(0)"},
+ {new(**int8), "**int8(0)"},
+ {new([5]int32), "[5]int32{0, 0, 0, 0, 0}"},
+ {new(**integer), "**reflect_test.integer(0)"},
+ {new(map[string]int32), "map[string]int32{<can't iterate on maps>}"},
+ {new(chan<- string), "chan<- string"},
+ {new(func(a int8, b int32)), "func(int8, int32)(0)"},
+ {new(struct {
+ c chan *int32
+ d float32
+ }),
+ "struct { c chan *int32; d float32 }{chan *int32, 0}",
+ },
+ {new(struct{ c func(chan *integer, *int8) }),
+ "struct { c func(chan *reflect_test.integer, *int8) }{func(chan *reflect_test.integer, *int8)(0)}",
+ },
+ {new(struct {
+ a int8
+ b int32
+ }),
+ "struct { a int8; b int32 }{0, 0}",
+ },
+ {new(struct {
+ a int8
+ b int8
+ c int32
+ }),
+ "struct { a int8; b int8; c int32 }{0, 0, 0}",
+ },
+}
+
+func testType(t *testing.T, i int, typ Type, want string) {
+ s := typ.String()
+ if s != want {
+ t.Errorf("#%d: have %#q, want %#q", i, s, want)
+ }
+}
+
+func TestTypes(t *testing.T) {
+ for i, tt := range typeTests {
+ testType(t, i, ValueOf(tt.i).Field(0).Type(), tt.s)
+ }
+}
+
+func TestSet(t *testing.T) {
+ for i, tt := range valueTests {
+ v := ValueOf(tt.i)
+ v = v.Elem()
+ switch v.Kind() {
+ case Int:
+ v.SetInt(132)
+ case Int8:
+ v.SetInt(8)
+ case Int16:
+ v.SetInt(16)
+ case Int32:
+ v.SetInt(32)
+ case Int64:
+ v.SetInt(64)
+ case Uint:
+ v.SetUint(132)
+ case Uint8:
+ v.SetUint(8)
+ case Uint16:
+ v.SetUint(16)
+ case Uint32:
+ v.SetUint(32)
+ case Uint64:
+ v.SetUint(64)
+ case Float32:
+ v.SetFloat(256.25)
+ case Float64:
+ v.SetFloat(512.125)
+ case Complex64:
+ v.SetComplex(532.125 + 10i)
+ case Complex128:
+ v.SetComplex(564.25 + 1i)
+ case String:
+ v.SetString("stringy cheese")
+ case Bool:
+ v.SetBool(true)
+ }
+ s := valueToString(v)
+ if s != tt.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
+ }
+ }
+}
+
+func TestSetValue(t *testing.T) {
+ for i, tt := range valueTests {
+ v := ValueOf(tt.i).Elem()
+ switch v.Kind() {
+ case Int:
+ v.Set(ValueOf(int(132)))
+ case Int8:
+ v.Set(ValueOf(int8(8)))
+ case Int16:
+ v.Set(ValueOf(int16(16)))
+ case Int32:
+ v.Set(ValueOf(int32(32)))
+ case Int64:
+ v.Set(ValueOf(int64(64)))
+ case Uint:
+ v.Set(ValueOf(uint(132)))
+ case Uint8:
+ v.Set(ValueOf(uint8(8)))
+ case Uint16:
+ v.Set(ValueOf(uint16(16)))
+ case Uint32:
+ v.Set(ValueOf(uint32(32)))
+ case Uint64:
+ v.Set(ValueOf(uint64(64)))
+ case Float32:
+ v.Set(ValueOf(float32(256.25)))
+ case Float64:
+ v.Set(ValueOf(512.125))
+ case Complex64:
+ v.Set(ValueOf(complex64(532.125 + 10i)))
+ case Complex128:
+ v.Set(ValueOf(complex128(564.25 + 1i)))
+ case String:
+ v.Set(ValueOf("stringy cheese"))
+ case Bool:
+ v.Set(ValueOf(true))
+ }
+ s := valueToString(v)
+ if s != tt.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
+ }
+ }
+}
+
+func TestMapIterSet(t *testing.T) {
+ m := make(map[string]any, len(valueTests))
+ for _, tt := range valueTests {
+ m[tt.s] = tt.i
+ }
+ v := ValueOf(m)
+
+ k := New(v.Type().Key()).Elem()
+ e := New(v.Type().Elem()).Elem()
+
+ iter := v.MapRange()
+ for iter.Next() {
+ k.SetIterKey(iter)
+ e.SetIterValue(iter)
+ want := m[k.String()]
+ got := e.Interface()
+ if got != want {
+ t.Errorf("%q: want (%T) %v, got (%T) %v", k.String(), want, want, got, got)
+ }
+ if setkey, key := valueToString(k), valueToString(iter.Key()); setkey != key {
+ t.Errorf("MapIter.Key() = %q, MapIter.SetKey() = %q", key, setkey)
+ }
+ if setval, val := valueToString(e), valueToString(iter.Value()); setval != val {
+ t.Errorf("MapIter.Value() = %q, MapIter.SetValue() = %q", val, setval)
+ }
+ }
+
+ if testenv.OptimizationOff() {
+ return // no inlining with the noopt builder
+ }
+
+ got := int(testing.AllocsPerRun(10, func() {
+ iter := v.MapRange()
+ for iter.Next() {
+ k.SetIterKey(iter)
+ e.SetIterValue(iter)
+ }
+ }))
+ // Calling MapRange should not allocate even though it returns a *MapIter.
+ // The function is inlineable, so if the local usage does not escape
+ // the *MapIter, it can remain stack allocated.
+ want := 0
+ if got != want {
+ t.Errorf("wanted %d alloc, got %d", want, got)
+ }
+}
+
+func TestCanIntUintFloatComplex(t *testing.T) {
+ type integer int
+ type uinteger uint
+ type float float64
+ type complex complex128
+
+ var ops = [...]string{"CanInt", "CanUint", "CanFloat", "CanComplex"}
+
+ var testCases = []struct {
+ i any
+ want [4]bool
+ }{
+ // signed integer
+ {132, [...]bool{true, false, false, false}},
+ {int8(8), [...]bool{true, false, false, false}},
+ {int16(16), [...]bool{true, false, false, false}},
+ {int32(32), [...]bool{true, false, false, false}},
+ {int64(64), [...]bool{true, false, false, false}},
+ // unsigned integer
+ {uint(132), [...]bool{false, true, false, false}},
+ {uint8(8), [...]bool{false, true, false, false}},
+ {uint16(16), [...]bool{false, true, false, false}},
+ {uint32(32), [...]bool{false, true, false, false}},
+ {uint64(64), [...]bool{false, true, false, false}},
+ {uintptr(0xABCD), [...]bool{false, true, false, false}},
+ // floating-point
+ {float32(256.25), [...]bool{false, false, true, false}},
+ {float64(512.125), [...]bool{false, false, true, false}},
+ // complex
+ {complex64(532.125 + 10i), [...]bool{false, false, false, true}},
+ {complex128(564.25 + 1i), [...]bool{false, false, false, true}},
+ // underlying
+ {integer(-132), [...]bool{true, false, false, false}},
+ {uinteger(132), [...]bool{false, true, false, false}},
+ {float(256.25), [...]bool{false, false, true, false}},
+ {complex(532.125 + 10i), [...]bool{false, false, false, true}},
+ // not-acceptable
+ {"hello world", [...]bool{false, false, false, false}},
+ {new(int), [...]bool{false, false, false, false}},
+ {new(uint), [...]bool{false, false, false, false}},
+ {new(float64), [...]bool{false, false, false, false}},
+ {new(complex64), [...]bool{false, false, false, false}},
+ {new([5]int), [...]bool{false, false, false, false}},
+ {new(integer), [...]bool{false, false, false, false}},
+ {new(map[int]int), [...]bool{false, false, false, false}},
+ {new(chan<- int), [...]bool{false, false, false, false}},
+ {new(func(a int8)), [...]bool{false, false, false, false}},
+ {new(struct{ i int }), [...]bool{false, false, false, false}},
+ }
+
+ for i, tc := range testCases {
+ v := ValueOf(tc.i)
+ got := [...]bool{v.CanInt(), v.CanUint(), v.CanFloat(), v.CanComplex()}
+
+ for j := range tc.want {
+ if got[j] != tc.want[j] {
+ t.Errorf(
+ "#%d: v.%s() returned %t for type %T, want %t",
+ i,
+ ops[j],
+ got[j],
+ tc.i,
+ tc.want[j],
+ )
+ }
+ }
+ }
+}
+
+func TestCanSetField(t *testing.T) {
+ type embed struct{ x, X int }
+ type Embed struct{ x, X int }
+ type S1 struct {
+ embed
+ x, X int
+ }
+ type S2 struct {
+ *embed
+ x, X int
+ }
+ type S3 struct {
+ Embed
+ x, X int
+ }
+ type S4 struct {
+ *Embed
+ x, X int
+ }
+
+ type testCase struct {
+ // -1 means Addr().Elem() of current value
+ index []int
+ canSet bool
+ }
+ tests := []struct {
+ val Value
+ cases []testCase
+ }{{
+ val: ValueOf(&S1{}),
+ cases: []testCase{
+ {[]int{0}, false},
+ {[]int{0, -1}, false},
+ {[]int{0, 0}, false},
+ {[]int{0, 0, -1}, false},
+ {[]int{0, -1, 0}, false},
+ {[]int{0, -1, 0, -1}, false},
+ {[]int{0, 1}, true},
+ {[]int{0, 1, -1}, true},
+ {[]int{0, -1, 1}, true},
+ {[]int{0, -1, 1, -1}, true},
+ {[]int{1}, false},
+ {[]int{1, -1}, false},
+ {[]int{2}, true},
+ {[]int{2, -1}, true},
+ },
+ }, {
+ val: ValueOf(&S2{embed: &embed{}}),
+ cases: []testCase{
+ {[]int{0}, false},
+ {[]int{0, -1}, false},
+ {[]int{0, 0}, false},
+ {[]int{0, 0, -1}, false},
+ {[]int{0, -1, 0}, false},
+ {[]int{0, -1, 0, -1}, false},
+ {[]int{0, 1}, true},
+ {[]int{0, 1, -1}, true},
+ {[]int{0, -1, 1}, true},
+ {[]int{0, -1, 1, -1}, true},
+ {[]int{1}, false},
+ {[]int{2}, true},
+ },
+ }, {
+ val: ValueOf(&S3{}),
+ cases: []testCase{
+ {[]int{0}, true},
+ {[]int{0, -1}, true},
+ {[]int{0, 0}, false},
+ {[]int{0, 0, -1}, false},
+ {[]int{0, -1, 0}, false},
+ {[]int{0, -1, 0, -1}, false},
+ {[]int{0, 1}, true},
+ {[]int{0, 1, -1}, true},
+ {[]int{0, -1, 1}, true},
+ {[]int{0, -1, 1, -1}, true},
+ {[]int{1}, false},
+ {[]int{2}, true},
+ },
+ }, {
+ val: ValueOf(&S4{Embed: &Embed{}}),
+ cases: []testCase{
+ {[]int{0}, true},
+ {[]int{0, -1}, true},
+ {[]int{0, 0}, false},
+ {[]int{0, 0, -1}, false},
+ {[]int{0, -1, 0}, false},
+ {[]int{0, -1, 0, -1}, false},
+ {[]int{0, 1}, true},
+ {[]int{0, 1, -1}, true},
+ {[]int{0, -1, 1}, true},
+ {[]int{0, -1, 1, -1}, true},
+ {[]int{1}, false},
+ {[]int{2}, true},
+ },
+ }}
+
+ for _, tt := range tests {
+ t.Run(tt.val.Type().Name(), func(t *testing.T) {
+ for _, tc := range tt.cases {
+ f := tt.val
+ for _, i := range tc.index {
+ if f.Kind() == Pointer {
+ f = f.Elem()
+ }
+ if i == -1 {
+ f = f.Addr().Elem()
+ } else {
+ f = f.Field(i)
+ }
+ }
+ if got := f.CanSet(); got != tc.canSet {
+ t.Errorf("CanSet() = %v, want %v", got, tc.canSet)
+ }
+ }
+ })
+ }
+}
+
+var _i = 7
+
+var valueToStringTests = []pair{
+ {123, "123"},
+ {123.5, "123.5"},
+ {byte(123), "123"},
+ {"abc", "abc"},
+ {T{123, 456.75, "hello", &_i}, "reflect_test.T{123, 456.75, hello, *int(&7)}"},
+ {new(chan *T), "*chan *reflect_test.T(&chan *reflect_test.T)"},
+ {[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
+ {&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[10]int(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
+ {[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
+ {&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[]int(&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
+}
+
+func TestValueToString(t *testing.T) {
+ for i, test := range valueToStringTests {
+ s := valueToString(ValueOf(test.i))
+ if s != test.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, test.s)
+ }
+ }
+}
+
+func TestArrayElemSet(t *testing.T) {
+ v := ValueOf(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}).Elem()
+ v.Index(4).SetInt(123)
+ s := valueToString(v)
+ const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
+ if s != want {
+ t.Errorf("[10]int: have %#q want %#q", s, want)
+ }
+
+ v = ValueOf([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
+ v.Index(4).SetInt(123)
+ s = valueToString(v)
+ const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
+ if s != want1 {
+ t.Errorf("[]int: have %#q want %#q", s, want1)
+ }
+}
+
+func TestPtrPointTo(t *testing.T) {
+ var ip *int32
+ var i int32 = 1234
+ vip := ValueOf(&ip)
+ vi := ValueOf(&i).Elem()
+ vip.Elem().Set(vi.Addr())
+ if *ip != 1234 {
+ t.Errorf("got %d, want 1234", *ip)
+ }
+
+ ip = nil
+ vp := ValueOf(&ip).Elem()
+ vp.Set(Zero(vp.Type()))
+ if ip != nil {
+ t.Errorf("got non-nil (%p), want nil", ip)
+ }
+}
+
+func TestPtrSetNil(t *testing.T) {
+ var i int32 = 1234
+ ip := &i
+ vip := ValueOf(&ip)
+ vip.Elem().Set(Zero(vip.Elem().Type()))
+ if ip != nil {
+ t.Errorf("got non-nil (%d), want nil", *ip)
+ }
+}
+
+func TestMapSetNil(t *testing.T) {
+ m := make(map[string]int)
+ vm := ValueOf(&m)
+ vm.Elem().Set(Zero(vm.Elem().Type()))
+ if m != nil {
+ t.Errorf("got non-nil (%p), want nil", m)
+ }
+}
+
+func TestAll(t *testing.T) {
+ testType(t, 1, TypeOf((int8)(0)), "int8")
+ testType(t, 2, TypeOf((*int8)(nil)).Elem(), "int8")
+
+ typ := TypeOf((*struct {
+ c chan *int32
+ d float32
+ })(nil))
+ testType(t, 3, typ, "*struct { c chan *int32; d float32 }")
+ etyp := typ.Elem()
+ testType(t, 4, etyp, "struct { c chan *int32; d float32 }")
+ styp := etyp
+ f := styp.Field(0)
+ testType(t, 5, f.Type, "chan *int32")
+
+ f, present := styp.FieldByName("d")
+ if !present {
+ t.Errorf("FieldByName says present field is absent")
+ }
+ testType(t, 6, f.Type, "float32")
+
+ f, present = styp.FieldByName("absent")
+ if present {
+ t.Errorf("FieldByName says absent field is present")
+ }
+
+ typ = TypeOf([32]int32{})
+ testType(t, 7, typ, "[32]int32")
+ testType(t, 8, typ.Elem(), "int32")
+
+ typ = TypeOf((map[string]*int32)(nil))
+ testType(t, 9, typ, "map[string]*int32")
+ mtyp := typ
+ testType(t, 10, mtyp.Key(), "string")
+ testType(t, 11, mtyp.Elem(), "*int32")
+
+ typ = TypeOf((chan<- string)(nil))
+ testType(t, 12, typ, "chan<- string")
+ testType(t, 13, typ.Elem(), "string")
+
+ // make sure tag strings are not part of element type
+ typ = TypeOf(struct {
+ d []uint32 `reflect:"TAG"`
+ }{}).Field(0).Type
+ testType(t, 14, typ, "[]uint32")
+}
+
+func TestInterfaceGet(t *testing.T) {
+ var inter struct {
+ E any
+ }
+ inter.E = 123.456
+ v1 := ValueOf(&inter)
+ v2 := v1.Elem().Field(0)
+ assert(t, v2.Type().String(), "interface {}")
+ i2 := v2.Interface()
+ v3 := ValueOf(i2)
+ assert(t, v3.Type().String(), "float64")
+}
+
+func TestInterfaceValue(t *testing.T) {
+ var inter struct {
+ E any
+ }
+ inter.E = 123.456
+ v1 := ValueOf(&inter)
+ v2 := v1.Elem().Field(0)
+ assert(t, v2.Type().String(), "interface {}")
+ v3 := v2.Elem()
+ assert(t, v3.Type().String(), "float64")
+
+ i3 := v2.Interface()
+ if _, ok := i3.(float64); !ok {
+ t.Error("v2.Interface() did not return float64, got ", TypeOf(i3))
+ }
+}
+
+func TestFunctionValue(t *testing.T) {
+ var x any = func() {}
+ v := ValueOf(x)
+ if fmt.Sprint(v.Interface()) != fmt.Sprint(x) {
+ t.Fatalf("TestFunction returned wrong pointer")
+ }
+ assert(t, v.Type().String(), "func()")
+}
+
+func TestGrow(t *testing.T) {
+ v := ValueOf([]int(nil))
+ shouldPanic("reflect.Value.Grow using unaddressable value", func() { v.Grow(0) })
+ v = ValueOf(new([]int)).Elem()
+ v.Grow(0)
+ if !v.IsNil() {
+ t.Errorf("v.Grow(0) should still be nil")
+ }
+ v.Grow(1)
+ if v.Cap() == 0 {
+ t.Errorf("v.Cap = %v, want non-zero", v.Cap())
+ }
+ want := v.UnsafePointer()
+ v.Grow(1)
+ got := v.UnsafePointer()
+ if got != want {
+ t.Errorf("noop v.Grow should not change pointers")
+ }
+
+ t.Run("Append", func(t *testing.T) {
+ var got, want []T
+ v := ValueOf(&got).Elem()
+ appendValue := func(vt T) {
+ v.Grow(1)
+ v.SetLen(v.Len() + 1)
+ v.Index(v.Len() - 1).Set(ValueOf(vt))
+ }
+ for i := 0; i < 10; i++ {
+ vt := T{i, float64(i), strconv.Itoa(i), &i}
+ appendValue(vt)
+ want = append(want, vt)
+ }
+ if !DeepEqual(got, want) {
+ t.Errorf("value mismatch:\ngot %v\nwant %v", got, want)
+ }
+ })
+
+ t.Run("Rate", func(t *testing.T) {
+ var b []byte
+ v := ValueOf(new([]byte)).Elem()
+ for i := 0; i < 10; i++ {
+ b = append(b[:cap(b)], make([]byte, 1)...)
+ v.SetLen(v.Cap())
+ v.Grow(1)
+ if v.Cap() != cap(b) {
+ t.Errorf("v.Cap = %v, want %v", v.Cap(), cap(b))
+ }
+ }
+ })
+
+ t.Run("ZeroCapacity", func(t *testing.T) {
+ for i := 0; i < 10; i++ {
+ v := ValueOf(new([]byte)).Elem()
+ v.Grow(61)
+ b := v.Bytes()
+ b = b[:cap(b)]
+ for i, c := range b {
+ if c != 0 {
+ t.Fatalf("Value.Bytes[%d] = 0x%02x, want 0x00", i, c)
+ }
+ b[i] = 0xff
+ }
+ runtime.GC()
+ }
+ })
+}
+
+var appendTests = []struct {
+ orig, extra []int
+}{
+ {nil, nil},
+ {[]int{}, nil},
+ {nil, []int{}},
+ {[]int{}, []int{}},
+ {nil, []int{22}},
+ {[]int{}, []int{22}},
+ {make([]int, 2, 4), nil},
+ {make([]int, 2, 4), []int{}},
+ {make([]int, 2, 4), []int{22}},
+ {make([]int, 2, 4), []int{22, 33, 44}},
+}
+
+func TestAppend(t *testing.T) {
+ for i, test := range appendTests {
+ origLen, extraLen := len(test.orig), len(test.extra)
+ want := append(test.orig, test.extra...)
+ // Convert extra from []int to []Value.
+ e0 := make([]Value, len(test.extra))
+ for j, e := range test.extra {
+ e0[j] = ValueOf(e)
+ }
+ // Convert extra from []int to *SliceValue.
+ e1 := ValueOf(test.extra)
+
+ // Test Append.
+ a0 := ValueOf(&test.orig).Elem()
+ have0 := Append(a0, e0...)
+ if have0.CanAddr() {
+ t.Errorf("Append #%d: have slice should not be addressable", i)
+ }
+ if !DeepEqual(have0.Interface(), want) {
+ t.Errorf("Append #%d: have %v, want %v (%p %p)", i, have0, want, test.orig, have0.Interface())
+ }
+ // Check that the orig and extra slices were not modified.
+ if a0.Len() != len(test.orig) {
+ t.Errorf("Append #%d: a0.Len: have %d, want %d", i, a0.Len(), origLen)
+ }
+ if len(test.orig) != origLen {
+ t.Errorf("Append #%d origLen: have %v, want %v", i, len(test.orig), origLen)
+ }
+ if len(test.extra) != extraLen {
+ t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
+ }
+
+ // Test AppendSlice.
+ a1 := ValueOf(&test.orig).Elem()
+ have1 := AppendSlice(a1, e1)
+ if have1.CanAddr() {
+ t.Errorf("AppendSlice #%d: have slice should not be addressable", i)
+ }
+ if !DeepEqual(have1.Interface(), want) {
+ t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want)
+ }
+ // Check that the orig and extra slices were not modified.
+ if a1.Len() != len(test.orig) {
+ t.Errorf("AppendSlice #%d: a1.Len: have %d, want %d", i, a0.Len(), origLen)
+ }
+ if len(test.orig) != origLen {
+ t.Errorf("AppendSlice #%d origLen: have %v, want %v", i, len(test.orig), origLen)
+ }
+ if len(test.extra) != extraLen {
+ t.Errorf("AppendSlice #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
+ }
+
+ // Test Append and AppendSlice with unexported value.
+ ax := ValueOf(struct{ x []int }{test.orig}).Field(0)
+ shouldPanic("using unexported field", func() { Append(ax, e0...) })
+ shouldPanic("using unexported field", func() { AppendSlice(ax, e1) })
+ }
+}
+
+func TestCopy(t *testing.T) {
+ a := []int{1, 2, 3, 4, 10, 9, 8, 7}
+ b := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
+ c := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
+ for i := 0; i < len(b); i++ {
+ if b[i] != c[i] {
+ t.Fatalf("b != c before test")
+ }
+ }
+ a1 := a
+ b1 := b
+ aa := ValueOf(&a1).Elem()
+ ab := ValueOf(&b1).Elem()
+ for tocopy := 1; tocopy <= 7; tocopy++ {
+ aa.SetLen(tocopy)
+ Copy(ab, aa)
+ aa.SetLen(8)
+ for i := 0; i < tocopy; i++ {
+ if a[i] != b[i] {
+ t.Errorf("(i) tocopy=%d a[%d]=%d, b[%d]=%d",
+ tocopy, i, a[i], i, b[i])
+ }
+ }
+ for i := tocopy; i < len(b); i++ {
+ if b[i] != c[i] {
+ if i < len(a) {
+ t.Errorf("(ii) tocopy=%d a[%d]=%d, b[%d]=%d, c[%d]=%d",
+ tocopy, i, a[i], i, b[i], i, c[i])
+ } else {
+ t.Errorf("(iii) tocopy=%d b[%d]=%d, c[%d]=%d",
+ tocopy, i, b[i], i, c[i])
+ }
+ } else {
+ t.Logf("tocopy=%d elem %d is okay\n", tocopy, i)
+ }
+ }
+ }
+}
+
+func TestCopyString(t *testing.T) {
+ t.Run("Slice", func(t *testing.T) {
+ s := bytes.Repeat([]byte{'_'}, 8)
+ val := ValueOf(s)
+
+ n := Copy(val, ValueOf(""))
+ if expecting := []byte("________"); n != 0 || !bytes.Equal(s, expecting) {
+ t.Errorf("got n = %d, s = %s, expecting n = 0, s = %s", n, s, expecting)
+ }
+
+ n = Copy(val, ValueOf("hello"))
+ if expecting := []byte("hello___"); n != 5 || !bytes.Equal(s, expecting) {
+ t.Errorf("got n = %d, s = %s, expecting n = 5, s = %s", n, s, expecting)
+ }
+
+ n = Copy(val, ValueOf("helloworld"))
+ if expecting := []byte("hellowor"); n != 8 || !bytes.Equal(s, expecting) {
+ t.Errorf("got n = %d, s = %s, expecting n = 8, s = %s", n, s, expecting)
+ }
+ })
+ t.Run("Array", func(t *testing.T) {
+ s := [...]byte{'_', '_', '_', '_', '_', '_', '_', '_'}
+ val := ValueOf(&s).Elem()
+
+ n := Copy(val, ValueOf(""))
+ if expecting := []byte("________"); n != 0 || !bytes.Equal(s[:], expecting) {
+ t.Errorf("got n = %d, s = %s, expecting n = 0, s = %s", n, s[:], expecting)
+ }
+
+ n = Copy(val, ValueOf("hello"))
+ if expecting := []byte("hello___"); n != 5 || !bytes.Equal(s[:], expecting) {
+ t.Errorf("got n = %d, s = %s, expecting n = 5, s = %s", n, s[:], expecting)
+ }
+
+ n = Copy(val, ValueOf("helloworld"))
+ if expecting := []byte("hellowor"); n != 8 || !bytes.Equal(s[:], expecting) {
+ t.Errorf("got n = %d, s = %s, expecting n = 8, s = %s", n, s[:], expecting)
+ }
+ })
+}
+
+func TestCopyArray(t *testing.T) {
+ a := [8]int{1, 2, 3, 4, 10, 9, 8, 7}
+ b := [11]int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
+ c := b
+ aa := ValueOf(&a).Elem()
+ ab := ValueOf(&b).Elem()
+ Copy(ab, aa)
+ for i := 0; i < len(a); i++ {
+ if a[i] != b[i] {
+ t.Errorf("(i) a[%d]=%d, b[%d]=%d", i, a[i], i, b[i])
+ }
+ }
+ for i := len(a); i < len(b); i++ {
+ if b[i] != c[i] {
+ t.Errorf("(ii) b[%d]=%d, c[%d]=%d", i, b[i], i, c[i])
+ } else {
+ t.Logf("elem %d is okay\n", i)
+ }
+ }
+}
+
+func TestBigUnnamedStruct(t *testing.T) {
+ b := struct{ a, b, c, d int64 }{1, 2, 3, 4}
+ v := ValueOf(b)
+ b1 := v.Interface().(struct {
+ a, b, c, d int64
+ })
+ if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d {
+ t.Errorf("ValueOf(%v).Interface().(*Big) = %v", b, b1)
+ }
+}
+
+type big struct {
+ a, b, c, d, e int64
+}
+
+func TestBigStruct(t *testing.T) {
+ b := big{1, 2, 3, 4, 5}
+ v := ValueOf(b)
+ b1 := v.Interface().(big)
+ if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d || b1.e != b.e {
+ t.Errorf("ValueOf(%v).Interface().(big) = %v", b, b1)
+ }
+}
+
+type Basic struct {
+ x int
+ y float32
+}
+
+type NotBasic Basic
+
+type DeepEqualTest struct {
+ a, b any
+ eq bool
+}
+
+// Simple functions for DeepEqual tests.
+var (
+ fn1 func() // nil.
+ fn2 func() // nil.
+ fn3 = func() { fn1() } // Not nil.
+)
+
+type self struct{}
+
+type Loop *Loop
+type Loopy any
+
+var loop1, loop2 Loop
+var loopy1, loopy2 Loopy
+var cycleMap1, cycleMap2, cycleMap3 map[string]any
+
+type structWithSelfPtr struct {
+ p *structWithSelfPtr
+ s string
+}
+
+func init() {
+ loop1 = &loop2
+ loop2 = &loop1
+
+ loopy1 = &loopy2
+ loopy2 = &loopy1
+
+ cycleMap1 = map[string]any{}
+ cycleMap1["cycle"] = cycleMap1
+ cycleMap2 = map[string]any{}
+ cycleMap2["cycle"] = cycleMap2
+ cycleMap3 = map[string]any{}
+ cycleMap3["different"] = cycleMap3
+}
+
+var deepEqualTests = []DeepEqualTest{
+ // Equalities
+ {nil, nil, true},
+ {1, 1, true},
+ {int32(1), int32(1), true},
+ {0.5, 0.5, true},
+ {float32(0.5), float32(0.5), true},
+ {"hello", "hello", true},
+ {make([]int, 10), make([]int, 10), true},
+ {&[3]int{1, 2, 3}, &[3]int{1, 2, 3}, true},
+ {Basic{1, 0.5}, Basic{1, 0.5}, true},
+ {error(nil), error(nil), true},
+ {map[int]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, true},
+ {fn1, fn2, true},
+ {[]byte{1, 2, 3}, []byte{1, 2, 3}, true},
+ {[]MyByte{1, 2, 3}, []MyByte{1, 2, 3}, true},
+ {MyBytes{1, 2, 3}, MyBytes{1, 2, 3}, true},
+
+ // Inequalities
+ {1, 2, false},
+ {int32(1), int32(2), false},
+ {0.5, 0.6, false},
+ {float32(0.5), float32(0.6), false},
+ {"hello", "hey", false},
+ {make([]int, 10), make([]int, 11), false},
+ {&[3]int{1, 2, 3}, &[3]int{1, 2, 4}, false},
+ {Basic{1, 0.5}, Basic{1, 0.6}, false},
+ {Basic{1, 0}, Basic{2, 0}, false},
+ {map[int]string{1: "one", 3: "two"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{1: "one", 2: "txo"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{1: "one"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{2: "two", 1: "one"}, map[int]string{1: "one"}, false},
+ {nil, 1, false},
+ {1, nil, false},
+ {fn1, fn3, false},
+ {fn3, fn3, false},
+ {[][]int{{1}}, [][]int{{2}}, false},
+ {&structWithSelfPtr{p: &structWithSelfPtr{s: "a"}}, &structWithSelfPtr{p: &structWithSelfPtr{s: "b"}}, false},
+
+ // Fun with floating point.
+ {math.NaN(), math.NaN(), false},
+ {&[1]float64{math.NaN()}, &[1]float64{math.NaN()}, false},
+ {&[1]float64{math.NaN()}, self{}, true},
+ {[]float64{math.NaN()}, []float64{math.NaN()}, false},
+ {[]float64{math.NaN()}, self{}, true},
+ {map[float64]float64{math.NaN(): 1}, map[float64]float64{1: 2}, false},
+ {map[float64]float64{math.NaN(): 1}, self{}, true},
+
+ // Nil vs empty: not the same.
+ {[]int{}, []int(nil), false},
+ {[]int{}, []int{}, true},
+ {[]int(nil), []int(nil), true},
+ {map[int]int{}, map[int]int(nil), false},
+ {map[int]int{}, map[int]int{}, true},
+ {map[int]int(nil), map[int]int(nil), true},
+
+ // Mismatched types
+ {1, 1.0, false},
+ {int32(1), int64(1), false},
+ {0.5, "hello", false},
+ {[]int{1, 2, 3}, [3]int{1, 2, 3}, false},
+ {&[3]any{1, 2, 4}, &[3]any{1, 2, "s"}, false},
+ {Basic{1, 0.5}, NotBasic{1, 0.5}, false},
+ {map[uint]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, false},
+ {[]byte{1, 2, 3}, []MyByte{1, 2, 3}, false},
+ {[]MyByte{1, 2, 3}, MyBytes{1, 2, 3}, false},
+ {[]byte{1, 2, 3}, MyBytes{1, 2, 3}, false},
+
+ // Possible loops.
+ {&loop1, &loop1, true},
+ {&loop1, &loop2, true},
+ {&loopy1, &loopy1, true},
+ {&loopy1, &loopy2, true},
+ {&cycleMap1, &cycleMap2, true},
+ {&cycleMap1, &cycleMap3, false},
+}
+
+func TestDeepEqual(t *testing.T) {
+ for _, test := range deepEqualTests {
+ if test.b == (self{}) {
+ test.b = test.a
+ }
+ if r := DeepEqual(test.a, test.b); r != test.eq {
+ t.Errorf("DeepEqual(%#v, %#v) = %v, want %v", test.a, test.b, r, test.eq)
+ }
+ }
+}
+
+func TestTypeOf(t *testing.T) {
+ // Special case for nil
+ if typ := TypeOf(nil); typ != nil {
+ t.Errorf("expected nil type for nil value; got %v", typ)
+ }
+ for _, test := range deepEqualTests {
+ v := ValueOf(test.a)
+ if !v.IsValid() {
+ continue
+ }
+ typ := TypeOf(test.a)
+ if typ != v.Type() {
+ t.Errorf("TypeOf(%v) = %v, but ValueOf(%v).Type() = %v", test.a, typ, test.a, v.Type())
+ }
+ }
+}
+
+type Recursive struct {
+ x int
+ r *Recursive
+}
+
+func TestDeepEqualRecursiveStruct(t *testing.T) {
+ a, b := new(Recursive), new(Recursive)
+ *a = Recursive{12, a}
+ *b = Recursive{12, b}
+ if !DeepEqual(a, b) {
+ t.Error("DeepEqual(recursive same) = false, want true")
+ }
+}
+
+type _Complex struct {
+ a int
+ b [3]*_Complex
+ c *string
+ d map[float64]float64
+}
+
+func TestDeepEqualComplexStruct(t *testing.T) {
+ m := make(map[float64]float64)
+ stra, strb := "hello", "hello"
+ a, b := new(_Complex), new(_Complex)
+ *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
+ *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
+ if !DeepEqual(a, b) {
+ t.Error("DeepEqual(complex same) = false, want true")
+ }
+}
+
+func TestDeepEqualComplexStructInequality(t *testing.T) {
+ m := make(map[float64]float64)
+ stra, strb := "hello", "helloo" // Difference is here
+ a, b := new(_Complex), new(_Complex)
+ *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
+ *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
+ if DeepEqual(a, b) {
+ t.Error("DeepEqual(complex different) = true, want false")
+ }
+}
+
+type UnexpT struct {
+ m map[int]int
+}
+
+func TestDeepEqualUnexportedMap(t *testing.T) {
+ // Check that DeepEqual can look at unexported fields.
+ x1 := UnexpT{map[int]int{1: 2}}
+ x2 := UnexpT{map[int]int{1: 2}}
+ if !DeepEqual(&x1, &x2) {
+ t.Error("DeepEqual(x1, x2) = false, want true")
+ }
+
+ y1 := UnexpT{map[int]int{2: 3}}
+ if DeepEqual(&x1, &y1) {
+ t.Error("DeepEqual(x1, y1) = true, want false")
+ }
+}
+
+var deepEqualPerfTests = []struct {
+ x, y any
+}{
+ {x: int8(99), y: int8(99)},
+ {x: []int8{99}, y: []int8{99}},
+ {x: int16(99), y: int16(99)},
+ {x: []int16{99}, y: []int16{99}},
+ {x: int32(99), y: int32(99)},
+ {x: []int32{99}, y: []int32{99}},
+ {x: int64(99), y: int64(99)},
+ {x: []int64{99}, y: []int64{99}},
+ {x: int(999999), y: int(999999)},
+ {x: []int{999999}, y: []int{999999}},
+
+ {x: uint8(99), y: uint8(99)},
+ {x: []uint8{99}, y: []uint8{99}},
+ {x: uint16(99), y: uint16(99)},
+ {x: []uint16{99}, y: []uint16{99}},
+ {x: uint32(99), y: uint32(99)},
+ {x: []uint32{99}, y: []uint32{99}},
+ {x: uint64(99), y: uint64(99)},
+ {x: []uint64{99}, y: []uint64{99}},
+ {x: uint(999999), y: uint(999999)},
+ {x: []uint{999999}, y: []uint{999999}},
+ {x: uintptr(999999), y: uintptr(999999)},
+ {x: []uintptr{999999}, y: []uintptr{999999}},
+
+ {x: float32(1.414), y: float32(1.414)},
+ {x: []float32{1.414}, y: []float32{1.414}},
+ {x: float64(1.414), y: float64(1.414)},
+ {x: []float64{1.414}, y: []float64{1.414}},
+
+ {x: complex64(1.414), y: complex64(1.414)},
+ {x: []complex64{1.414}, y: []complex64{1.414}},
+ {x: complex128(1.414), y: complex128(1.414)},
+ {x: []complex128{1.414}, y: []complex128{1.414}},
+
+ {x: true, y: true},
+ {x: []bool{true}, y: []bool{true}},
+
+ {x: "abcdef", y: "abcdef"},
+ {x: []string{"abcdef"}, y: []string{"abcdef"}},
+
+ {x: []byte("abcdef"), y: []byte("abcdef")},
+ {x: [][]byte{[]byte("abcdef")}, y: [][]byte{[]byte("abcdef")}},
+
+ {x: [6]byte{'a', 'b', 'c', 'a', 'b', 'c'}, y: [6]byte{'a', 'b', 'c', 'a', 'b', 'c'}},
+ {x: [][6]byte{[6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}, y: [][6]byte{[6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}},
+}
+
+func TestDeepEqualAllocs(t *testing.T) {
+ for _, tt := range deepEqualPerfTests {
+ t.Run(ValueOf(tt.x).Type().String(), func(t *testing.T) {
+ got := testing.AllocsPerRun(100, func() {
+ if !DeepEqual(tt.x, tt.y) {
+ t.Errorf("DeepEqual(%v, %v)=false", tt.x, tt.y)
+ }
+ })
+ if int(got) != 0 {
+ t.Errorf("DeepEqual(%v, %v) allocated %d times", tt.x, tt.y, int(got))
+ }
+ })
+ }
+}
+
+func check2ndField(x any, offs uintptr, t *testing.T) {
+ s := ValueOf(x)
+ f := s.Type().Field(1)
+ if f.Offset != offs {
+ t.Error("mismatched offsets in structure alignment:", f.Offset, offs)
+ }
+}
+
+// Check that structure alignment & offsets viewed through reflect agree with those
+// from the compiler itself.
+func TestAlignment(t *testing.T) {
+ type T1inner struct {
+ a int
+ }
+ type T1 struct {
+ T1inner
+ f int
+ }
+ type T2inner struct {
+ a, b int
+ }
+ type T2 struct {
+ T2inner
+ f int
+ }
+
+ x := T1{T1inner{2}, 17}
+ check2ndField(x, uintptr(unsafe.Pointer(&x.f))-uintptr(unsafe.Pointer(&x)), t)
+
+ x1 := T2{T2inner{2, 3}, 17}
+ check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t)
+}
+
+func Nil(a any, t *testing.T) {
+ n := ValueOf(a).Field(0)
+ if !n.IsNil() {
+ t.Errorf("%v should be nil", a)
+ }
+}
+
+func NotNil(a any, t *testing.T) {
+ n := ValueOf(a).Field(0)
+ if n.IsNil() {
+ t.Errorf("value of type %v should not be nil", ValueOf(a).Type().String())
+ }
+}
+
+func TestIsNil(t *testing.T) {
+ // These implement IsNil.
+ // Wrap in extra struct to hide interface type.
+ doNil := []any{
+ struct{ x *int }{},
+ struct{ x any }{},
+ struct{ x map[string]int }{},
+ struct{ x func() bool }{},
+ struct{ x chan int }{},
+ struct{ x []string }{},
+ struct{ x unsafe.Pointer }{},
+ }
+ for _, ts := range doNil {
+ ty := TypeOf(ts).Field(0).Type
+ v := Zero(ty)
+ v.IsNil() // panics if not okay to call
+ }
+
+ // Check the implementations
+ var pi struct {
+ x *int
+ }
+ Nil(pi, t)
+ pi.x = new(int)
+ NotNil(pi, t)
+
+ var si struct {
+ x []int
+ }
+ Nil(si, t)
+ si.x = make([]int, 10)
+ NotNil(si, t)
+
+ var ci struct {
+ x chan int
+ }
+ Nil(ci, t)
+ ci.x = make(chan int)
+ NotNil(ci, t)
+
+ var mi struct {
+ x map[int]int
+ }
+ Nil(mi, t)
+ mi.x = make(map[int]int)
+ NotNil(mi, t)
+
+ var ii struct {
+ x any
+ }
+ Nil(ii, t)
+ ii.x = 2
+ NotNil(ii, t)
+
+ var fi struct {
+ x func(t *testing.T)
+ }
+ Nil(fi, t)
+ fi.x = TestIsNil
+ NotNil(fi, t)
+}
+
+func TestIsZero(t *testing.T) {
+ for i, tt := range []struct {
+ x any
+ want bool
+ }{
+ // Booleans
+ {true, false},
+ {false, true},
+ // Numeric types
+ {int(0), true},
+ {int(1), false},
+ {int8(0), true},
+ {int8(1), false},
+ {int16(0), true},
+ {int16(1), false},
+ {int32(0), true},
+ {int32(1), false},
+ {int64(0), true},
+ {int64(1), false},
+ {uint(0), true},
+ {uint(1), false},
+ {uint8(0), true},
+ {uint8(1), false},
+ {uint16(0), true},
+ {uint16(1), false},
+ {uint32(0), true},
+ {uint32(1), false},
+ {uint64(0), true},
+ {uint64(1), false},
+ {float32(0), true},
+ {float32(1.2), false},
+ {float64(0), true},
+ {float64(1.2), false},
+ {math.Copysign(0, -1), false},
+ {complex64(0), true},
+ {complex64(1.2), false},
+ {complex128(0), true},
+ {complex128(1.2), false},
+ {complex(math.Copysign(0, -1), 0), false},
+ {complex(0, math.Copysign(0, -1)), false},
+ {complex(math.Copysign(0, -1), math.Copysign(0, -1)), false},
+ {uintptr(0), true},
+ {uintptr(128), false},
+ // Array
+ {Zero(TypeOf([5]string{})).Interface(), true},
+ {[5]string{}, true}, // comparable array
+ {[5]string{"", "", "", "a", ""}, false}, // comparable array
+ {[1]*int{}, true}, // direct pointer array
+ {[1]*int{new(int)}, false}, // direct pointer array
+ {[3][]int{}, true}, // incomparable array
+ {[3][]int{{1}}, false}, // incomparable array
+ {[1 << 12]byte{}, true},
+ {[1 << 12]byte{1}, false},
+ {[3]Value{}, true},
+ {[3]Value{{}, ValueOf(0), {}}, false},
+ // Chan
+ {(chan string)(nil), true},
+ {make(chan string), false},
+ {time.After(1), false},
+ // Func
+ {(func())(nil), true},
+ {New, false},
+ // Interface
+ {New(TypeOf(new(error)).Elem()).Elem(), true},
+ {(io.Reader)(strings.NewReader("")), false},
+ // Map
+ {(map[string]string)(nil), true},
+ {map[string]string{}, false},
+ {make(map[string]string), false},
+ // Pointer
+ {(*func())(nil), true},
+ {(*int)(nil), true},
+ {new(int), false},
+ // Slice
+ {[]string{}, false},
+ {([]string)(nil), true},
+ {make([]string, 0), false},
+ // Strings
+ {"", true},
+ {"not-zero", false},
+ // Structs
+ {T{}, true}, // comparable struct
+ {T{123, 456.75, "hello", &_i}, false}, // comparable struct
+ {struct{ p *int }{}, true}, // direct pointer struct
+ {struct{ p *int }{new(int)}, false}, // direct pointer struct
+ {struct{ s []int }{}, true}, // incomparable struct
+ {struct{ s []int }{[]int{1}}, false}, // incomparable struct
+ {struct{ Value }{}, true},
+ {struct{ Value }{ValueOf(0)}, false},
+ // UnsafePointer
+ {(unsafe.Pointer)(nil), true},
+ {(unsafe.Pointer)(new(int)), false},
+ } {
+ var x Value
+ if v, ok := tt.x.(Value); ok {
+ x = v
+ } else {
+ x = ValueOf(tt.x)
+ }
+
+ b := x.IsZero()
+ if b != tt.want {
+ t.Errorf("%d: IsZero((%s)(%+v)) = %t, want %t", i, x.Kind(), tt.x, b, tt.want)
+ }
+
+ if !Zero(TypeOf(tt.x)).IsZero() {
+ t.Errorf("%d: IsZero(Zero(TypeOf((%s)(%+v)))) is false", i, x.Kind(), tt.x)
+ }
+
+ p := New(x.Type()).Elem()
+ p.Set(x)
+ p.SetZero()
+ if !p.IsZero() {
+ t.Errorf("%d: IsZero((%s)(%+v)) is true after SetZero", i, p.Kind(), tt.x)
+ }
+ }
+
+ func() {
+ defer func() {
+ if r := recover(); r == nil {
+ t.Error("should panic for invalid value")
+ }
+ }()
+ (Value{}).IsZero()
+ }()
+}
+
+func TestInterfaceExtraction(t *testing.T) {
+ var s struct {
+ W io.Writer
+ }
+
+ s.W = os.Stdout
+ v := Indirect(ValueOf(&s)).Field(0).Interface()
+ if v != s.W.(any) {
+ t.Error("Interface() on interface: ", v, s.W)
+ }
+}
+
+func TestNilPtrValueSub(t *testing.T) {
+ var pi *int
+ if pv := ValueOf(pi); pv.Elem().IsValid() {
+ t.Error("ValueOf((*int)(nil)).Elem().IsValid()")
+ }
+}
+
+func TestMap(t *testing.T) {
+ m := map[string]int{"a": 1, "b": 2}
+ mv := ValueOf(m)
+ if n := mv.Len(); n != len(m) {
+ t.Errorf("Len = %d, want %d", n, len(m))
+ }
+ keys := mv.MapKeys()
+ newmap := MakeMap(mv.Type())
+ for k, v := range m {
+ // Check that returned Keys match keys in range.
+ // These aren't required to be in the same order.
+ seen := false
+ for _, kv := range keys {
+ if kv.String() == k {
+ seen = true
+ break
+ }
+ }
+ if !seen {
+ t.Errorf("Missing key %q", k)
+ }
+
+ // Check that value lookup is correct.
+ vv := mv.MapIndex(ValueOf(k))
+ if vi := vv.Int(); vi != int64(v) {
+ t.Errorf("Key %q: have value %d, want %d", k, vi, v)
+ }
+
+ // Copy into new map.
+ newmap.SetMapIndex(ValueOf(k), ValueOf(v))
+ }
+ vv := mv.MapIndex(ValueOf("not-present"))
+ if vv.IsValid() {
+ t.Errorf("Invalid key: got non-nil value %s", valueToString(vv))
+ }
+
+ newm := newmap.Interface().(map[string]int)
+ if len(newm) != len(m) {
+ t.Errorf("length after copy: newm=%d, m=%d", len(newm), len(m))
+ }
+
+ for k, v := range newm {
+ mv, ok := m[k]
+ if mv != v {
+ t.Errorf("newm[%q] = %d, but m[%q] = %d, %v", k, v, k, mv, ok)
+ }
+ }
+
+ newmap.SetMapIndex(ValueOf("a"), Value{})
+ v, ok := newm["a"]
+ if ok {
+ t.Errorf("newm[\"a\"] = %d after delete", v)
+ }
+
+ mv = ValueOf(&m).Elem()
+ mv.Set(Zero(mv.Type()))
+ if m != nil {
+ t.Errorf("mv.Set(nil) failed")
+ }
+
+ type S string
+ shouldPanic("not assignable", func() { mv.MapIndex(ValueOf(S("key"))) })
+ shouldPanic("not assignable", func() { mv.SetMapIndex(ValueOf(S("key")), ValueOf(0)) })
+}
+
+func TestNilMap(t *testing.T) {
+ var m map[string]int
+ mv := ValueOf(m)
+ keys := mv.MapKeys()
+ if len(keys) != 0 {
+ t.Errorf(">0 keys for nil map: %v", keys)
+ }
+
+ // Check that value for missing key is zero.
+ x := mv.MapIndex(ValueOf("hello"))
+ if x.Kind() != Invalid {
+ t.Errorf("m.MapIndex(\"hello\") for nil map = %v, want Invalid Value", x)
+ }
+
+ // Check big value too.
+ var mbig map[string][10 << 20]byte
+ x = ValueOf(mbig).MapIndex(ValueOf("hello"))
+ if x.Kind() != Invalid {
+ t.Errorf("mbig.MapIndex(\"hello\") for nil map = %v, want Invalid Value", x)
+ }
+
+ // Test that deletes from a nil map succeed.
+ mv.SetMapIndex(ValueOf("hi"), Value{})
+}
+
+func TestChan(t *testing.T) {
+ for loop := 0; loop < 2; loop++ {
+ var c chan int
+ var cv Value
+
+ // check both ways to allocate channels
+ switch loop {
+ case 1:
+ c = make(chan int, 1)
+ cv = ValueOf(c)
+ case 0:
+ cv = MakeChan(TypeOf(c), 1)
+ c = cv.Interface().(chan int)
+ }
+
+ // Send
+ cv.Send(ValueOf(2))
+ if i := <-c; i != 2 {
+ t.Errorf("reflect Send 2, native recv %d", i)
+ }
+
+ // Recv
+ c <- 3
+ if i, ok := cv.Recv(); i.Int() != 3 || !ok {
+ t.Errorf("native send 3, reflect Recv %d, %t", i.Int(), ok)
+ }
+
+ // TryRecv fail
+ val, ok := cv.TryRecv()
+ if val.IsValid() || ok {
+ t.Errorf("TryRecv on empty chan: %s, %t", valueToString(val), ok)
+ }
+
+ // TryRecv success
+ c <- 4
+ val, ok = cv.TryRecv()
+ if !val.IsValid() {
+ t.Errorf("TryRecv on ready chan got nil")
+ } else if i := val.Int(); i != 4 || !ok {
+ t.Errorf("native send 4, TryRecv %d, %t", i, ok)
+ }
+
+ // TrySend fail
+ c <- 100
+ ok = cv.TrySend(ValueOf(5))
+ i := <-c
+ if ok {
+ t.Errorf("TrySend on full chan succeeded: value %d", i)
+ }
+
+ // TrySend success
+ ok = cv.TrySend(ValueOf(6))
+ if !ok {
+ t.Errorf("TrySend on empty chan failed")
+ select {
+ case x := <-c:
+ t.Errorf("TrySend failed but it did send %d", x)
+ default:
+ }
+ } else {
+ if i = <-c; i != 6 {
+ t.Errorf("TrySend 6, recv %d", i)
+ }
+ }
+
+ // Close
+ c <- 123
+ cv.Close()
+ if i, ok := cv.Recv(); i.Int() != 123 || !ok {
+ t.Errorf("send 123 then close; Recv %d, %t", i.Int(), ok)
+ }
+ if i, ok := cv.Recv(); i.Int() != 0 || ok {
+ t.Errorf("after close Recv %d, %t", i.Int(), ok)
+ }
+ }
+
+ // check creation of unbuffered channel
+ var c chan int
+ cv := MakeChan(TypeOf(c), 0)
+ c = cv.Interface().(chan int)
+ if cv.TrySend(ValueOf(7)) {
+ t.Errorf("TrySend on sync chan succeeded")
+ }
+ if v, ok := cv.TryRecv(); v.IsValid() || ok {
+ t.Errorf("TryRecv on sync chan succeeded: isvalid=%v ok=%v", v.IsValid(), ok)
+ }
+
+ // len/cap
+ cv = MakeChan(TypeOf(c), 10)
+ c = cv.Interface().(chan int)
+ for i := 0; i < 3; i++ {
+ c <- i
+ }
+ if l, m := cv.Len(), cv.Cap(); l != len(c) || m != cap(c) {
+ t.Errorf("Len/Cap = %d/%d want %d/%d", l, m, len(c), cap(c))
+ }
+}
+
+// caseInfo describes a single case in a select test.
+type caseInfo struct {
+ desc string
+ canSelect bool
+ recv Value
+ closed bool
+ helper func()
+ panic bool
+}
+
+var allselect = flag.Bool("allselect", false, "exhaustive select test")
+
+func TestSelect(t *testing.T) {
+ selectWatch.once.Do(func() { go selectWatcher() })
+
+ var x exhaustive
+ nch := 0
+ newop := func(n int, cap int) (ch, val Value) {
+ nch++
+ if nch%101%2 == 1 {
+ c := make(chan int, cap)
+ ch = ValueOf(c)
+ val = ValueOf(n)
+ } else {
+ c := make(chan string, cap)
+ ch = ValueOf(c)
+ val = ValueOf(fmt.Sprint(n))
+ }
+ return
+ }
+
+ for n := 0; x.Next(); n++ {
+ if testing.Short() && n >= 1000 {
+ break
+ }
+ if n >= 100000 && !*allselect {
+ break
+ }
+ if n%100000 == 0 && testing.Verbose() {
+ println("TestSelect", n)
+ }
+ var cases []SelectCase
+ var info []caseInfo
+
+ // Ready send.
+ if x.Maybe() {
+ ch, val := newop(len(cases), 1)
+ cases = append(cases, SelectCase{
+ Dir: SelectSend,
+ Chan: ch,
+ Send: val,
+ })
+ info = append(info, caseInfo{desc: "ready send", canSelect: true})
+ }
+
+ // Ready recv.
+ if x.Maybe() {
+ ch, val := newop(len(cases), 1)
+ ch.Send(val)
+ cases = append(cases, SelectCase{
+ Dir: SelectRecv,
+ Chan: ch,
+ })
+ info = append(info, caseInfo{desc: "ready recv", canSelect: true, recv: val})
+ }
+
+ // Blocking send.
+ if x.Maybe() {
+ ch, val := newop(len(cases), 0)
+ cases = append(cases, SelectCase{
+ Dir: SelectSend,
+ Chan: ch,
+ Send: val,
+ })
+ // Let it execute?
+ if x.Maybe() {
+ f := func() { ch.Recv() }
+ info = append(info, caseInfo{desc: "blocking send", helper: f})
+ } else {
+ info = append(info, caseInfo{desc: "blocking send"})
+ }
+ }
+
+ // Blocking recv.
+ if x.Maybe() {
+ ch, val := newop(len(cases), 0)
+ cases = append(cases, SelectCase{
+ Dir: SelectRecv,
+ Chan: ch,
+ })
+ // Let it execute?
+ if x.Maybe() {
+ f := func() { ch.Send(val) }
+ info = append(info, caseInfo{desc: "blocking recv", recv: val, helper: f})
+ } else {
+ info = append(info, caseInfo{desc: "blocking recv"})
+ }
+ }
+
+ // Zero Chan send.
+ if x.Maybe() {
+ // Maybe include value to send.
+ var val Value
+ if x.Maybe() {
+ val = ValueOf(100)
+ }
+ cases = append(cases, SelectCase{
+ Dir: SelectSend,
+ Send: val,
+ })
+ info = append(info, caseInfo{desc: "zero Chan send"})
+ }
+
+ // Zero Chan receive.
+ if x.Maybe() {
+ cases = append(cases, SelectCase{
+ Dir: SelectRecv,
+ })
+ info = append(info, caseInfo{desc: "zero Chan recv"})
+ }
+
+ // nil Chan send.
+ if x.Maybe() {
+ cases = append(cases, SelectCase{
+ Dir: SelectSend,
+ Chan: ValueOf((chan int)(nil)),
+ Send: ValueOf(101),
+ })
+ info = append(info, caseInfo{desc: "nil Chan send"})
+ }
+
+ // nil Chan recv.
+ if x.Maybe() {
+ cases = append(cases, SelectCase{
+ Dir: SelectRecv,
+ Chan: ValueOf((chan int)(nil)),
+ })
+ info = append(info, caseInfo{desc: "nil Chan recv"})
+ }
+
+ // closed Chan send.
+ if x.Maybe() {
+ ch := make(chan int)
+ close(ch)
+ cases = append(cases, SelectCase{
+ Dir: SelectSend,
+ Chan: ValueOf(ch),
+ Send: ValueOf(101),
+ })
+ info = append(info, caseInfo{desc: "closed Chan send", canSelect: true, panic: true})
+ }
+
+ // closed Chan recv.
+ if x.Maybe() {
+ ch, val := newop(len(cases), 0)
+ ch.Close()
+ val = Zero(val.Type())
+ cases = append(cases, SelectCase{
+ Dir: SelectRecv,
+ Chan: ch,
+ })
+ info = append(info, caseInfo{desc: "closed Chan recv", canSelect: true, closed: true, recv: val})
+ }
+
+ var helper func() // goroutine to help the select complete
+
+ // Add default? Must be last case here, but will permute.
+ // Add the default if the select would otherwise
+ // block forever, and maybe add it anyway.
+ numCanSelect := 0
+ canProceed := false
+ canBlock := true
+ canPanic := false
+ helpers := []int{}
+ for i, c := range info {
+ if c.canSelect {
+ canProceed = true
+ canBlock = false
+ numCanSelect++
+ if c.panic {
+ canPanic = true
+ }
+ } else if c.helper != nil {
+ canProceed = true
+ helpers = append(helpers, i)
+ }
+ }
+ if !canProceed || x.Maybe() {
+ cases = append(cases, SelectCase{
+ Dir: SelectDefault,
+ })
+ info = append(info, caseInfo{desc: "default", canSelect: canBlock})
+ numCanSelect++
+ } else if canBlock {
+ // Select needs to communicate with another goroutine.
+ cas := &info[helpers[x.Choose(len(helpers))]]
+ helper = cas.helper
+ cas.canSelect = true
+ numCanSelect++
+ }
+
+ // Permute cases and case info.
+ // Doing too much here makes the exhaustive loop
+ // too exhausting, so just do two swaps.
+ for loop := 0; loop < 2; loop++ {
+ i := x.Choose(len(cases))
+ j := x.Choose(len(cases))
+ cases[i], cases[j] = cases[j], cases[i]
+ info[i], info[j] = info[j], info[i]
+ }
+
+ if helper != nil {
+ // We wait before kicking off a goroutine to satisfy a blocked select.
+ // The pause needs to be big enough to let the select block before
+ // we run the helper, but if we lose that race once in a while it's okay: the
+ // select will just proceed immediately. Not a big deal.
+ // For short tests we can grow [sic] the timeout a bit without fear of taking too long
+ pause := 10 * time.Microsecond
+ if testing.Short() {
+ pause = 100 * time.Microsecond
+ }
+ time.AfterFunc(pause, helper)
+ }
+
+ // Run select.
+ i, recv, recvOK, panicErr := runSelect(cases, info)
+ if panicErr != nil && !canPanic {
+ t.Fatalf("%s\npanicked unexpectedly: %v", fmtSelect(info), panicErr)
+ }
+ if panicErr == nil && canPanic && numCanSelect == 1 {
+ t.Fatalf("%s\nselected #%d incorrectly (should panic)", fmtSelect(info), i)
+ }
+ if panicErr != nil {
+ continue
+ }
+
+ cas := info[i]
+ if !cas.canSelect {
+ recvStr := ""
+ if recv.IsValid() {
+ recvStr = fmt.Sprintf(", received %v, %v", recv.Interface(), recvOK)
+ }
+ t.Fatalf("%s\nselected #%d incorrectly%s", fmtSelect(info), i, recvStr)
+ }
+ if cas.panic {
+ t.Fatalf("%s\nselected #%d incorrectly (case should panic)", fmtSelect(info), i)
+ }
+
+ if cases[i].Dir == SelectRecv {
+ if !recv.IsValid() {
+ t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, cas.recv.Interface(), !cas.closed)
+ }
+ if !cas.recv.IsValid() {
+ t.Fatalf("%s\nselected #%d but internal error: missing recv value", fmtSelect(info), i)
+ }
+ if recv.Interface() != cas.recv.Interface() || recvOK != !cas.closed {
+ if recv.Interface() == cas.recv.Interface() && recvOK == !cas.closed {
+ t.Fatalf("%s\nselected #%d, got %#v, %v, and DeepEqual is broken on %T", fmtSelect(info), i, recv.Interface(), recvOK, recv.Interface())
+ }
+ t.Fatalf("%s\nselected #%d but got %#v, %v, want %#v, %v", fmtSelect(info), i, recv.Interface(), recvOK, cas.recv.Interface(), !cas.closed)
+ }
+ } else {
+ if recv.IsValid() || recvOK {
+ t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, Value{}, false)
+ }
+ }
+ }
+}
+
+func TestSelectMaxCases(t *testing.T) {
+ var sCases []SelectCase
+ channel := make(chan int)
+ close(channel)
+ for i := 0; i < 65536; i++ {
+ sCases = append(sCases, SelectCase{
+ Dir: SelectRecv,
+ Chan: ValueOf(channel),
+ })
+ }
+ // Should not panic
+ _, _, _ = Select(sCases)
+ sCases = append(sCases, SelectCase{
+ Dir: SelectRecv,
+ Chan: ValueOf(channel),
+ })
+ defer func() {
+ if err := recover(); err != nil {
+ if err.(string) != "reflect.Select: too many cases (max 65536)" {
+ t.Fatalf("unexpected error from select call with greater than max supported cases")
+ }
+ } else {
+ t.Fatalf("expected select call to panic with greater than max supported cases")
+ }
+ }()
+ // Should panic
+ _, _, _ = Select(sCases)
+}
+
+func TestSelectNop(t *testing.T) {
+ // "select { default: }" should always return the default case.
+ chosen, _, _ := Select([]SelectCase{{Dir: SelectDefault}})
+ if chosen != 0 {
+ t.Fatalf("expected Select to return 0, but got %#v", chosen)
+ }
+}
+
+// selectWatch and the selectWatcher are a watchdog mechanism for running Select.
+// If the selectWatcher notices that the select has been blocked for >1 second, it prints
+// an error describing the select and panics the entire test binary.
+var selectWatch struct {
+ sync.Mutex
+ once sync.Once
+ now time.Time
+ info []caseInfo
+}
+
+func selectWatcher() {
+ for {
+ time.Sleep(1 * time.Second)
+ selectWatch.Lock()
+ if selectWatch.info != nil && time.Since(selectWatch.now) > 10*time.Second {
+ fmt.Fprintf(os.Stderr, "TestSelect:\n%s blocked indefinitely\n", fmtSelect(selectWatch.info))
+ panic("select stuck")
+ }
+ selectWatch.Unlock()
+ }
+}
+
+// runSelect runs a single select test.
+// It returns the values returned by Select but also returns
+// a panic value if the Select panics.
+func runSelect(cases []SelectCase, info []caseInfo) (chosen int, recv Value, recvOK bool, panicErr any) {
+ defer func() {
+ panicErr = recover()
+
+ selectWatch.Lock()
+ selectWatch.info = nil
+ selectWatch.Unlock()
+ }()
+
+ selectWatch.Lock()
+ selectWatch.now = time.Now()
+ selectWatch.info = info
+ selectWatch.Unlock()
+
+ chosen, recv, recvOK = Select(cases)
+ return
+}
+
+// fmtSelect formats the information about a single select test.
+func fmtSelect(info []caseInfo) string {
+ var buf strings.Builder
+ fmt.Fprintf(&buf, "\nselect {\n")
+ for i, cas := range info {
+ fmt.Fprintf(&buf, "%d: %s", i, cas.desc)
+ if cas.recv.IsValid() {
+ fmt.Fprintf(&buf, " val=%#v", cas.recv.Interface())
+ }
+ if cas.canSelect {
+ fmt.Fprintf(&buf, " canselect")
+ }
+ if cas.panic {
+ fmt.Fprintf(&buf, " panic")
+ }
+ fmt.Fprintf(&buf, "\n")
+ }
+ fmt.Fprintf(&buf, "}")
+ return buf.String()
+}
+
+type two [2]uintptr
+
+// Difficult test for function call because of
+// implicit padding between arguments.
+func dummy(b byte, c int, d byte, e two, f byte, g float32, h byte) (i byte, j int, k byte, l two, m byte, n float32, o byte) {
+ return b, c, d, e, f, g, h
+}
+
+func TestFunc(t *testing.T) {
+ ret := ValueOf(dummy).Call([]Value{
+ ValueOf(byte(10)),
+ ValueOf(20),
+ ValueOf(byte(30)),
+ ValueOf(two{40, 50}),
+ ValueOf(byte(60)),
+ ValueOf(float32(70)),
+ ValueOf(byte(80)),
+ })
+ if len(ret) != 7 {
+ t.Fatalf("Call returned %d values, want 7", len(ret))
+ }
+
+ i := byte(ret[0].Uint())
+ j := int(ret[1].Int())
+ k := byte(ret[2].Uint())
+ l := ret[3].Interface().(two)
+ m := byte(ret[4].Uint())
+ n := float32(ret[5].Float())
+ o := byte(ret[6].Uint())
+
+ if i != 10 || j != 20 || k != 30 || l != (two{40, 50}) || m != 60 || n != 70 || o != 80 {
+ t.Errorf("Call returned %d, %d, %d, %v, %d, %g, %d; want 10, 20, 30, [40, 50], 60, 70, 80", i, j, k, l, m, n, o)
+ }
+
+ for i, v := range ret {
+ if v.CanAddr() {
+ t.Errorf("result %d is addressable", i)
+ }
+ }
+}
+
+func TestCallConvert(t *testing.T) {
+ v := ValueOf(new(io.ReadWriter)).Elem()
+ f := ValueOf(func(r io.Reader) io.Reader { return r })
+ out := f.Call([]Value{v})
+ if len(out) != 1 || out[0].Type() != TypeOf(new(io.Reader)).Elem() || !out[0].IsNil() {
+ t.Errorf("expected [nil], got %v", out)
+ }
+}
+
+type emptyStruct struct{}
+
+type nonEmptyStruct struct {
+ member int
+}
+
+func returnEmpty() emptyStruct {
+ return emptyStruct{}
+}
+
+func takesEmpty(e emptyStruct) {
+}
+
+func returnNonEmpty(i int) nonEmptyStruct {
+ return nonEmptyStruct{member: i}
+}
+
+func takesNonEmpty(n nonEmptyStruct) int {
+ return n.member
+}
+
+func TestCallWithStruct(t *testing.T) {
+ r := ValueOf(returnEmpty).Call(nil)
+ if len(r) != 1 || r[0].Type() != TypeOf(emptyStruct{}) {
+ t.Errorf("returning empty struct returned %#v instead", r)
+ }
+ r = ValueOf(takesEmpty).Call([]Value{ValueOf(emptyStruct{})})
+ if len(r) != 0 {
+ t.Errorf("takesEmpty returned values: %#v", r)
+ }
+ r = ValueOf(returnNonEmpty).Call([]Value{ValueOf(42)})
+ if len(r) != 1 || r[0].Type() != TypeOf(nonEmptyStruct{}) || r[0].Field(0).Int() != 42 {
+ t.Errorf("returnNonEmpty returned %#v", r)
+ }
+ r = ValueOf(takesNonEmpty).Call([]Value{ValueOf(nonEmptyStruct{member: 42})})
+ if len(r) != 1 || r[0].Type() != TypeOf(1) || r[0].Int() != 42 {
+ t.Errorf("takesNonEmpty returned %#v", r)
+ }
+}
+
+func TestCallReturnsEmpty(t *testing.T) {
+ // Issue 21717: past-the-end pointer write in Call with
+ // nonzero-sized frame and zero-sized return value.
+ runtime.GC()
+ var finalized uint32
+ f := func() (emptyStruct, *[2]int64) {
+ i := new([2]int64) // big enough to not be tinyalloc'd, so finalizer always runs when i dies
+ runtime.SetFinalizer(i, func(*[2]int64) { atomic.StoreUint32(&finalized, 1) })
+ return emptyStruct{}, i
+ }
+ v := ValueOf(f).Call(nil)[0] // out[0] should not alias out[1]'s memory, so the finalizer should run.
+ timeout := time.After(5 * time.Second)
+ for atomic.LoadUint32(&finalized) == 0 {
+ select {
+ case <-timeout:
+ t.Fatal("finalizer did not run")
+ default:
+ }
+ runtime.Gosched()
+ runtime.GC()
+ }
+ runtime.KeepAlive(v)
+}
+
+func TestMakeFunc(t *testing.T) {
+ f := dummy
+ fv := MakeFunc(TypeOf(f), func(in []Value) []Value { return in })
+ ValueOf(&f).Elem().Set(fv)
+
+ // Call g with small arguments so that there is
+ // something predictable (and different from the
+ // correct results) in those positions on the stack.
+ g := dummy
+ g(1, 2, 3, two{4, 5}, 6, 7, 8)
+
+ // Call constructed function f.
+ i, j, k, l, m, n, o := f(10, 20, 30, two{40, 50}, 60, 70, 80)
+ if i != 10 || j != 20 || k != 30 || l != (two{40, 50}) || m != 60 || n != 70 || o != 80 {
+ t.Errorf("Call returned %d, %d, %d, %v, %d, %g, %d; want 10, 20, 30, [40, 50], 60, 70, 80", i, j, k, l, m, n, o)
+ }
+}
+
+func TestMakeFuncInterface(t *testing.T) {
+ fn := func(i int) int { return i }
+ incr := func(in []Value) []Value {
+ return []Value{ValueOf(int(in[0].Int() + 1))}
+ }
+ fv := MakeFunc(TypeOf(fn), incr)
+ ValueOf(&fn).Elem().Set(fv)
+ if r := fn(2); r != 3 {
+ t.Errorf("Call returned %d, want 3", r)
+ }
+ if r := fv.Call([]Value{ValueOf(14)})[0].Int(); r != 15 {
+ t.Errorf("Call returned %d, want 15", r)
+ }
+ if r := fv.Interface().(func(int) int)(26); r != 27 {
+ t.Errorf("Call returned %d, want 27", r)
+ }
+}
+
+func TestMakeFuncVariadic(t *testing.T) {
+ // Test that variadic arguments are packed into a slice and passed as last arg
+ fn := func(_ int, is ...int) []int { return nil }
+ fv := MakeFunc(TypeOf(fn), func(in []Value) []Value { return in[1:2] })
+ ValueOf(&fn).Elem().Set(fv)
+
+ r := fn(1, 2, 3)
+ if r[0] != 2 || r[1] != 3 {
+ t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
+ }
+
+ r = fn(1, []int{2, 3}...)
+ if r[0] != 2 || r[1] != 3 {
+ t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
+ }
+
+ r = fv.Call([]Value{ValueOf(1), ValueOf(2), ValueOf(3)})[0].Interface().([]int)
+ if r[0] != 2 || r[1] != 3 {
+ t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
+ }
+
+ r = fv.CallSlice([]Value{ValueOf(1), ValueOf([]int{2, 3})})[0].Interface().([]int)
+ if r[0] != 2 || r[1] != 3 {
+ t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
+ }
+
+ f := fv.Interface().(func(int, ...int) []int)
+
+ r = f(1, 2, 3)
+ if r[0] != 2 || r[1] != 3 {
+ t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
+ }
+ r = f(1, []int{2, 3}...)
+ if r[0] != 2 || r[1] != 3 {
+ t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1])
+ }
+}
+
+// Dummy type that implements io.WriteCloser
+type WC struct {
+}
+
+func (w *WC) Write(p []byte) (n int, err error) {
+ return 0, nil
+}
+func (w *WC) Close() error {
+ return nil
+}
+
+func TestMakeFuncValidReturnAssignments(t *testing.T) {
+ // reflect.Values returned from the wrapped function should be assignment-converted
+ // to the types returned by the result of MakeFunc.
+
+ // Concrete types should be promotable to interfaces they implement.
+ var f func() error
+ f = MakeFunc(TypeOf(f), func([]Value) []Value {
+ return []Value{ValueOf(io.EOF)}
+ }).Interface().(func() error)
+ f()
+
+ // Super-interfaces should be promotable to simpler interfaces.
+ var g func() io.Writer
+ g = MakeFunc(TypeOf(g), func([]Value) []Value {
+ var w io.WriteCloser = &WC{}
+ return []Value{ValueOf(&w).Elem()}
+ }).Interface().(func() io.Writer)
+ g()
+
+ // Channels should be promotable to directional channels.
+ var h func() <-chan int
+ h = MakeFunc(TypeOf(h), func([]Value) []Value {
+ return []Value{ValueOf(make(chan int))}
+ }).Interface().(func() <-chan int)
+ h()
+
+ // Unnamed types should be promotable to named types.
+ type T struct{ a, b, c int }
+ var i func() T
+ i = MakeFunc(TypeOf(i), func([]Value) []Value {
+ return []Value{ValueOf(struct{ a, b, c int }{a: 1, b: 2, c: 3})}
+ }).Interface().(func() T)
+ i()
+}
+
+func TestMakeFuncInvalidReturnAssignments(t *testing.T) {
+ // Type doesn't implement the required interface.
+ shouldPanic("", func() {
+ var f func() error
+ f = MakeFunc(TypeOf(f), func([]Value) []Value {
+ return []Value{ValueOf(int(7))}
+ }).Interface().(func() error)
+ f()
+ })
+ // Assigning to an interface with additional methods.
+ shouldPanic("", func() {
+ var f func() io.ReadWriteCloser
+ f = MakeFunc(TypeOf(f), func([]Value) []Value {
+ var w io.WriteCloser = &WC{}
+ return []Value{ValueOf(&w).Elem()}
+ }).Interface().(func() io.ReadWriteCloser)
+ f()
+ })
+ // Directional channels can't be assigned to bidirectional ones.
+ shouldPanic("", func() {
+ var f func() chan int
+ f = MakeFunc(TypeOf(f), func([]Value) []Value {
+ var c <-chan int = make(chan int)
+ return []Value{ValueOf(c)}
+ }).Interface().(func() chan int)
+ f()
+ })
+ // Two named types which are otherwise identical.
+ shouldPanic("", func() {
+ type T struct{ a, b, c int }
+ type U struct{ a, b, c int }
+ var f func() T
+ f = MakeFunc(TypeOf(f), func([]Value) []Value {
+ return []Value{ValueOf(U{a: 1, b: 2, c: 3})}
+ }).Interface().(func() T)
+ f()
+ })
+}
+
+type Point struct {
+ x, y int
+}
+
+// This will be index 0.
+func (p Point) AnotherMethod(scale int) int {
+ return -1
+}
+
+// This will be index 1.
+func (p Point) Dist(scale int) int {
+ //println("Point.Dist", p.x, p.y, scale)
+ return p.x*p.x*scale + p.y*p.y*scale
+}
+
+// This will be index 2.
+func (p Point) GCMethod(k int) int {
+ runtime.GC()
+ return k + p.x
+}
+
+// This will be index 3.
+func (p Point) NoArgs() {
+ // Exercise no-argument/no-result paths.
+}
+
+// This will be index 4.
+func (p Point) TotalDist(points ...Point) int {
+ tot := 0
+ for _, q := range points {
+ dx := q.x - p.x
+ dy := q.y - p.y
+ tot += dx*dx + dy*dy // Should call Sqrt, but it's just a test.
+
+ }
+ return tot
+}
+
+// This will be index 5.
+func (p *Point) Int64Method(x int64) int64 {
+ return x
+}
+
+// This will be index 6.
+func (p *Point) Int32Method(x int32) int32 {
+ return x
+}
+
+func TestMethod(t *testing.T) {
+ // Non-curried method of type.
+ p := Point{3, 4}
+ i := TypeOf(p).Method(1).Func.Call([]Value{ValueOf(p), ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Type Method returned %d; want 250", i)
+ }
+
+ m, ok := TypeOf(p).MethodByName("Dist")
+ if !ok {
+ t.Fatalf("method by name failed")
+ }
+ i = m.Func.Call([]Value{ValueOf(p), ValueOf(11)})[0].Int()
+ if i != 275 {
+ t.Errorf("Type MethodByName returned %d; want 275", i)
+ }
+
+ m, ok = TypeOf(p).MethodByName("NoArgs")
+ if !ok {
+ t.Fatalf("method by name failed")
+ }
+ n := len(m.Func.Call([]Value{ValueOf(p)}))
+ if n != 0 {
+ t.Errorf("NoArgs returned %d values; want 0", n)
+ }
+
+ i = TypeOf(&p).Method(1).Func.Call([]Value{ValueOf(&p), ValueOf(12)})[0].Int()
+ if i != 300 {
+ t.Errorf("Pointer Type Method returned %d; want 300", i)
+ }
+
+ m, ok = TypeOf(&p).MethodByName("Dist")
+ if !ok {
+ t.Fatalf("ptr method by name failed")
+ }
+ i = m.Func.Call([]Value{ValueOf(&p), ValueOf(13)})[0].Int()
+ if i != 325 {
+ t.Errorf("Pointer Type MethodByName returned %d; want 325", i)
+ }
+
+ m, ok = TypeOf(&p).MethodByName("NoArgs")
+ if !ok {
+ t.Fatalf("method by name failed")
+ }
+ n = len(m.Func.Call([]Value{ValueOf(&p)}))
+ if n != 0 {
+ t.Errorf("NoArgs returned %d values; want 0", n)
+ }
+
+ _, ok = TypeOf(&p).MethodByName("AA")
+ if ok {
+ t.Errorf(`MethodByName("AA") should have failed`)
+ }
+
+ _, ok = TypeOf(&p).MethodByName("ZZ")
+ if ok {
+ t.Errorf(`MethodByName("ZZ") should have failed`)
+ }
+
+ // Curried method of value.
+ tfunc := TypeOf((func(int) int)(nil))
+ v := ValueOf(p).Method(1)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Value Method Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(14)})[0].Int()
+ if i != 350 {
+ t.Errorf("Value Method returned %d; want 350", i)
+ }
+ v = ValueOf(p).MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(15)})[0].Int()
+ if i != 375 {
+ t.Errorf("Value MethodByName returned %d; want 375", i)
+ }
+ v = ValueOf(p).MethodByName("NoArgs")
+ v.Call(nil)
+
+ // Curried method of pointer.
+ v = ValueOf(&p).Method(1)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(16)})[0].Int()
+ if i != 400 {
+ t.Errorf("Pointer Value Method returned %d; want 400", i)
+ }
+ v = ValueOf(&p).MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(17)})[0].Int()
+ if i != 425 {
+ t.Errorf("Pointer Value MethodByName returned %d; want 425", i)
+ }
+ v = ValueOf(&p).MethodByName("NoArgs")
+ v.Call(nil)
+
+ // Curried method of interface value.
+ // Have to wrap interface value in a struct to get at it.
+ // Passing it to ValueOf directly would
+ // access the underlying Point, not the interface.
+ var x interface {
+ Dist(int) int
+ } = p
+ pv := ValueOf(&x).Elem()
+ v = pv.Method(0)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Interface Method Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(18)})[0].Int()
+ if i != 450 {
+ t.Errorf("Interface Method returned %d; want 450", i)
+ }
+ v = pv.MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(19)})[0].Int()
+ if i != 475 {
+ t.Errorf("Interface MethodByName returned %d; want 475", i)
+ }
+}
+
+func TestMethodValue(t *testing.T) {
+ p := Point{3, 4}
+ var i int64
+
+ // Check that method value have the same underlying code pointers.
+ if p1, p2 := ValueOf(Point{1, 1}).Method(1), ValueOf(Point{2, 2}).Method(1); p1.Pointer() != p2.Pointer() {
+ t.Errorf("methodValueCall mismatched: %v - %v", p1, p2)
+ }
+
+ // Curried method of value.
+ tfunc := TypeOf((func(int) int)(nil))
+ v := ValueOf(p).Method(1)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Value Method Type is %s; want %s", tt, tfunc)
+ }
+ i = ValueOf(v.Interface()).Call([]Value{ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Value Method returned %d; want 250", i)
+ }
+ v = ValueOf(p).MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = ValueOf(v.Interface()).Call([]Value{ValueOf(11)})[0].Int()
+ if i != 275 {
+ t.Errorf("Value MethodByName returned %d; want 275", i)
+ }
+ v = ValueOf(p).MethodByName("NoArgs")
+ ValueOf(v.Interface()).Call(nil)
+ v.Interface().(func())()
+
+ // Curried method of pointer.
+ v = ValueOf(&p).Method(1)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc)
+ }
+ i = ValueOf(v.Interface()).Call([]Value{ValueOf(12)})[0].Int()
+ if i != 300 {
+ t.Errorf("Pointer Value Method returned %d; want 300", i)
+ }
+ v = ValueOf(&p).MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = ValueOf(v.Interface()).Call([]Value{ValueOf(13)})[0].Int()
+ if i != 325 {
+ t.Errorf("Pointer Value MethodByName returned %d; want 325", i)
+ }
+ v = ValueOf(&p).MethodByName("NoArgs")
+ ValueOf(v.Interface()).Call(nil)
+ v.Interface().(func())()
+
+ // Curried method of pointer to pointer.
+ pp := &p
+ v = ValueOf(&pp).Elem().Method(1)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Pointer Pointer Value Method Type is %s; want %s", tt, tfunc)
+ }
+ i = ValueOf(v.Interface()).Call([]Value{ValueOf(14)})[0].Int()
+ if i != 350 {
+ t.Errorf("Pointer Pointer Value Method returned %d; want 350", i)
+ }
+ v = ValueOf(&pp).Elem().MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Pointer Pointer Value MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = ValueOf(v.Interface()).Call([]Value{ValueOf(15)})[0].Int()
+ if i != 375 {
+ t.Errorf("Pointer Pointer Value MethodByName returned %d; want 375", i)
+ }
+
+ // Curried method of interface value.
+ // Have to wrap interface value in a struct to get at it.
+ // Passing it to ValueOf directly would
+ // access the underlying Point, not the interface.
+ var s = struct {
+ X interface {
+ Dist(int) int
+ }
+ }{p}
+ pv := ValueOf(s).Field(0)
+ v = pv.Method(0)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Interface Method Type is %s; want %s", tt, tfunc)
+ }
+ i = ValueOf(v.Interface()).Call([]Value{ValueOf(16)})[0].Int()
+ if i != 400 {
+ t.Errorf("Interface Method returned %d; want 400", i)
+ }
+ v = pv.MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = ValueOf(v.Interface()).Call([]Value{ValueOf(17)})[0].Int()
+ if i != 425 {
+ t.Errorf("Interface MethodByName returned %d; want 425", i)
+ }
+
+ // For issue #33628: method args are not stored at the right offset
+ // on amd64p32.
+ m64 := ValueOf(&p).MethodByName("Int64Method").Interface().(func(int64) int64)
+ if x := m64(123); x != 123 {
+ t.Errorf("Int64Method returned %d; want 123", x)
+ }
+ m32 := ValueOf(&p).MethodByName("Int32Method").Interface().(func(int32) int32)
+ if x := m32(456); x != 456 {
+ t.Errorf("Int32Method returned %d; want 456", x)
+ }
+}
+
+func TestVariadicMethodValue(t *testing.T) {
+ p := Point{3, 4}
+ points := []Point{{20, 21}, {22, 23}, {24, 25}}
+ want := int64(p.TotalDist(points[0], points[1], points[2]))
+
+ // Variadic method of type.
+ tfunc := TypeOf((func(Point, ...Point) int)(nil))
+ if tt := TypeOf(p).Method(4).Type; tt != tfunc {
+ t.Errorf("Variadic Method Type from TypeOf is %s; want %s", tt, tfunc)
+ }
+
+ // Curried method of value.
+ tfunc = TypeOf((func(...Point) int)(nil))
+ v := ValueOf(p).Method(4)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Variadic Method Type is %s; want %s", tt, tfunc)
+ }
+ i := ValueOf(v.Interface()).Call([]Value{ValueOf(points[0]), ValueOf(points[1]), ValueOf(points[2])})[0].Int()
+ if i != want {
+ t.Errorf("Variadic Method returned %d; want %d", i, want)
+ }
+ i = ValueOf(v.Interface()).CallSlice([]Value{ValueOf(points)})[0].Int()
+ if i != want {
+ t.Errorf("Variadic Method CallSlice returned %d; want %d", i, want)
+ }
+
+ f := v.Interface().(func(...Point) int)
+ i = int64(f(points[0], points[1], points[2]))
+ if i != want {
+ t.Errorf("Variadic Method Interface returned %d; want %d", i, want)
+ }
+ i = int64(f(points...))
+ if i != want {
+ t.Errorf("Variadic Method Interface Slice returned %d; want %d", i, want)
+ }
+}
+
+type DirectIfaceT struct {
+ p *int
+}
+
+func (d DirectIfaceT) M() int { return *d.p }
+
+func TestDirectIfaceMethod(t *testing.T) {
+ x := 42
+ v := DirectIfaceT{&x}
+ typ := TypeOf(v)
+ m, ok := typ.MethodByName("M")
+ if !ok {
+ t.Fatalf("cannot find method M")
+ }
+ in := []Value{ValueOf(v)}
+ out := m.Func.Call(in)
+ if got := out[0].Int(); got != 42 {
+ t.Errorf("Call with value receiver got %d, want 42", got)
+ }
+
+ pv := &v
+ typ = TypeOf(pv)
+ m, ok = typ.MethodByName("M")
+ if !ok {
+ t.Fatalf("cannot find method M")
+ }
+ in = []Value{ValueOf(pv)}
+ out = m.Func.Call(in)
+ if got := out[0].Int(); got != 42 {
+ t.Errorf("Call with pointer receiver got %d, want 42", got)
+ }
+}
+
+// Reflect version of $GOROOT/test/method5.go
+
+// Concrete types implementing M method.
+// Smaller than a word, word-sized, larger than a word.
+// Value and pointer receivers.
+
+type Tinter interface {
+ M(int, byte) (byte, int)
+}
+
+type Tsmallv byte
+
+func (v Tsmallv) M(x int, b byte) (byte, int) { return b, x + int(v) }
+
+type Tsmallp byte
+
+func (p *Tsmallp) M(x int, b byte) (byte, int) { return b, x + int(*p) }
+
+type Twordv uintptr
+
+func (v Twordv) M(x int, b byte) (byte, int) { return b, x + int(v) }
+
+type Twordp uintptr
+
+func (p *Twordp) M(x int, b byte) (byte, int) { return b, x + int(*p) }
+
+type Tbigv [2]uintptr
+
+func (v Tbigv) M(x int, b byte) (byte, int) { return b, x + int(v[0]) + int(v[1]) }
+
+type Tbigp [2]uintptr
+
+func (p *Tbigp) M(x int, b byte) (byte, int) { return b, x + int(p[0]) + int(p[1]) }
+
+type tinter interface {
+ m(int, byte) (byte, int)
+}
+
+// Embedding via pointer.
+
+type Tm1 struct {
+ Tm2
+}
+
+type Tm2 struct {
+ *Tm3
+}
+
+type Tm3 struct {
+ *Tm4
+}
+
+type Tm4 struct {
+}
+
+func (t4 Tm4) M(x int, b byte) (byte, int) { return b, x + 40 }
+
+func TestMethod5(t *testing.T) {
+ CheckF := func(name string, f func(int, byte) (byte, int), inc int) {
+ b, x := f(1000, 99)
+ if b != 99 || x != 1000+inc {
+ t.Errorf("%s(1000, 99) = %v, %v, want 99, %v", name, b, x, 1000+inc)
+ }
+ }
+
+ CheckV := func(name string, i Value, inc int) {
+ bx := i.Method(0).Call([]Value{ValueOf(1000), ValueOf(byte(99))})
+ b := bx[0].Interface()
+ x := bx[1].Interface()
+ if b != byte(99) || x != 1000+inc {
+ t.Errorf("direct %s.M(1000, 99) = %v, %v, want 99, %v", name, b, x, 1000+inc)
+ }
+
+ CheckF(name+".M", i.Method(0).Interface().(func(int, byte) (byte, int)), inc)
+ }
+
+ var TinterType = TypeOf(new(Tinter)).Elem()
+
+ CheckI := func(name string, i any, inc int) {
+ v := ValueOf(i)
+ CheckV(name, v, inc)
+ CheckV("(i="+name+")", v.Convert(TinterType), inc)
+ }
+
+ sv := Tsmallv(1)
+ CheckI("sv", sv, 1)
+ CheckI("&sv", &sv, 1)
+
+ sp := Tsmallp(2)
+ CheckI("&sp", &sp, 2)
+
+ wv := Twordv(3)
+ CheckI("wv", wv, 3)
+ CheckI("&wv", &wv, 3)
+
+ wp := Twordp(4)
+ CheckI("&wp", &wp, 4)
+
+ bv := Tbigv([2]uintptr{5, 6})
+ CheckI("bv", bv, 11)
+ CheckI("&bv", &bv, 11)
+
+ bp := Tbigp([2]uintptr{7, 8})
+ CheckI("&bp", &bp, 15)
+
+ t4 := Tm4{}
+ t3 := Tm3{&t4}
+ t2 := Tm2{&t3}
+ t1 := Tm1{t2}
+ CheckI("t4", t4, 40)
+ CheckI("&t4", &t4, 40)
+ CheckI("t3", t3, 40)
+ CheckI("&t3", &t3, 40)
+ CheckI("t2", t2, 40)
+ CheckI("&t2", &t2, 40)
+ CheckI("t1", t1, 40)
+ CheckI("&t1", &t1, 40)
+
+ var tnil Tinter
+ vnil := ValueOf(&tnil).Elem()
+ shouldPanic("Method", func() { vnil.Method(0) })
+}
+
+func TestInterfaceSet(t *testing.T) {
+ p := &Point{3, 4}
+
+ var s struct {
+ I any
+ P interface {
+ Dist(int) int
+ }
+ }
+ sv := ValueOf(&s).Elem()
+ sv.Field(0).Set(ValueOf(p))
+ if q := s.I.(*Point); q != p {
+ t.Errorf("i: have %p want %p", q, p)
+ }
+
+ pv := sv.Field(1)
+ pv.Set(ValueOf(p))
+ if q := s.P.(*Point); q != p {
+ t.Errorf("i: have %p want %p", q, p)
+ }
+
+ i := pv.Method(0).Call([]Value{ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Interface Method returned %d; want 250", i)
+ }
+}
+
+type T1 struct {
+ a string
+ int
+}
+
+func TestAnonymousFields(t *testing.T) {
+ var field StructField
+ var ok bool
+ var t1 T1
+ type1 := TypeOf(t1)
+ if field, ok = type1.FieldByName("int"); !ok {
+ t.Fatal("no field 'int'")
+ }
+ if field.Index[0] != 1 {
+ t.Error("field index should be 1; is", field.Index)
+ }
+}
+
+type FTest struct {
+ s any
+ name string
+ index []int
+ value int
+}
+
+type D1 struct {
+ d int
+}
+type D2 struct {
+ d int
+}
+
+type S0 struct {
+ A, B, C int
+ D1
+ D2
+}
+
+type S1 struct {
+ B int
+ S0
+}
+
+type S2 struct {
+ A int
+ *S1
+}
+
+type S1x struct {
+ S1
+}
+
+type S1y struct {
+ S1
+}
+
+type S3 struct {
+ S1x
+ S2
+ D, E int
+ *S1y
+}
+
+type S4 struct {
+ *S4
+ A int
+}
+
+// The X in S6 and S7 annihilate, but they also block the X in S8.S9.
+type S5 struct {
+ S6
+ S7
+ S8
+}
+
+type S6 struct {
+ X int
+}
+
+type S7 S6
+
+type S8 struct {
+ S9
+}
+
+type S9 struct {
+ X int
+ Y int
+}
+
+// The X in S11.S6 and S12.S6 annihilate, but they also block the X in S13.S8.S9.
+type S10 struct {
+ S11
+ S12
+ S13
+}
+
+type S11 struct {
+ S6
+}
+
+type S12 struct {
+ S6
+}
+
+type S13 struct {
+ S8
+}
+
+// The X in S15.S11.S1 and S16.S11.S1 annihilate.
+type S14 struct {
+ S15
+ S16
+}
+
+type S15 struct {
+ S11
+}
+
+type S16 struct {
+ S11
+}
+
+var fieldTests = []FTest{
+ {struct{}{}, "", nil, 0},
+ {struct{}{}, "Foo", nil, 0},
+ {S0{A: 'a'}, "A", []int{0}, 'a'},
+ {S0{}, "D", nil, 0},
+ {S1{S0: S0{A: 'a'}}, "A", []int{1, 0}, 'a'},
+ {S1{B: 'b'}, "B", []int{0}, 'b'},
+ {S1{}, "S0", []int{1}, 0},
+ {S1{S0: S0{C: 'c'}}, "C", []int{1, 2}, 'c'},
+ {S2{A: 'a'}, "A", []int{0}, 'a'},
+ {S2{}, "S1", []int{1}, 0},
+ {S2{S1: &S1{B: 'b'}}, "B", []int{1, 0}, 'b'},
+ {S2{S1: &S1{S0: S0{C: 'c'}}}, "C", []int{1, 1, 2}, 'c'},
+ {S2{}, "D", nil, 0},
+ {S3{}, "S1", nil, 0},
+ {S3{S2: S2{A: 'a'}}, "A", []int{1, 0}, 'a'},
+ {S3{}, "B", nil, 0},
+ {S3{D: 'd'}, "D", []int{2}, 0},
+ {S3{E: 'e'}, "E", []int{3}, 'e'},
+ {S4{A: 'a'}, "A", []int{1}, 'a'},
+ {S4{}, "B", nil, 0},
+ {S5{}, "X", nil, 0},
+ {S5{}, "Y", []int{2, 0, 1}, 0},
+ {S10{}, "X", nil, 0},
+ {S10{}, "Y", []int{2, 0, 0, 1}, 0},
+ {S14{}, "X", nil, 0},
+}
+
+func TestFieldByIndex(t *testing.T) {
+ for _, test := range fieldTests {
+ s := TypeOf(test.s)
+ f := s.FieldByIndex(test.index)
+ if f.Name != "" {
+ if test.index != nil {
+ if f.Name != test.name {
+ t.Errorf("%s.%s found; want %s", s.Name(), f.Name, test.name)
+ }
+ } else {
+ t.Errorf("%s.%s found", s.Name(), f.Name)
+ }
+ } else if len(test.index) > 0 {
+ t.Errorf("%s.%s not found", s.Name(), test.name)
+ }
+
+ if test.value != 0 {
+ v := ValueOf(test.s).FieldByIndex(test.index)
+ if v.IsValid() {
+ if x, ok := v.Interface().(int); ok {
+ if x != test.value {
+ t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value)
+ }
+ } else {
+ t.Errorf("%s%v value not an int", s.Name(), test.index)
+ }
+ } else {
+ t.Errorf("%s%v value not found", s.Name(), test.index)
+ }
+ }
+ }
+}
+
+func TestFieldByName(t *testing.T) {
+ for _, test := range fieldTests {
+ s := TypeOf(test.s)
+ f, found := s.FieldByName(test.name)
+ if found {
+ if test.index != nil {
+ // Verify field depth and index.
+ if len(f.Index) != len(test.index) {
+ t.Errorf("%s.%s depth %d; want %d: %v vs %v", s.Name(), test.name, len(f.Index), len(test.index), f.Index, test.index)
+ } else {
+ for i, x := range f.Index {
+ if x != test.index[i] {
+ t.Errorf("%s.%s.Index[%d] is %d; want %d", s.Name(), test.name, i, x, test.index[i])
+ }
+ }
+ }
+ } else {
+ t.Errorf("%s.%s found", s.Name(), f.Name)
+ }
+ } else if len(test.index) > 0 {
+ t.Errorf("%s.%s not found", s.Name(), test.name)
+ }
+
+ if test.value != 0 {
+ v := ValueOf(test.s).FieldByName(test.name)
+ if v.IsValid() {
+ if x, ok := v.Interface().(int); ok {
+ if x != test.value {
+ t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value)
+ }
+ } else {
+ t.Errorf("%s.%s value not an int", s.Name(), test.name)
+ }
+ } else {
+ t.Errorf("%s.%s value not found", s.Name(), test.name)
+ }
+ }
+ }
+}
+
+func TestImportPath(t *testing.T) {
+ tests := []struct {
+ t Type
+ path string
+ }{
+ {TypeOf(&base64.Encoding{}).Elem(), "encoding/base64"},
+ {TypeOf(int(0)), ""},
+ {TypeOf(int8(0)), ""},
+ {TypeOf(int16(0)), ""},
+ {TypeOf(int32(0)), ""},
+ {TypeOf(int64(0)), ""},
+ {TypeOf(uint(0)), ""},
+ {TypeOf(uint8(0)), ""},
+ {TypeOf(uint16(0)), ""},
+ {TypeOf(uint32(0)), ""},
+ {TypeOf(uint64(0)), ""},
+ {TypeOf(uintptr(0)), ""},
+ {TypeOf(float32(0)), ""},
+ {TypeOf(float64(0)), ""},
+ {TypeOf(complex64(0)), ""},
+ {TypeOf(complex128(0)), ""},
+ {TypeOf(byte(0)), ""},
+ {TypeOf(rune(0)), ""},
+ {TypeOf([]byte(nil)), ""},
+ {TypeOf([]rune(nil)), ""},
+ {TypeOf(string("")), ""},
+ {TypeOf((*any)(nil)).Elem(), ""},
+ {TypeOf((*byte)(nil)), ""},
+ {TypeOf((*rune)(nil)), ""},
+ {TypeOf((*int64)(nil)), ""},
+ {TypeOf(map[string]int{}), ""},
+ {TypeOf((*error)(nil)).Elem(), ""},
+ {TypeOf((*Point)(nil)), ""},
+ {TypeOf((*Point)(nil)).Elem(), "reflect_test"},
+ }
+ for _, test := range tests {
+ if path := test.t.PkgPath(); path != test.path {
+ t.Errorf("%v.PkgPath() = %q, want %q", test.t, path, test.path)
+ }
+ }
+}
+
+func TestFieldPkgPath(t *testing.T) {
+ type x int
+ typ := TypeOf(struct {
+ Exported string
+ unexported string
+ OtherPkgFields
+ int // issue 21702
+ *x // issue 21122
+ }{})
+
+ type pkgpathTest struct {
+ index []int
+ pkgPath string
+ embedded bool
+ exported bool
+ }
+
+ checkPkgPath := func(name string, s []pkgpathTest) {
+ for _, test := range s {
+ f := typ.FieldByIndex(test.index)
+ if got, want := f.PkgPath, test.pkgPath; got != want {
+ t.Errorf("%s: Field(%d).PkgPath = %q, want %q", name, test.index, got, want)
+ }
+ if got, want := f.Anonymous, test.embedded; got != want {
+ t.Errorf("%s: Field(%d).Anonymous = %v, want %v", name, test.index, got, want)
+ }
+ if got, want := f.IsExported(), test.exported; got != want {
+ t.Errorf("%s: Field(%d).IsExported = %v, want %v", name, test.index, got, want)
+ }
+ }
+ }
+
+ checkPkgPath("testStruct", []pkgpathTest{
+ {[]int{0}, "", false, true}, // Exported
+ {[]int{1}, "reflect_test", false, false}, // unexported
+ {[]int{2}, "", true, true}, // OtherPkgFields
+ {[]int{2, 0}, "", false, true}, // OtherExported
+ {[]int{2, 1}, "reflect", false, false}, // otherUnexported
+ {[]int{3}, "reflect_test", true, false}, // int
+ {[]int{4}, "reflect_test", true, false}, // *x
+ })
+
+ type localOtherPkgFields OtherPkgFields
+ typ = TypeOf(localOtherPkgFields{})
+ checkPkgPath("localOtherPkgFields", []pkgpathTest{
+ {[]int{0}, "", false, true}, // OtherExported
+ {[]int{1}, "reflect", false, false}, // otherUnexported
+ })
+}
+
+func TestMethodPkgPath(t *testing.T) {
+ type I interface {
+ x()
+ X()
+ }
+ typ := TypeOf((*interface {
+ I
+ y()
+ Y()
+ })(nil)).Elem()
+
+ tests := []struct {
+ name string
+ pkgPath string
+ exported bool
+ }{
+ {"X", "", true},
+ {"Y", "", true},
+ {"x", "reflect_test", false},
+ {"y", "reflect_test", false},
+ }
+
+ for _, test := range tests {
+ m, _ := typ.MethodByName(test.name)
+ if got, want := m.PkgPath, test.pkgPath; got != want {
+ t.Errorf("MethodByName(%q).PkgPath = %q, want %q", test.name, got, want)
+ }
+ if got, want := m.IsExported(), test.exported; got != want {
+ t.Errorf("MethodByName(%q).IsExported = %v, want %v", test.name, got, want)
+ }
+ }
+}
+
+func TestVariadicType(t *testing.T) {
+ // Test example from Type documentation.
+ var f func(x int, y ...float64)
+ typ := TypeOf(f)
+ if typ.NumIn() == 2 && typ.In(0) == TypeOf(int(0)) {
+ sl := typ.In(1)
+ if sl.Kind() == Slice {
+ if sl.Elem() == TypeOf(0.0) {
+ // ok
+ return
+ }
+ }
+ }
+
+ // Failed
+ t.Errorf("want NumIn() = 2, In(0) = int, In(1) = []float64")
+ s := fmt.Sprintf("have NumIn() = %d", typ.NumIn())
+ for i := 0; i < typ.NumIn(); i++ {
+ s += fmt.Sprintf(", In(%d) = %s", i, typ.In(i))
+ }
+ t.Error(s)
+}
+
+type inner struct {
+ x int
+}
+
+type outer struct {
+ y int
+ inner
+}
+
+func (*inner) M() {}
+func (*outer) M() {}
+
+func TestNestedMethods(t *testing.T) {
+ typ := TypeOf((*outer)(nil))
+ if typ.NumMethod() != 1 || typ.Method(0).Func.UnsafePointer() != ValueOf((*outer).M).UnsafePointer() {
+ t.Errorf("Wrong method table for outer: (M=%p)", (*outer).M)
+ for i := 0; i < typ.NumMethod(); i++ {
+ m := typ.Method(i)
+ t.Errorf("\t%d: %s %p\n", i, m.Name, m.Func.UnsafePointer())
+ }
+ }
+}
+
+type unexp struct{}
+
+func (*unexp) f() (int32, int8) { return 7, 7 }
+func (*unexp) g() (int64, int8) { return 8, 8 }
+
+type unexpI interface {
+ f() (int32, int8)
+}
+
+var unexpi unexpI = new(unexp)
+
+func TestUnexportedMethods(t *testing.T) {
+ typ := TypeOf(unexpi)
+
+ if got := typ.NumMethod(); got != 0 {
+ t.Errorf("NumMethod=%d, want 0 satisfied methods", got)
+ }
+}
+
+type InnerInt struct {
+ X int
+}
+
+type OuterInt struct {
+ Y int
+ InnerInt
+}
+
+func (i *InnerInt) M() int {
+ return i.X
+}
+
+func TestEmbeddedMethods(t *testing.T) {
+ typ := TypeOf((*OuterInt)(nil))
+ if typ.NumMethod() != 1 || typ.Method(0).Func.UnsafePointer() != ValueOf((*OuterInt).M).UnsafePointer() {
+ t.Errorf("Wrong method table for OuterInt: (m=%p)", (*OuterInt).M)
+ for i := 0; i < typ.NumMethod(); i++ {
+ m := typ.Method(i)
+ t.Errorf("\t%d: %s %p\n", i, m.Name, m.Func.UnsafePointer())
+ }
+ }
+
+ i := &InnerInt{3}
+ if v := ValueOf(i).Method(0).Call(nil)[0].Int(); v != 3 {
+ t.Errorf("i.M() = %d, want 3", v)
+ }
+
+ o := &OuterInt{1, InnerInt{2}}
+ if v := ValueOf(o).Method(0).Call(nil)[0].Int(); v != 2 {
+ t.Errorf("i.M() = %d, want 2", v)
+ }
+
+ f := (*OuterInt).M
+ if v := f(o); v != 2 {
+ t.Errorf("f(o) = %d, want 2", v)
+ }
+}
+
+type FuncDDD func(...any) error
+
+func (f FuncDDD) M() {}
+
+func TestNumMethodOnDDD(t *testing.T) {
+ rv := ValueOf((FuncDDD)(nil))
+ if n := rv.NumMethod(); n != 1 {
+ t.Fatalf("NumMethod()=%d, want 1", n)
+ }
+}
+
+func TestPtrTo(t *testing.T) {
+ // This block of code means that the ptrToThis field of the
+ // reflect data for *unsafe.Pointer is non zero, see
+ // https://golang.org/issue/19003
+ var x unsafe.Pointer
+ var y = &x
+ var z = &y
+
+ var i int
+
+ typ := TypeOf(z)
+ for i = 0; i < 100; i++ {
+ typ = PointerTo(typ)
+ }
+ for i = 0; i < 100; i++ {
+ typ = typ.Elem()
+ }
+ if typ != TypeOf(z) {
+ t.Errorf("after 100 PointerTo and Elem, have %s, want %s", typ, TypeOf(z))
+ }
+}
+
+func TestPtrToGC(t *testing.T) {
+ type T *uintptr
+ tt := TypeOf(T(nil))
+ pt := PointerTo(tt)
+ const n = 100
+ var x []any
+ for i := 0; i < n; i++ {
+ v := New(pt)
+ p := new(*uintptr)
+ *p = new(uintptr)
+ **p = uintptr(i)
+ v.Elem().Set(ValueOf(p).Convert(pt))
+ x = append(x, v.Interface())
+ }
+ runtime.GC()
+
+ for i, xi := range x {
+ k := ValueOf(xi).Elem().Elem().Elem().Interface().(uintptr)
+ if k != uintptr(i) {
+ t.Errorf("lost x[%d] = %d, want %d", i, k, i)
+ }
+ }
+}
+
+func TestAddr(t *testing.T) {
+ var p struct {
+ X, Y int
+ }
+
+ v := ValueOf(&p)
+ v = v.Elem()
+ v = v.Addr()
+ v = v.Elem()
+ v = v.Field(0)
+ v.SetInt(2)
+ if p.X != 2 {
+ t.Errorf("Addr.Elem.Set failed to set value")
+ }
+
+ // Again but take address of the ValueOf value.
+ // Exercises generation of PtrTypes not present in the binary.
+ q := &p
+ v = ValueOf(&q).Elem()
+ v = v.Addr()
+ v = v.Elem()
+ v = v.Elem()
+ v = v.Addr()
+ v = v.Elem()
+ v = v.Field(0)
+ v.SetInt(3)
+ if p.X != 3 {
+ t.Errorf("Addr.Elem.Set failed to set value")
+ }
+
+ // Starting without pointer we should get changed value
+ // in interface.
+ qq := p
+ v = ValueOf(&qq).Elem()
+ v0 := v
+ v = v.Addr()
+ v = v.Elem()
+ v = v.Field(0)
+ v.SetInt(4)
+ if p.X != 3 { // should be unchanged from last time
+ t.Errorf("somehow value Set changed original p")
+ }
+ p = v0.Interface().(struct {
+ X, Y int
+ })
+ if p.X != 4 {
+ t.Errorf("Addr.Elem.Set valued to set value in top value")
+ }
+
+ // Verify that taking the address of a type gives us a pointer
+ // which we can convert back using the usual interface
+ // notation.
+ var s struct {
+ B *bool
+ }
+ ps := ValueOf(&s).Elem().Field(0).Addr().Interface()
+ *(ps.(**bool)) = new(bool)
+ if s.B == nil {
+ t.Errorf("Addr.Interface direct assignment failed")
+ }
+}
+
+func noAlloc(t *testing.T, n int, f func(int)) {
+ if testing.Short() {
+ t.Skip("skipping malloc count in short mode")
+ }
+ if runtime.GOMAXPROCS(0) > 1 {
+ t.Skip("skipping; GOMAXPROCS>1")
+ }
+ i := -1
+ allocs := testing.AllocsPerRun(n, func() {
+ f(i)
+ i++
+ })
+ if allocs > 0 {
+ t.Errorf("%d iterations: got %v mallocs, want 0", n, allocs)
+ }
+}
+
+func TestAllocations(t *testing.T) {
+ noAlloc(t, 100, func(j int) {
+ var i any
+ var v Value
+
+ // We can uncomment this when compiler escape analysis
+ // is good enough to see that the integer assigned to i
+ // does not escape and therefore need not be allocated.
+ //
+ // i = 42 + j
+ // v = ValueOf(i)
+ // if int(v.Int()) != 42+j {
+ // panic("wrong int")
+ // }
+
+ i = func(j int) int { return j }
+ v = ValueOf(i)
+ if v.Interface().(func(int) int)(j) != j {
+ panic("wrong result")
+ }
+ })
+}
+
+func TestSmallNegativeInt(t *testing.T) {
+ i := int16(-1)
+ v := ValueOf(i)
+ if v.Int() != -1 {
+ t.Errorf("int16(-1).Int() returned %v", v.Int())
+ }
+}
+
+func TestIndex(t *testing.T) {
+ xs := []byte{1, 2, 3, 4, 5, 6, 7, 8}
+ v := ValueOf(xs).Index(3).Interface().(byte)
+ if v != xs[3] {
+ t.Errorf("xs.Index(3) = %v; expected %v", v, xs[3])
+ }
+ xa := [8]byte{10, 20, 30, 40, 50, 60, 70, 80}
+ v = ValueOf(xa).Index(2).Interface().(byte)
+ if v != xa[2] {
+ t.Errorf("xa.Index(2) = %v; expected %v", v, xa[2])
+ }
+ s := "0123456789"
+ v = ValueOf(s).Index(3).Interface().(byte)
+ if v != s[3] {
+ t.Errorf("s.Index(3) = %v; expected %v", v, s[3])
+ }
+}
+
+func TestSlice(t *testing.T) {
+ xs := []int{1, 2, 3, 4, 5, 6, 7, 8}
+ v := ValueOf(xs).Slice(3, 5).Interface().([]int)
+ if len(v) != 2 {
+ t.Errorf("len(xs.Slice(3, 5)) = %d", len(v))
+ }
+ if cap(v) != 5 {
+ t.Errorf("cap(xs.Slice(3, 5)) = %d", cap(v))
+ }
+ if !DeepEqual(v[0:5], xs[3:]) {
+ t.Errorf("xs.Slice(3, 5)[0:5] = %v", v[0:5])
+ }
+ xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80}
+ v = ValueOf(&xa).Elem().Slice(2, 5).Interface().([]int)
+ if len(v) != 3 {
+ t.Errorf("len(xa.Slice(2, 5)) = %d", len(v))
+ }
+ if cap(v) != 6 {
+ t.Errorf("cap(xa.Slice(2, 5)) = %d", cap(v))
+ }
+ if !DeepEqual(v[0:6], xa[2:]) {
+ t.Errorf("xs.Slice(2, 5)[0:6] = %v", v[0:6])
+ }
+ s := "0123456789"
+ vs := ValueOf(s).Slice(3, 5).Interface().(string)
+ if vs != s[3:5] {
+ t.Errorf("s.Slice(3, 5) = %q; expected %q", vs, s[3:5])
+ }
+
+ rv := ValueOf(&xs).Elem()
+ rv = rv.Slice(3, 4)
+ ptr2 := rv.UnsafePointer()
+ rv = rv.Slice(5, 5)
+ ptr3 := rv.UnsafePointer()
+ if ptr3 != ptr2 {
+ t.Errorf("xs.Slice(3,4).Slice3(5,5).UnsafePointer() = %p, want %p", ptr3, ptr2)
+ }
+}
+
+func TestSlice3(t *testing.T) {
+ xs := []int{1, 2, 3, 4, 5, 6, 7, 8}
+ v := ValueOf(xs).Slice3(3, 5, 7).Interface().([]int)
+ if len(v) != 2 {
+ t.Errorf("len(xs.Slice3(3, 5, 7)) = %d", len(v))
+ }
+ if cap(v) != 4 {
+ t.Errorf("cap(xs.Slice3(3, 5, 7)) = %d", cap(v))
+ }
+ if !DeepEqual(v[0:4], xs[3:7:7]) {
+ t.Errorf("xs.Slice3(3, 5, 7)[0:4] = %v", v[0:4])
+ }
+ rv := ValueOf(&xs).Elem()
+ shouldPanic("Slice3", func() { rv.Slice3(1, 2, 1) })
+ shouldPanic("Slice3", func() { rv.Slice3(1, 1, 11) })
+ shouldPanic("Slice3", func() { rv.Slice3(2, 2, 1) })
+
+ xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80}
+ v = ValueOf(&xa).Elem().Slice3(2, 5, 6).Interface().([]int)
+ if len(v) != 3 {
+ t.Errorf("len(xa.Slice(2, 5, 6)) = %d", len(v))
+ }
+ if cap(v) != 4 {
+ t.Errorf("cap(xa.Slice(2, 5, 6)) = %d", cap(v))
+ }
+ if !DeepEqual(v[0:4], xa[2:6:6]) {
+ t.Errorf("xs.Slice(2, 5, 6)[0:4] = %v", v[0:4])
+ }
+ rv = ValueOf(&xa).Elem()
+ shouldPanic("Slice3", func() { rv.Slice3(1, 2, 1) })
+ shouldPanic("Slice3", func() { rv.Slice3(1, 1, 11) })
+ shouldPanic("Slice3", func() { rv.Slice3(2, 2, 1) })
+
+ s := "hello world"
+ rv = ValueOf(&s).Elem()
+ shouldPanic("Slice3", func() { rv.Slice3(1, 2, 3) })
+
+ rv = ValueOf(&xs).Elem()
+ rv = rv.Slice3(3, 5, 7)
+ ptr2 := rv.UnsafePointer()
+ rv = rv.Slice3(4, 4, 4)
+ ptr3 := rv.UnsafePointer()
+ if ptr3 != ptr2 {
+ t.Errorf("xs.Slice3(3,5,7).Slice3(4,4,4).UnsafePointer() = %p, want %p", ptr3, ptr2)
+ }
+}
+
+func TestSetLenCap(t *testing.T) {
+ xs := []int{1, 2, 3, 4, 5, 6, 7, 8}
+ xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80}
+
+ vs := ValueOf(&xs).Elem()
+ shouldPanic("SetLen", func() { vs.SetLen(10) })
+ shouldPanic("SetCap", func() { vs.SetCap(10) })
+ shouldPanic("SetLen", func() { vs.SetLen(-1) })
+ shouldPanic("SetCap", func() { vs.SetCap(-1) })
+ shouldPanic("SetCap", func() { vs.SetCap(6) }) // smaller than len
+ vs.SetLen(5)
+ if len(xs) != 5 || cap(xs) != 8 {
+ t.Errorf("after SetLen(5), len, cap = %d, %d, want 5, 8", len(xs), cap(xs))
+ }
+ vs.SetCap(6)
+ if len(xs) != 5 || cap(xs) != 6 {
+ t.Errorf("after SetCap(6), len, cap = %d, %d, want 5, 6", len(xs), cap(xs))
+ }
+ vs.SetCap(5)
+ if len(xs) != 5 || cap(xs) != 5 {
+ t.Errorf("after SetCap(5), len, cap = %d, %d, want 5, 5", len(xs), cap(xs))
+ }
+ shouldPanic("SetCap", func() { vs.SetCap(4) }) // smaller than len
+ shouldPanic("SetLen", func() { vs.SetLen(6) }) // bigger than cap
+
+ va := ValueOf(&xa).Elem()
+ shouldPanic("SetLen", func() { va.SetLen(8) })
+ shouldPanic("SetCap", func() { va.SetCap(8) })
+}
+
+func TestVariadic(t *testing.T) {
+ var b strings.Builder
+ V := ValueOf
+
+ b.Reset()
+ V(fmt.Fprintf).Call([]Value{V(&b), V("%s, %d world"), V("hello"), V(42)})
+ if b.String() != "hello, 42 world" {
+ t.Errorf("after Fprintf Call: %q != %q", b.String(), "hello 42 world")
+ }
+
+ b.Reset()
+ V(fmt.Fprintf).CallSlice([]Value{V(&b), V("%s, %d world"), V([]any{"hello", 42})})
+ if b.String() != "hello, 42 world" {
+ t.Errorf("after Fprintf CallSlice: %q != %q", b.String(), "hello 42 world")
+ }
+}
+
+func TestFuncArg(t *testing.T) {
+ f1 := func(i int, f func(int) int) int { return f(i) }
+ f2 := func(i int) int { return i + 1 }
+ r := ValueOf(f1).Call([]Value{ValueOf(100), ValueOf(f2)})
+ if r[0].Int() != 101 {
+ t.Errorf("function returned %d, want 101", r[0].Int())
+ }
+}
+
+func TestStructArg(t *testing.T) {
+ type padded struct {
+ B string
+ C int32
+ }
+ var (
+ gotA padded
+ gotB uint32
+ wantA = padded{"3", 4}
+ wantB = uint32(5)
+ )
+ f := func(a padded, b uint32) {
+ gotA, gotB = a, b
+ }
+ ValueOf(f).Call([]Value{ValueOf(wantA), ValueOf(wantB)})
+ if gotA != wantA || gotB != wantB {
+ t.Errorf("function called with (%v, %v), want (%v, %v)", gotA, gotB, wantA, wantB)
+ }
+}
+
+var tagGetTests = []struct {
+ Tag StructTag
+ Key string
+ Value string
+}{
+ {`protobuf:"PB(1,2)"`, `protobuf`, `PB(1,2)`},
+ {`protobuf:"PB(1,2)"`, `foo`, ``},
+ {`protobuf:"PB(1,2)"`, `rotobuf`, ``},
+ {`protobuf:"PB(1,2)" json:"name"`, `json`, `name`},
+ {`protobuf:"PB(1,2)" json:"name"`, `protobuf`, `PB(1,2)`},
+ {`k0:"values contain spaces" k1:"and\ttabs"`, "k0", "values contain spaces"},
+ {`k0:"values contain spaces" k1:"and\ttabs"`, "k1", "and\ttabs"},
+}
+
+func TestTagGet(t *testing.T) {
+ for _, tt := range tagGetTests {
+ if v := tt.Tag.Get(tt.Key); v != tt.Value {
+ t.Errorf("StructTag(%#q).Get(%#q) = %#q, want %#q", tt.Tag, tt.Key, v, tt.Value)
+ }
+ }
+}
+
+func TestBytes(t *testing.T) {
+ shouldPanic("on int Value", func() { ValueOf(0).Bytes() })
+ shouldPanic("of non-byte slice", func() { ValueOf([]string{}).Bytes() })
+
+ type S []byte
+ x := S{1, 2, 3, 4}
+ y := ValueOf(x).Bytes()
+ if !bytes.Equal(x, y) {
+ t.Fatalf("ValueOf(%v).Bytes() = %v", x, y)
+ }
+ if &x[0] != &y[0] {
+ t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0])
+ }
+
+ type A [4]byte
+ a := A{1, 2, 3, 4}
+ shouldPanic("unaddressable", func() { ValueOf(a).Bytes() })
+ shouldPanic("on ptr Value", func() { ValueOf(&a).Bytes() })
+ b := ValueOf(&a).Elem().Bytes()
+ if !bytes.Equal(a[:], y) {
+ t.Fatalf("ValueOf(%v).Bytes() = %v", a, b)
+ }
+ if &a[0] != &b[0] {
+ t.Errorf("ValueOf(%p).Bytes() = %p", &a[0], &b[0])
+ }
+
+ // Per issue #24746, it was decided that Bytes can be called on byte slices
+ // that normally cannot be converted from per Go language semantics.
+ type B byte
+ type SB []B
+ type AB [4]B
+ ValueOf([]B{1, 2, 3, 4}).Bytes() // should not panic
+ ValueOf(new([4]B)).Elem().Bytes() // should not panic
+ ValueOf(SB{1, 2, 3, 4}).Bytes() // should not panic
+ ValueOf(new(AB)).Elem().Bytes() // should not panic
+}
+
+func TestSetBytes(t *testing.T) {
+ type B []byte
+ var x B
+ y := []byte{1, 2, 3, 4}
+ ValueOf(&x).Elem().SetBytes(y)
+ if !bytes.Equal(x, y) {
+ t.Fatalf("ValueOf(%v).Bytes() = %v", x, y)
+ }
+ if &x[0] != &y[0] {
+ t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0])
+ }
+}
+
+type Private struct {
+ x int
+ y **int
+ Z int
+}
+
+func (p *Private) m() {
+}
+
+type private struct {
+ Z int
+ z int
+ S string
+ A [1]Private
+ T []Private
+}
+
+func (p *private) P() {
+}
+
+type Public struct {
+ X int
+ Y **int
+ private
+}
+
+func (p *Public) M() {
+}
+
+func TestUnexported(t *testing.T) {
+ var pub Public
+ pub.S = "S"
+ pub.T = pub.A[:]
+ v := ValueOf(&pub)
+ isValid(v.Elem().Field(0))
+ isValid(v.Elem().Field(1))
+ isValid(v.Elem().Field(2))
+ isValid(v.Elem().FieldByName("X"))
+ isValid(v.Elem().FieldByName("Y"))
+ isValid(v.Elem().FieldByName("Z"))
+ isValid(v.Type().Method(0).Func)
+ m, _ := v.Type().MethodByName("M")
+ isValid(m.Func)
+ m, _ = v.Type().MethodByName("P")
+ isValid(m.Func)
+ isNonNil(v.Elem().Field(0).Interface())
+ isNonNil(v.Elem().Field(1).Interface())
+ isNonNil(v.Elem().Field(2).Field(2).Index(0))
+ isNonNil(v.Elem().FieldByName("X").Interface())
+ isNonNil(v.Elem().FieldByName("Y").Interface())
+ isNonNil(v.Elem().FieldByName("Z").Interface())
+ isNonNil(v.Elem().FieldByName("S").Index(0).Interface())
+ isNonNil(v.Type().Method(0).Func.Interface())
+ m, _ = v.Type().MethodByName("P")
+ isNonNil(m.Func.Interface())
+
+ var priv Private
+ v = ValueOf(&priv)
+ isValid(v.Elem().Field(0))
+ isValid(v.Elem().Field(1))
+ isValid(v.Elem().FieldByName("x"))
+ isValid(v.Elem().FieldByName("y"))
+ shouldPanic("Interface", func() { v.Elem().Field(0).Interface() })
+ shouldPanic("Interface", func() { v.Elem().Field(1).Interface() })
+ shouldPanic("Interface", func() { v.Elem().FieldByName("x").Interface() })
+ shouldPanic("Interface", func() { v.Elem().FieldByName("y").Interface() })
+ shouldPanic("Method", func() { v.Type().Method(0) })
+}
+
+func TestSetPanic(t *testing.T) {
+ ok := func(f func()) { f() }
+ bad := func(f func()) { shouldPanic("Set", f) }
+ clear := func(v Value) { v.Set(Zero(v.Type())) }
+
+ type t0 struct {
+ W int
+ }
+
+ type t1 struct {
+ Y int
+ t0
+ }
+
+ type T2 struct {
+ Z int
+ namedT0 t0
+ }
+
+ type T struct {
+ X int
+ t1
+ T2
+ NamedT1 t1
+ NamedT2 T2
+ namedT1 t1
+ namedT2 T2
+ }
+
+ // not addressable
+ v := ValueOf(T{})
+ bad(func() { clear(v.Field(0)) }) // .X
+ bad(func() { clear(v.Field(1)) }) // .t1
+ bad(func() { clear(v.Field(1).Field(0)) }) // .t1.Y
+ bad(func() { clear(v.Field(1).Field(1)) }) // .t1.t0
+ bad(func() { clear(v.Field(1).Field(1).Field(0)) }) // .t1.t0.W
+ bad(func() { clear(v.Field(2)) }) // .T2
+ bad(func() { clear(v.Field(2).Field(0)) }) // .T2.Z
+ bad(func() { clear(v.Field(2).Field(1)) }) // .T2.namedT0
+ bad(func() { clear(v.Field(2).Field(1).Field(0)) }) // .T2.namedT0.W
+ bad(func() { clear(v.Field(3)) }) // .NamedT1
+ bad(func() { clear(v.Field(3).Field(0)) }) // .NamedT1.Y
+ bad(func() { clear(v.Field(3).Field(1)) }) // .NamedT1.t0
+ bad(func() { clear(v.Field(3).Field(1).Field(0)) }) // .NamedT1.t0.W
+ bad(func() { clear(v.Field(4)) }) // .NamedT2
+ bad(func() { clear(v.Field(4).Field(0)) }) // .NamedT2.Z
+ bad(func() { clear(v.Field(4).Field(1)) }) // .NamedT2.namedT0
+ bad(func() { clear(v.Field(4).Field(1).Field(0)) }) // .NamedT2.namedT0.W
+ bad(func() { clear(v.Field(5)) }) // .namedT1
+ bad(func() { clear(v.Field(5).Field(0)) }) // .namedT1.Y
+ bad(func() { clear(v.Field(5).Field(1)) }) // .namedT1.t0
+ bad(func() { clear(v.Field(5).Field(1).Field(0)) }) // .namedT1.t0.W
+ bad(func() { clear(v.Field(6)) }) // .namedT2
+ bad(func() { clear(v.Field(6).Field(0)) }) // .namedT2.Z
+ bad(func() { clear(v.Field(6).Field(1)) }) // .namedT2.namedT0
+ bad(func() { clear(v.Field(6).Field(1).Field(0)) }) // .namedT2.namedT0.W
+
+ // addressable
+ v = ValueOf(&T{}).Elem()
+ ok(func() { clear(v.Field(0)) }) // .X
+ bad(func() { clear(v.Field(1)) }) // .t1
+ ok(func() { clear(v.Field(1).Field(0)) }) // .t1.Y
+ bad(func() { clear(v.Field(1).Field(1)) }) // .t1.t0
+ ok(func() { clear(v.Field(1).Field(1).Field(0)) }) // .t1.t0.W
+ ok(func() { clear(v.Field(2)) }) // .T2
+ ok(func() { clear(v.Field(2).Field(0)) }) // .T2.Z
+ bad(func() { clear(v.Field(2).Field(1)) }) // .T2.namedT0
+ bad(func() { clear(v.Field(2).Field(1).Field(0)) }) // .T2.namedT0.W
+ ok(func() { clear(v.Field(3)) }) // .NamedT1
+ ok(func() { clear(v.Field(3).Field(0)) }) // .NamedT1.Y
+ bad(func() { clear(v.Field(3).Field(1)) }) // .NamedT1.t0
+ ok(func() { clear(v.Field(3).Field(1).Field(0)) }) // .NamedT1.t0.W
+ ok(func() { clear(v.Field(4)) }) // .NamedT2
+ ok(func() { clear(v.Field(4).Field(0)) }) // .NamedT2.Z
+ bad(func() { clear(v.Field(4).Field(1)) }) // .NamedT2.namedT0
+ bad(func() { clear(v.Field(4).Field(1).Field(0)) }) // .NamedT2.namedT0.W
+ bad(func() { clear(v.Field(5)) }) // .namedT1
+ bad(func() { clear(v.Field(5).Field(0)) }) // .namedT1.Y
+ bad(func() { clear(v.Field(5).Field(1)) }) // .namedT1.t0
+ bad(func() { clear(v.Field(5).Field(1).Field(0)) }) // .namedT1.t0.W
+ bad(func() { clear(v.Field(6)) }) // .namedT2
+ bad(func() { clear(v.Field(6).Field(0)) }) // .namedT2.Z
+ bad(func() { clear(v.Field(6).Field(1)) }) // .namedT2.namedT0
+ bad(func() { clear(v.Field(6).Field(1).Field(0)) }) // .namedT2.namedT0.W
+}
+
+type timp int
+
+func (t timp) W() {}
+func (t timp) Y() {}
+func (t timp) w() {}
+func (t timp) y() {}
+
+func TestCallPanic(t *testing.T) {
+ type t0 interface {
+ W()
+ w()
+ }
+ type T1 interface {
+ Y()
+ y()
+ }
+ type T2 struct {
+ T1
+ t0
+ }
+ type T struct {
+ t0 // 0
+ T1 // 1
+
+ NamedT0 t0 // 2
+ NamedT1 T1 // 3
+ NamedT2 T2 // 4
+
+ namedT0 t0 // 5
+ namedT1 T1 // 6
+ namedT2 T2 // 7
+ }
+ ok := func(f func()) { f() }
+ badCall := func(f func()) { shouldPanic("Call", f) }
+ badMethod := func(f func()) { shouldPanic("Method", f) }
+ call := func(v Value) { v.Call(nil) }
+
+ i := timp(0)
+ v := ValueOf(T{i, i, i, i, T2{i, i}, i, i, T2{i, i}})
+ badCall(func() { call(v.Field(0).Method(0)) }) // .t0.W
+ badCall(func() { call(v.Field(0).Elem().Method(0)) }) // .t0.W
+ badCall(func() { call(v.Field(0).Method(1)) }) // .t0.w
+ badMethod(func() { call(v.Field(0).Elem().Method(2)) }) // .t0.w
+ ok(func() { call(v.Field(1).Method(0)) }) // .T1.Y
+ ok(func() { call(v.Field(1).Elem().Method(0)) }) // .T1.Y
+ badCall(func() { call(v.Field(1).Method(1)) }) // .T1.y
+ badMethod(func() { call(v.Field(1).Elem().Method(2)) }) // .T1.y
+
+ ok(func() { call(v.Field(2).Method(0)) }) // .NamedT0.W
+ ok(func() { call(v.Field(2).Elem().Method(0)) }) // .NamedT0.W
+ badCall(func() { call(v.Field(2).Method(1)) }) // .NamedT0.w
+ badMethod(func() { call(v.Field(2).Elem().Method(2)) }) // .NamedT0.w
+
+ ok(func() { call(v.Field(3).Method(0)) }) // .NamedT1.Y
+ ok(func() { call(v.Field(3).Elem().Method(0)) }) // .NamedT1.Y
+ badCall(func() { call(v.Field(3).Method(1)) }) // .NamedT1.y
+ badMethod(func() { call(v.Field(3).Elem().Method(3)) }) // .NamedT1.y
+
+ ok(func() { call(v.Field(4).Field(0).Method(0)) }) // .NamedT2.T1.Y
+ ok(func() { call(v.Field(4).Field(0).Elem().Method(0)) }) // .NamedT2.T1.W
+ badCall(func() { call(v.Field(4).Field(1).Method(0)) }) // .NamedT2.t0.W
+ badCall(func() { call(v.Field(4).Field(1).Elem().Method(0)) }) // .NamedT2.t0.W
+
+ badCall(func() { call(v.Field(5).Method(0)) }) // .namedT0.W
+ badCall(func() { call(v.Field(5).Elem().Method(0)) }) // .namedT0.W
+ badCall(func() { call(v.Field(5).Method(1)) }) // .namedT0.w
+ badMethod(func() { call(v.Field(5).Elem().Method(2)) }) // .namedT0.w
+
+ badCall(func() { call(v.Field(6).Method(0)) }) // .namedT1.Y
+ badCall(func() { call(v.Field(6).Elem().Method(0)) }) // .namedT1.Y
+ badCall(func() { call(v.Field(6).Method(0)) }) // .namedT1.y
+ badCall(func() { call(v.Field(6).Elem().Method(0)) }) // .namedT1.y
+
+ badCall(func() { call(v.Field(7).Field(0).Method(0)) }) // .namedT2.T1.Y
+ badCall(func() { call(v.Field(7).Field(0).Elem().Method(0)) }) // .namedT2.T1.W
+ badCall(func() { call(v.Field(7).Field(1).Method(0)) }) // .namedT2.t0.W
+ badCall(func() { call(v.Field(7).Field(1).Elem().Method(0)) }) // .namedT2.t0.W
+}
+
+func TestValuePanic(t *testing.T) {
+ vo := ValueOf
+ shouldPanic("reflect.Value.Addr of unaddressable value", func() { vo(0).Addr() })
+ shouldPanic("call of reflect.Value.Bool on float64 Value", func() { vo(0.0).Bool() })
+ shouldPanic("call of reflect.Value.Bytes on string Value", func() { vo("").Bytes() })
+ shouldPanic("call of reflect.Value.Call on bool Value", func() { vo(true).Call(nil) })
+ shouldPanic("call of reflect.Value.CallSlice on int Value", func() { vo(0).CallSlice(nil) })
+ shouldPanic("call of reflect.Value.Close on string Value", func() { vo("").Close() })
+ shouldPanic("call of reflect.Value.Complex on float64 Value", func() { vo(0.0).Complex() })
+ shouldPanic("call of reflect.Value.Elem on bool Value", func() { vo(false).Elem() })
+ shouldPanic("call of reflect.Value.Field on int Value", func() { vo(0).Field(0) })
+ shouldPanic("call of reflect.Value.Float on string Value", func() { vo("").Float() })
+ shouldPanic("call of reflect.Value.Index on float64 Value", func() { vo(0.0).Index(0) })
+ shouldPanic("call of reflect.Value.Int on bool Value", func() { vo(false).Int() })
+ shouldPanic("call of reflect.Value.IsNil on int Value", func() { vo(0).IsNil() })
+ shouldPanic("call of reflect.Value.Len on bool Value", func() { vo(false).Len() })
+ shouldPanic("call of reflect.Value.MapIndex on float64 Value", func() { vo(0.0).MapIndex(vo(0.0)) })
+ shouldPanic("call of reflect.Value.MapKeys on string Value", func() { vo("").MapKeys() })
+ shouldPanic("call of reflect.Value.MapRange on int Value", func() { vo(0).MapRange() })
+ shouldPanic("call of reflect.Value.Method on zero Value", func() { vo(nil).Method(0) })
+ shouldPanic("call of reflect.Value.NumField on string Value", func() { vo("").NumField() })
+ shouldPanic("call of reflect.Value.NumMethod on zero Value", func() { vo(nil).NumMethod() })
+ shouldPanic("call of reflect.Value.OverflowComplex on float64 Value", func() { vo(float64(0)).OverflowComplex(0) })
+ shouldPanic("call of reflect.Value.OverflowFloat on int64 Value", func() { vo(int64(0)).OverflowFloat(0) })
+ shouldPanic("call of reflect.Value.OverflowInt on uint64 Value", func() { vo(uint64(0)).OverflowInt(0) })
+ shouldPanic("call of reflect.Value.OverflowUint on complex64 Value", func() { vo(complex64(0)).OverflowUint(0) })
+ shouldPanic("call of reflect.Value.Recv on string Value", func() { vo("").Recv() })
+ shouldPanic("call of reflect.Value.Send on bool Value", func() { vo(true).Send(vo(true)) })
+ shouldPanic("value of type string is not assignable to type bool", func() { vo(new(bool)).Elem().Set(vo("")) })
+ shouldPanic("call of reflect.Value.SetBool on string Value", func() { vo(new(string)).Elem().SetBool(false) })
+ shouldPanic("reflect.Value.SetBytes using unaddressable value", func() { vo("").SetBytes(nil) })
+ shouldPanic("call of reflect.Value.SetCap on string Value", func() { vo(new(string)).Elem().SetCap(0) })
+ shouldPanic("call of reflect.Value.SetComplex on string Value", func() { vo(new(string)).Elem().SetComplex(0) })
+ shouldPanic("call of reflect.Value.SetFloat on string Value", func() { vo(new(string)).Elem().SetFloat(0) })
+ shouldPanic("call of reflect.Value.SetInt on string Value", func() { vo(new(string)).Elem().SetInt(0) })
+ shouldPanic("call of reflect.Value.SetLen on string Value", func() { vo(new(string)).Elem().SetLen(0) })
+ shouldPanic("call of reflect.Value.SetString on int Value", func() { vo(new(int)).Elem().SetString("") })
+ shouldPanic("reflect.Value.SetUint using unaddressable value", func() { vo(0.0).SetUint(0) })
+ shouldPanic("call of reflect.Value.Slice on bool Value", func() { vo(true).Slice(1, 2) })
+ shouldPanic("call of reflect.Value.Slice3 on int Value", func() { vo(0).Slice3(1, 2, 3) })
+ shouldPanic("call of reflect.Value.TryRecv on bool Value", func() { vo(true).TryRecv() })
+ shouldPanic("call of reflect.Value.TrySend on string Value", func() { vo("").TrySend(vo("")) })
+ shouldPanic("call of reflect.Value.Uint on float64 Value", func() { vo(0.0).Uint() })
+}
+
+func shouldPanic(expect string, f func()) {
+ defer func() {
+ r := recover()
+ if r == nil {
+ panic("did not panic")
+ }
+ if expect != "" {
+ var s string
+ switch r := r.(type) {
+ case string:
+ s = r
+ case *ValueError:
+ s = r.Error()
+ default:
+ panic(fmt.Sprintf("panicked with unexpected type %T", r))
+ }
+ if !strings.HasPrefix(s, "reflect") {
+ panic(`panic string does not start with "reflect": ` + s)
+ }
+ if !strings.Contains(s, expect) {
+ panic(`panic string does not contain "` + expect + `": ` + s)
+ }
+ }
+ }()
+ f()
+}
+
+func isNonNil(x any) {
+ if x == nil {
+ panic("nil interface")
+ }
+}
+
+func isValid(v Value) {
+ if !v.IsValid() {
+ panic("zero Value")
+ }
+}
+
+func TestAlias(t *testing.T) {
+ x := string("hello")
+ v := ValueOf(&x).Elem()
+ oldvalue := v.Interface()
+ v.SetString("world")
+ newvalue := v.Interface()
+
+ if oldvalue != "hello" || newvalue != "world" {
+ t.Errorf("aliasing: old=%q new=%q, want hello, world", oldvalue, newvalue)
+ }
+}
+
+var V = ValueOf
+
+func EmptyInterfaceV(x any) Value {
+ return ValueOf(&x).Elem()
+}
+
+func ReaderV(x io.Reader) Value {
+ return ValueOf(&x).Elem()
+}
+
+func ReadWriterV(x io.ReadWriter) Value {
+ return ValueOf(&x).Elem()
+}
+
+type Empty struct{}
+type MyStruct struct {
+ x int `some:"tag"`
+}
+type MyStruct1 struct {
+ x struct {
+ int `some:"bar"`
+ }
+}
+type MyStruct2 struct {
+ x struct {
+ int `some:"foo"`
+ }
+}
+type MyString string
+type MyBytes []byte
+type MyBytesArrayPtr0 *[0]byte
+type MyBytesArrayPtr *[4]byte
+type MyBytesArray0 [0]byte
+type MyBytesArray [4]byte
+type MyRunes []int32
+type MyFunc func()
+type MyByte byte
+
+type IntChan chan int
+type IntChanRecv <-chan int
+type IntChanSend chan<- int
+type BytesChan chan []byte
+type BytesChanRecv <-chan []byte
+type BytesChanSend chan<- []byte
+
+var convertTests = []struct {
+ in Value
+ out Value
+}{
+ // numbers
+ /*
+ Edit .+1,/\*\//-1>cat >/tmp/x.go && go run /tmp/x.go
+
+ package main
+
+ import "fmt"
+
+ var numbers = []string{
+ "int8", "uint8", "int16", "uint16",
+ "int32", "uint32", "int64", "uint64",
+ "int", "uint", "uintptr",
+ "float32", "float64",
+ }
+
+ func main() {
+ // all pairs but in an unusual order,
+ // to emit all the int8, uint8 cases
+ // before n grows too big.
+ n := 1
+ for i, f := range numbers {
+ for _, g := range numbers[i:] {
+ fmt.Printf("\t{V(%s(%d)), V(%s(%d))},\n", f, n, g, n)
+ n++
+ if f != g {
+ fmt.Printf("\t{V(%s(%d)), V(%s(%d))},\n", g, n, f, n)
+ n++
+ }
+ }
+ }
+ }
+ */
+ {V(int8(1)), V(int8(1))},
+ {V(int8(2)), V(uint8(2))},
+ {V(uint8(3)), V(int8(3))},
+ {V(int8(4)), V(int16(4))},
+ {V(int16(5)), V(int8(5))},
+ {V(int8(6)), V(uint16(6))},
+ {V(uint16(7)), V(int8(7))},
+ {V(int8(8)), V(int32(8))},
+ {V(int32(9)), V(int8(9))},
+ {V(int8(10)), V(uint32(10))},
+ {V(uint32(11)), V(int8(11))},
+ {V(int8(12)), V(int64(12))},
+ {V(int64(13)), V(int8(13))},
+ {V(int8(14)), V(uint64(14))},
+ {V(uint64(15)), V(int8(15))},
+ {V(int8(16)), V(int(16))},
+ {V(int(17)), V(int8(17))},
+ {V(int8(18)), V(uint(18))},
+ {V(uint(19)), V(int8(19))},
+ {V(int8(20)), V(uintptr(20))},
+ {V(uintptr(21)), V(int8(21))},
+ {V(int8(22)), V(float32(22))},
+ {V(float32(23)), V(int8(23))},
+ {V(int8(24)), V(float64(24))},
+ {V(float64(25)), V(int8(25))},
+ {V(uint8(26)), V(uint8(26))},
+ {V(uint8(27)), V(int16(27))},
+ {V(int16(28)), V(uint8(28))},
+ {V(uint8(29)), V(uint16(29))},
+ {V(uint16(30)), V(uint8(30))},
+ {V(uint8(31)), V(int32(31))},
+ {V(int32(32)), V(uint8(32))},
+ {V(uint8(33)), V(uint32(33))},
+ {V(uint32(34)), V(uint8(34))},
+ {V(uint8(35)), V(int64(35))},
+ {V(int64(36)), V(uint8(36))},
+ {V(uint8(37)), V(uint64(37))},
+ {V(uint64(38)), V(uint8(38))},
+ {V(uint8(39)), V(int(39))},
+ {V(int(40)), V(uint8(40))},
+ {V(uint8(41)), V(uint(41))},
+ {V(uint(42)), V(uint8(42))},
+ {V(uint8(43)), V(uintptr(43))},
+ {V(uintptr(44)), V(uint8(44))},
+ {V(uint8(45)), V(float32(45))},
+ {V(float32(46)), V(uint8(46))},
+ {V(uint8(47)), V(float64(47))},
+ {V(float64(48)), V(uint8(48))},
+ {V(int16(49)), V(int16(49))},
+ {V(int16(50)), V(uint16(50))},
+ {V(uint16(51)), V(int16(51))},
+ {V(int16(52)), V(int32(52))},
+ {V(int32(53)), V(int16(53))},
+ {V(int16(54)), V(uint32(54))},
+ {V(uint32(55)), V(int16(55))},
+ {V(int16(56)), V(int64(56))},
+ {V(int64(57)), V(int16(57))},
+ {V(int16(58)), V(uint64(58))},
+ {V(uint64(59)), V(int16(59))},
+ {V(int16(60)), V(int(60))},
+ {V(int(61)), V(int16(61))},
+ {V(int16(62)), V(uint(62))},
+ {V(uint(63)), V(int16(63))},
+ {V(int16(64)), V(uintptr(64))},
+ {V(uintptr(65)), V(int16(65))},
+ {V(int16(66)), V(float32(66))},
+ {V(float32(67)), V(int16(67))},
+ {V(int16(68)), V(float64(68))},
+ {V(float64(69)), V(int16(69))},
+ {V(uint16(70)), V(uint16(70))},
+ {V(uint16(71)), V(int32(71))},
+ {V(int32(72)), V(uint16(72))},
+ {V(uint16(73)), V(uint32(73))},
+ {V(uint32(74)), V(uint16(74))},
+ {V(uint16(75)), V(int64(75))},
+ {V(int64(76)), V(uint16(76))},
+ {V(uint16(77)), V(uint64(77))},
+ {V(uint64(78)), V(uint16(78))},
+ {V(uint16(79)), V(int(79))},
+ {V(int(80)), V(uint16(80))},
+ {V(uint16(81)), V(uint(81))},
+ {V(uint(82)), V(uint16(82))},
+ {V(uint16(83)), V(uintptr(83))},
+ {V(uintptr(84)), V(uint16(84))},
+ {V(uint16(85)), V(float32(85))},
+ {V(float32(86)), V(uint16(86))},
+ {V(uint16(87)), V(float64(87))},
+ {V(float64(88)), V(uint16(88))},
+ {V(int32(89)), V(int32(89))},
+ {V(int32(90)), V(uint32(90))},
+ {V(uint32(91)), V(int32(91))},
+ {V(int32(92)), V(int64(92))},
+ {V(int64(93)), V(int32(93))},
+ {V(int32(94)), V(uint64(94))},
+ {V(uint64(95)), V(int32(95))},
+ {V(int32(96)), V(int(96))},
+ {V(int(97)), V(int32(97))},
+ {V(int32(98)), V(uint(98))},
+ {V(uint(99)), V(int32(99))},
+ {V(int32(100)), V(uintptr(100))},
+ {V(uintptr(101)), V(int32(101))},
+ {V(int32(102)), V(float32(102))},
+ {V(float32(103)), V(int32(103))},
+ {V(int32(104)), V(float64(104))},
+ {V(float64(105)), V(int32(105))},
+ {V(uint32(106)), V(uint32(106))},
+ {V(uint32(107)), V(int64(107))},
+ {V(int64(108)), V(uint32(108))},
+ {V(uint32(109)), V(uint64(109))},
+ {V(uint64(110)), V(uint32(110))},
+ {V(uint32(111)), V(int(111))},
+ {V(int(112)), V(uint32(112))},
+ {V(uint32(113)), V(uint(113))},
+ {V(uint(114)), V(uint32(114))},
+ {V(uint32(115)), V(uintptr(115))},
+ {V(uintptr(116)), V(uint32(116))},
+ {V(uint32(117)), V(float32(117))},
+ {V(float32(118)), V(uint32(118))},
+ {V(uint32(119)), V(float64(119))},
+ {V(float64(120)), V(uint32(120))},
+ {V(int64(121)), V(int64(121))},
+ {V(int64(122)), V(uint64(122))},
+ {V(uint64(123)), V(int64(123))},
+ {V(int64(124)), V(int(124))},
+ {V(int(125)), V(int64(125))},
+ {V(int64(126)), V(uint(126))},
+ {V(uint(127)), V(int64(127))},
+ {V(int64(128)), V(uintptr(128))},
+ {V(uintptr(129)), V(int64(129))},
+ {V(int64(130)), V(float32(130))},
+ {V(float32(131)), V(int64(131))},
+ {V(int64(132)), V(float64(132))},
+ {V(float64(133)), V(int64(133))},
+ {V(uint64(134)), V(uint64(134))},
+ {V(uint64(135)), V(int(135))},
+ {V(int(136)), V(uint64(136))},
+ {V(uint64(137)), V(uint(137))},
+ {V(uint(138)), V(uint64(138))},
+ {V(uint64(139)), V(uintptr(139))},
+ {V(uintptr(140)), V(uint64(140))},
+ {V(uint64(141)), V(float32(141))},
+ {V(float32(142)), V(uint64(142))},
+ {V(uint64(143)), V(float64(143))},
+ {V(float64(144)), V(uint64(144))},
+ {V(int(145)), V(int(145))},
+ {V(int(146)), V(uint(146))},
+ {V(uint(147)), V(int(147))},
+ {V(int(148)), V(uintptr(148))},
+ {V(uintptr(149)), V(int(149))},
+ {V(int(150)), V(float32(150))},
+ {V(float32(151)), V(int(151))},
+ {V(int(152)), V(float64(152))},
+ {V(float64(153)), V(int(153))},
+ {V(uint(154)), V(uint(154))},
+ {V(uint(155)), V(uintptr(155))},
+ {V(uintptr(156)), V(uint(156))},
+ {V(uint(157)), V(float32(157))},
+ {V(float32(158)), V(uint(158))},
+ {V(uint(159)), V(float64(159))},
+ {V(float64(160)), V(uint(160))},
+ {V(uintptr(161)), V(uintptr(161))},
+ {V(uintptr(162)), V(float32(162))},
+ {V(float32(163)), V(uintptr(163))},
+ {V(uintptr(164)), V(float64(164))},
+ {V(float64(165)), V(uintptr(165))},
+ {V(float32(166)), V(float32(166))},
+ {V(float32(167)), V(float64(167))},
+ {V(float64(168)), V(float32(168))},
+ {V(float64(169)), V(float64(169))},
+
+ // truncation
+ {V(float64(1.5)), V(int(1))},
+
+ // complex
+ {V(complex64(1i)), V(complex64(1i))},
+ {V(complex64(2i)), V(complex128(2i))},
+ {V(complex128(3i)), V(complex64(3i))},
+ {V(complex128(4i)), V(complex128(4i))},
+
+ // string
+ {V(string("hello")), V(string("hello"))},
+ {V(string("bytes1")), V([]byte("bytes1"))},
+ {V([]byte("bytes2")), V(string("bytes2"))},
+ {V([]byte("bytes3")), V([]byte("bytes3"))},
+ {V(string("runes♝")), V([]rune("runes♝"))},
+ {V([]rune("runes♕")), V(string("runes♕"))},
+ {V([]rune("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))},
+ {V(int('a')), V(string("a"))},
+ {V(int8('a')), V(string("a"))},
+ {V(int16('a')), V(string("a"))},
+ {V(int32('a')), V(string("a"))},
+ {V(int64('a')), V(string("a"))},
+ {V(uint('a')), V(string("a"))},
+ {V(uint8('a')), V(string("a"))},
+ {V(uint16('a')), V(string("a"))},
+ {V(uint32('a')), V(string("a"))},
+ {V(uint64('a')), V(string("a"))},
+ {V(uintptr('a')), V(string("a"))},
+ {V(int(-1)), V(string("\uFFFD"))},
+ {V(int8(-2)), V(string("\uFFFD"))},
+ {V(int16(-3)), V(string("\uFFFD"))},
+ {V(int32(-4)), V(string("\uFFFD"))},
+ {V(int64(-5)), V(string("\uFFFD"))},
+ {V(int64(-1 << 32)), V(string("\uFFFD"))},
+ {V(int64(1 << 32)), V(string("\uFFFD"))},
+ {V(uint(0x110001)), V(string("\uFFFD"))},
+ {V(uint32(0x110002)), V(string("\uFFFD"))},
+ {V(uint64(0x110003)), V(string("\uFFFD"))},
+ {V(uint64(1 << 32)), V(string("\uFFFD"))},
+ {V(uintptr(0x110004)), V(string("\uFFFD"))},
+
+ // named string
+ {V(MyString("hello")), V(string("hello"))},
+ {V(string("hello")), V(MyString("hello"))},
+ {V(string("hello")), V(string("hello"))},
+ {V(MyString("hello")), V(MyString("hello"))},
+ {V(MyString("bytes1")), V([]byte("bytes1"))},
+ {V([]byte("bytes2")), V(MyString("bytes2"))},
+ {V([]byte("bytes3")), V([]byte("bytes3"))},
+ {V(MyString("runes♝")), V([]rune("runes♝"))},
+ {V([]rune("runes♕")), V(MyString("runes♕"))},
+ {V([]rune("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))},
+ {V([]rune("runes🙈🙉🙊")), V(MyRunes("runes🙈🙉🙊"))},
+ {V(MyRunes("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))},
+ {V(int('a')), V(MyString("a"))},
+ {V(int8('a')), V(MyString("a"))},
+ {V(int16('a')), V(MyString("a"))},
+ {V(int32('a')), V(MyString("a"))},
+ {V(int64('a')), V(MyString("a"))},
+ {V(uint('a')), V(MyString("a"))},
+ {V(uint8('a')), V(MyString("a"))},
+ {V(uint16('a')), V(MyString("a"))},
+ {V(uint32('a')), V(MyString("a"))},
+ {V(uint64('a')), V(MyString("a"))},
+ {V(uintptr('a')), V(MyString("a"))},
+ {V(int(-1)), V(MyString("\uFFFD"))},
+ {V(int8(-2)), V(MyString("\uFFFD"))},
+ {V(int16(-3)), V(MyString("\uFFFD"))},
+ {V(int32(-4)), V(MyString("\uFFFD"))},
+ {V(int64(-5)), V(MyString("\uFFFD"))},
+ {V(uint(0x110001)), V(MyString("\uFFFD"))},
+ {V(uint32(0x110002)), V(MyString("\uFFFD"))},
+ {V(uint64(0x110003)), V(MyString("\uFFFD"))},
+ {V(uintptr(0x110004)), V(MyString("\uFFFD"))},
+
+ // named []byte
+ {V(string("bytes1")), V(MyBytes("bytes1"))},
+ {V(MyBytes("bytes2")), V(string("bytes2"))},
+ {V(MyBytes("bytes3")), V(MyBytes("bytes3"))},
+ {V(MyString("bytes1")), V(MyBytes("bytes1"))},
+ {V(MyBytes("bytes2")), V(MyString("bytes2"))},
+
+ // named []rune
+ {V(string("runes♝")), V(MyRunes("runes♝"))},
+ {V(MyRunes("runes♕")), V(string("runes♕"))},
+ {V(MyRunes("runes🙈🙉🙊")), V(MyRunes("runes🙈🙉🙊"))},
+ {V(MyString("runes♝")), V(MyRunes("runes♝"))},
+ {V(MyRunes("runes♕")), V(MyString("runes♕"))},
+
+ // slice to array
+ {V([]byte(nil)), V([0]byte{})},
+ {V([]byte{}), V([0]byte{})},
+ {V([]byte{1}), V([1]byte{1})},
+ {V([]byte{1, 2}), V([2]byte{1, 2})},
+ {V([]byte{1, 2, 3}), V([3]byte{1, 2, 3})},
+ {V(MyBytes([]byte(nil))), V([0]byte{})},
+ {V(MyBytes{}), V([0]byte{})},
+ {V(MyBytes{1}), V([1]byte{1})},
+ {V(MyBytes{1, 2}), V([2]byte{1, 2})},
+ {V(MyBytes{1, 2, 3}), V([3]byte{1, 2, 3})},
+ {V([]byte(nil)), V(MyBytesArray0{})},
+ {V([]byte{}), V(MyBytesArray0([0]byte{}))},
+ {V([]byte{1, 2, 3, 4}), V(MyBytesArray([4]byte{1, 2, 3, 4}))},
+ {V(MyBytes{}), V(MyBytesArray0([0]byte{}))},
+ {V(MyBytes{5, 6, 7, 8}), V(MyBytesArray([4]byte{5, 6, 7, 8}))},
+ {V([]MyByte{}), V([0]MyByte{})},
+ {V([]MyByte{1, 2}), V([2]MyByte{1, 2})},
+
+ // slice to array pointer
+ {V([]byte(nil)), V((*[0]byte)(nil))},
+ {V([]byte{}), V(new([0]byte))},
+ {V([]byte{7}), V(&[1]byte{7})},
+ {V(MyBytes([]byte(nil))), V((*[0]byte)(nil))},
+ {V(MyBytes([]byte{})), V(new([0]byte))},
+ {V(MyBytes([]byte{9})), V(&[1]byte{9})},
+ {V([]byte(nil)), V(MyBytesArrayPtr0(nil))},
+ {V([]byte{}), V(MyBytesArrayPtr0(new([0]byte)))},
+ {V([]byte{1, 2, 3, 4}), V(MyBytesArrayPtr(&[4]byte{1, 2, 3, 4}))},
+ {V(MyBytes([]byte{})), V(MyBytesArrayPtr0(new([0]byte)))},
+ {V(MyBytes([]byte{5, 6, 7, 8})), V(MyBytesArrayPtr(&[4]byte{5, 6, 7, 8}))},
+
+ {V([]byte(nil)), V((*MyBytesArray0)(nil))},
+ {V([]byte{}), V((*MyBytesArray0)(new([0]byte)))},
+ {V([]byte{1, 2, 3, 4}), V(&MyBytesArray{1, 2, 3, 4})},
+ {V(MyBytes([]byte(nil))), V((*MyBytesArray0)(nil))},
+ {V(MyBytes([]byte{})), V((*MyBytesArray0)(new([0]byte)))},
+ {V(MyBytes([]byte{5, 6, 7, 8})), V(&MyBytesArray{5, 6, 7, 8})},
+ {V(new([0]byte)), V(new(MyBytesArray0))},
+ {V(new(MyBytesArray0)), V(new([0]byte))},
+ {V(MyBytesArrayPtr0(nil)), V((*[0]byte)(nil))},
+ {V((*[0]byte)(nil)), V(MyBytesArrayPtr0(nil))},
+
+ // named types and equal underlying types
+ {V(new(int)), V(new(integer))},
+ {V(new(integer)), V(new(int))},
+ {V(Empty{}), V(struct{}{})},
+ {V(new(Empty)), V(new(struct{}))},
+ {V(struct{}{}), V(Empty{})},
+ {V(new(struct{})), V(new(Empty))},
+ {V(Empty{}), V(Empty{})},
+ {V(MyBytes{}), V([]byte{})},
+ {V([]byte{}), V(MyBytes{})},
+ {V((func())(nil)), V(MyFunc(nil))},
+ {V((MyFunc)(nil)), V((func())(nil))},
+
+ // structs with different tags
+ {V(struct {
+ x int `some:"foo"`
+ }{}), V(struct {
+ x int `some:"bar"`
+ }{})},
+
+ {V(struct {
+ x int `some:"bar"`
+ }{}), V(struct {
+ x int `some:"foo"`
+ }{})},
+
+ {V(MyStruct{}), V(struct {
+ x int `some:"foo"`
+ }{})},
+
+ {V(struct {
+ x int `some:"foo"`
+ }{}), V(MyStruct{})},
+
+ {V(MyStruct{}), V(struct {
+ x int `some:"bar"`
+ }{})},
+
+ {V(struct {
+ x int `some:"bar"`
+ }{}), V(MyStruct{})},
+
+ {V(MyStruct1{}), V(MyStruct2{})},
+ {V(MyStruct2{}), V(MyStruct1{})},
+
+ // can convert *byte and *MyByte
+ {V((*byte)(nil)), V((*MyByte)(nil))},
+ {V((*MyByte)(nil)), V((*byte)(nil))},
+
+ // cannot convert mismatched array sizes
+ {V([2]byte{}), V([2]byte{})},
+ {V([3]byte{}), V([3]byte{})},
+ {V(MyBytesArray0{}), V([0]byte{})},
+ {V([0]byte{}), V(MyBytesArray0{})},
+
+ // cannot convert other instances
+ {V((**byte)(nil)), V((**byte)(nil))},
+ {V((**MyByte)(nil)), V((**MyByte)(nil))},
+ {V((chan byte)(nil)), V((chan byte)(nil))},
+ {V((chan MyByte)(nil)), V((chan MyByte)(nil))},
+ {V(([]byte)(nil)), V(([]byte)(nil))},
+ {V(([]MyByte)(nil)), V(([]MyByte)(nil))},
+ {V((map[int]byte)(nil)), V((map[int]byte)(nil))},
+ {V((map[int]MyByte)(nil)), V((map[int]MyByte)(nil))},
+ {V((map[byte]int)(nil)), V((map[byte]int)(nil))},
+ {V((map[MyByte]int)(nil)), V((map[MyByte]int)(nil))},
+ {V([2]byte{}), V([2]byte{})},
+ {V([2]MyByte{}), V([2]MyByte{})},
+
+ // other
+ {V((***int)(nil)), V((***int)(nil))},
+ {V((***byte)(nil)), V((***byte)(nil))},
+ {V((***int32)(nil)), V((***int32)(nil))},
+ {V((***int64)(nil)), V((***int64)(nil))},
+ {V((chan byte)(nil)), V((chan byte)(nil))},
+ {V((chan MyByte)(nil)), V((chan MyByte)(nil))},
+ {V((map[int]bool)(nil)), V((map[int]bool)(nil))},
+ {V((map[int]byte)(nil)), V((map[int]byte)(nil))},
+ {V((map[uint]bool)(nil)), V((map[uint]bool)(nil))},
+ {V([]uint(nil)), V([]uint(nil))},
+ {V([]int(nil)), V([]int(nil))},
+ {V(new(any)), V(new(any))},
+ {V(new(io.Reader)), V(new(io.Reader))},
+ {V(new(io.Writer)), V(new(io.Writer))},
+
+ // channels
+ {V(IntChan(nil)), V((chan<- int)(nil))},
+ {V(IntChan(nil)), V((<-chan int)(nil))},
+ {V((chan int)(nil)), V(IntChanRecv(nil))},
+ {V((chan int)(nil)), V(IntChanSend(nil))},
+ {V(IntChanRecv(nil)), V((<-chan int)(nil))},
+ {V((<-chan int)(nil)), V(IntChanRecv(nil))},
+ {V(IntChanSend(nil)), V((chan<- int)(nil))},
+ {V((chan<- int)(nil)), V(IntChanSend(nil))},
+ {V(IntChan(nil)), V((chan int)(nil))},
+ {V((chan int)(nil)), V(IntChan(nil))},
+ {V((chan int)(nil)), V((<-chan int)(nil))},
+ {V((chan int)(nil)), V((chan<- int)(nil))},
+ {V(BytesChan(nil)), V((chan<- []byte)(nil))},
+ {V(BytesChan(nil)), V((<-chan []byte)(nil))},
+ {V((chan []byte)(nil)), V(BytesChanRecv(nil))},
+ {V((chan []byte)(nil)), V(BytesChanSend(nil))},
+ {V(BytesChanRecv(nil)), V((<-chan []byte)(nil))},
+ {V((<-chan []byte)(nil)), V(BytesChanRecv(nil))},
+ {V(BytesChanSend(nil)), V((chan<- []byte)(nil))},
+ {V((chan<- []byte)(nil)), V(BytesChanSend(nil))},
+ {V(BytesChan(nil)), V((chan []byte)(nil))},
+ {V((chan []byte)(nil)), V(BytesChan(nil))},
+ {V((chan []byte)(nil)), V((<-chan []byte)(nil))},
+ {V((chan []byte)(nil)), V((chan<- []byte)(nil))},
+
+ // cannot convert other instances (channels)
+ {V(IntChan(nil)), V(IntChan(nil))},
+ {V(IntChanRecv(nil)), V(IntChanRecv(nil))},
+ {V(IntChanSend(nil)), V(IntChanSend(nil))},
+ {V(BytesChan(nil)), V(BytesChan(nil))},
+ {V(BytesChanRecv(nil)), V(BytesChanRecv(nil))},
+ {V(BytesChanSend(nil)), V(BytesChanSend(nil))},
+
+ // interfaces
+ {V(int(1)), EmptyInterfaceV(int(1))},
+ {V(string("hello")), EmptyInterfaceV(string("hello"))},
+ {V(new(bytes.Buffer)), ReaderV(new(bytes.Buffer))},
+ {ReadWriterV(new(bytes.Buffer)), ReaderV(new(bytes.Buffer))},
+ {V(new(bytes.Buffer)), ReadWriterV(new(bytes.Buffer))},
+}
+
+func TestConvert(t *testing.T) {
+ canConvert := map[[2]Type]bool{}
+ all := map[Type]bool{}
+
+ for _, tt := range convertTests {
+ t1 := tt.in.Type()
+ if !t1.ConvertibleTo(t1) {
+ t.Errorf("(%s).ConvertibleTo(%s) = false, want true", t1, t1)
+ continue
+ }
+
+ t2 := tt.out.Type()
+ if !t1.ConvertibleTo(t2) {
+ t.Errorf("(%s).ConvertibleTo(%s) = false, want true", t1, t2)
+ continue
+ }
+
+ all[t1] = true
+ all[t2] = true
+ canConvert[[2]Type{t1, t2}] = true
+
+ // vout1 represents the in value converted to the in type.
+ v1 := tt.in
+ if !v1.CanConvert(t1) {
+ t.Errorf("ValueOf(%T(%[1]v)).CanConvert(%s) = false, want true", tt.in.Interface(), t1)
+ }
+ vout1 := v1.Convert(t1)
+ out1 := vout1.Interface()
+ if vout1.Type() != tt.in.Type() || !DeepEqual(out1, tt.in.Interface()) {
+ t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t1, out1, tt.in.Interface())
+ }
+
+ // vout2 represents the in value converted to the out type.
+ if !v1.CanConvert(t2) {
+ t.Errorf("ValueOf(%T(%[1]v)).CanConvert(%s) = false, want true", tt.in.Interface(), t2)
+ }
+ vout2 := v1.Convert(t2)
+ out2 := vout2.Interface()
+ if vout2.Type() != tt.out.Type() || !DeepEqual(out2, tt.out.Interface()) {
+ t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t2, out2, tt.out.Interface())
+ }
+ if got, want := vout2.Kind(), vout2.Type().Kind(); got != want {
+ t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) has internal kind %v want %v", tt.in.Interface(), t1, got, want)
+ }
+
+ // vout3 represents a new value of the out type, set to vout2. This makes
+ // sure the converted value vout2 is really usable as a regular value.
+ vout3 := New(t2).Elem()
+ vout3.Set(vout2)
+ out3 := vout3.Interface()
+ if vout3.Type() != tt.out.Type() || !DeepEqual(out3, tt.out.Interface()) {
+ t.Errorf("Set(ValueOf(%T(%[1]v)).Convert(%s)) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t2, out3, tt.out.Interface())
+ }
+
+ if IsRO(v1) {
+ t.Errorf("table entry %v is RO, should not be", v1)
+ }
+ if IsRO(vout1) {
+ t.Errorf("self-conversion output %v is RO, should not be", vout1)
+ }
+ if IsRO(vout2) {
+ t.Errorf("conversion output %v is RO, should not be", vout2)
+ }
+ if IsRO(vout3) {
+ t.Errorf("set(conversion output) %v is RO, should not be", vout3)
+ }
+ if !IsRO(MakeRO(v1).Convert(t1)) {
+ t.Errorf("RO self-conversion output %v is not RO, should be", v1)
+ }
+ if !IsRO(MakeRO(v1).Convert(t2)) {
+ t.Errorf("RO conversion output %v is not RO, should be", v1)
+ }
+ }
+
+ // Assume that of all the types we saw during the tests,
+ // if there wasn't an explicit entry for a conversion between
+ // a pair of types, then it's not to be allowed. This checks for
+ // things like 'int64' converting to '*int'.
+ for t1 := range all {
+ for t2 := range all {
+ expectOK := t1 == t2 || canConvert[[2]Type{t1, t2}] || t2.Kind() == Interface && t2.NumMethod() == 0
+ if ok := t1.ConvertibleTo(t2); ok != expectOK {
+ t.Errorf("(%s).ConvertibleTo(%s) = %v, want %v", t1, t2, ok, expectOK)
+ }
+ }
+ }
+}
+
+func TestConvertPanic(t *testing.T) {
+ s := make([]byte, 4)
+ p := new([8]byte)
+ v := ValueOf(s)
+ pt := TypeOf(p)
+ if !v.Type().ConvertibleTo(pt) {
+ t.Errorf("[]byte should be convertible to *[8]byte")
+ }
+ if v.CanConvert(pt) {
+ t.Errorf("slice with length 4 should not be convertible to *[8]byte")
+ }
+ shouldPanic("reflect: cannot convert slice with length 4 to pointer to array with length 8", func() {
+ _ = v.Convert(pt)
+ })
+
+ if v.CanConvert(pt.Elem()) {
+ t.Errorf("slice with length 4 should not be convertible to [8]byte")
+ }
+ shouldPanic("reflect: cannot convert slice with length 4 to array with length 8", func() {
+ _ = v.Convert(pt.Elem())
+ })
+}
+
+func TestConvertSlice2Array(t *testing.T) {
+ s := make([]int, 4)
+ p := [4]int{}
+ pt := TypeOf(p)
+ ov := ValueOf(s)
+ v := ov.Convert(pt)
+ // Converting a slice to non-empty array needs to return
+ // a non-addressable copy of the original memory.
+ if v.CanAddr() {
+ t.Fatalf("convert slice to non-empty array returns a addressable copy array")
+ }
+ for i := range s {
+ ov.Index(i).Set(ValueOf(i + 1))
+ }
+ for i := range s {
+ if v.Index(i).Int() != 0 {
+ t.Fatalf("slice (%v) mutation visible in converted result (%v)", ov, v)
+ }
+ }
+}
+
+var gFloat32 float32
+
+const snan uint32 = 0x7f800001
+
+func TestConvertNaNs(t *testing.T) {
+ // Test to see if a store followed by a load of a signaling NaN
+ // maintains the signaling bit. (This used to fail on the 387 port.)
+ gFloat32 = math.Float32frombits(snan)
+ runtime.Gosched() // make sure we don't optimize the store/load away
+ if got := math.Float32bits(gFloat32); got != snan {
+ t.Errorf("store/load of sNaN not faithful, got %x want %x", got, snan)
+ }
+ // Test reflect's conversion between float32s. See issue 36400.
+ type myFloat32 float32
+ x := V(myFloat32(math.Float32frombits(snan)))
+ y := x.Convert(TypeOf(float32(0)))
+ z := y.Interface().(float32)
+ if got := math.Float32bits(z); got != snan {
+ t.Errorf("signaling nan conversion got %x, want %x", got, snan)
+ }
+}
+
+type ComparableStruct struct {
+ X int
+}
+
+type NonComparableStruct struct {
+ X int
+ Y map[string]int
+}
+
+var comparableTests = []struct {
+ typ Type
+ ok bool
+}{
+ {TypeOf(1), true},
+ {TypeOf("hello"), true},
+ {TypeOf(new(byte)), true},
+ {TypeOf((func())(nil)), false},
+ {TypeOf([]byte{}), false},
+ {TypeOf(map[string]int{}), false},
+ {TypeOf(make(chan int)), true},
+ {TypeOf(1.5), true},
+ {TypeOf(false), true},
+ {TypeOf(1i), true},
+ {TypeOf(ComparableStruct{}), true},
+ {TypeOf(NonComparableStruct{}), false},
+ {TypeOf([10]map[string]int{}), false},
+ {TypeOf([10]string{}), true},
+ {TypeOf(new(any)).Elem(), true},
+}
+
+func TestComparable(t *testing.T) {
+ for _, tt := range comparableTests {
+ if ok := tt.typ.Comparable(); ok != tt.ok {
+ t.Errorf("TypeOf(%v).Comparable() = %v, want %v", tt.typ, ok, tt.ok)
+ }
+ }
+}
+
+func TestOverflow(t *testing.T) {
+ if ovf := V(float64(0)).OverflowFloat(1e300); ovf {
+ t.Errorf("%v wrongly overflows float64", 1e300)
+ }
+
+ maxFloat32 := float64((1<<24 - 1) << (127 - 23))
+ if ovf := V(float32(0)).OverflowFloat(maxFloat32); ovf {
+ t.Errorf("%v wrongly overflows float32", maxFloat32)
+ }
+ ovfFloat32 := float64((1<<24-1)<<(127-23) + 1<<(127-52))
+ if ovf := V(float32(0)).OverflowFloat(ovfFloat32); !ovf {
+ t.Errorf("%v should overflow float32", ovfFloat32)
+ }
+ if ovf := V(float32(0)).OverflowFloat(-ovfFloat32); !ovf {
+ t.Errorf("%v should overflow float32", -ovfFloat32)
+ }
+
+ maxInt32 := int64(0x7fffffff)
+ if ovf := V(int32(0)).OverflowInt(maxInt32); ovf {
+ t.Errorf("%v wrongly overflows int32", maxInt32)
+ }
+ if ovf := V(int32(0)).OverflowInt(-1 << 31); ovf {
+ t.Errorf("%v wrongly overflows int32", -int64(1)<<31)
+ }
+ ovfInt32 := int64(1 << 31)
+ if ovf := V(int32(0)).OverflowInt(ovfInt32); !ovf {
+ t.Errorf("%v should overflow int32", ovfInt32)
+ }
+
+ maxUint32 := uint64(0xffffffff)
+ if ovf := V(uint32(0)).OverflowUint(maxUint32); ovf {
+ t.Errorf("%v wrongly overflows uint32", maxUint32)
+ }
+ ovfUint32 := uint64(1 << 32)
+ if ovf := V(uint32(0)).OverflowUint(ovfUint32); !ovf {
+ t.Errorf("%v should overflow uint32", ovfUint32)
+ }
+}
+
+func checkSameType(t *testing.T, x Type, y any) {
+ if x != TypeOf(y) || TypeOf(Zero(x).Interface()) != TypeOf(y) {
+ t.Errorf("did not find preexisting type for %s (vs %s)", TypeOf(x), TypeOf(y))
+ }
+}
+
+func TestArrayOf(t *testing.T) {
+ // check construction and use of type not in binary
+ tests := []struct {
+ n int
+ value func(i int) any
+ comparable bool
+ want string
+ }{
+ {
+ n: 0,
+ value: func(i int) any { type Tint int; return Tint(i) },
+ comparable: true,
+ want: "[]",
+ },
+ {
+ n: 10,
+ value: func(i int) any { type Tint int; return Tint(i) },
+ comparable: true,
+ want: "[0 1 2 3 4 5 6 7 8 9]",
+ },
+ {
+ n: 10,
+ value: func(i int) any { type Tfloat float64; return Tfloat(i) },
+ comparable: true,
+ want: "[0 1 2 3 4 5 6 7 8 9]",
+ },
+ {
+ n: 10,
+ value: func(i int) any { type Tstring string; return Tstring(strconv.Itoa(i)) },
+ comparable: true,
+ want: "[0 1 2 3 4 5 6 7 8 9]",
+ },
+ {
+ n: 10,
+ value: func(i int) any { type Tstruct struct{ V int }; return Tstruct{i} },
+ comparable: true,
+ want: "[{0} {1} {2} {3} {4} {5} {6} {7} {8} {9}]",
+ },
+ {
+ n: 10,
+ value: func(i int) any { type Tint int; return []Tint{Tint(i)} },
+ comparable: false,
+ want: "[[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]]",
+ },
+ {
+ n: 10,
+ value: func(i int) any { type Tint int; return [1]Tint{Tint(i)} },
+ comparable: true,
+ want: "[[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]]",
+ },
+ {
+ n: 10,
+ value: func(i int) any { type Tstruct struct{ V [1]int }; return Tstruct{[1]int{i}} },
+ comparable: true,
+ want: "[{[0]} {[1]} {[2]} {[3]} {[4]} {[5]} {[6]} {[7]} {[8]} {[9]}]",
+ },
+ {
+ n: 10,
+ value: func(i int) any { type Tstruct struct{ V []int }; return Tstruct{[]int{i}} },
+ comparable: false,
+ want: "[{[0]} {[1]} {[2]} {[3]} {[4]} {[5]} {[6]} {[7]} {[8]} {[9]}]",
+ },
+ {
+ n: 10,
+ value: func(i int) any { type TstructUV struct{ U, V int }; return TstructUV{i, i} },
+ comparable: true,
+ want: "[{0 0} {1 1} {2 2} {3 3} {4 4} {5 5} {6 6} {7 7} {8 8} {9 9}]",
+ },
+ {
+ n: 10,
+ value: func(i int) any {
+ type TstructUV struct {
+ U int
+ V float64
+ }
+ return TstructUV{i, float64(i)}
+ },
+ comparable: true,
+ want: "[{0 0} {1 1} {2 2} {3 3} {4 4} {5 5} {6 6} {7 7} {8 8} {9 9}]",
+ },
+ }
+
+ for _, table := range tests {
+ at := ArrayOf(table.n, TypeOf(table.value(0)))
+ v := New(at).Elem()
+ vok := New(at).Elem()
+ vnot := New(at).Elem()
+ for i := 0; i < v.Len(); i++ {
+ v.Index(i).Set(ValueOf(table.value(i)))
+ vok.Index(i).Set(ValueOf(table.value(i)))
+ j := i
+ if i+1 == v.Len() {
+ j = i + 1
+ }
+ vnot.Index(i).Set(ValueOf(table.value(j))) // make it differ only by last element
+ }
+ s := fmt.Sprint(v.Interface())
+ if s != table.want {
+ t.Errorf("constructed array = %s, want %s", s, table.want)
+ }
+
+ if table.comparable != at.Comparable() {
+ t.Errorf("constructed array (%#v) is comparable=%v, want=%v", v.Interface(), at.Comparable(), table.comparable)
+ }
+ if table.comparable {
+ if table.n > 0 {
+ if DeepEqual(vnot.Interface(), v.Interface()) {
+ t.Errorf(
+ "arrays (%#v) compare ok (but should not)",
+ v.Interface(),
+ )
+ }
+ }
+ if !DeepEqual(vok.Interface(), v.Interface()) {
+ t.Errorf(
+ "arrays (%#v) compare NOT-ok (but should)",
+ v.Interface(),
+ )
+ }
+ }
+ }
+
+ // check that type already in binary is found
+ type T int
+ checkSameType(t, ArrayOf(5, TypeOf(T(1))), [5]T{})
+}
+
+func TestArrayOfGC(t *testing.T) {
+ type T *uintptr
+ tt := TypeOf(T(nil))
+ const n = 100
+ var x []any
+ for i := 0; i < n; i++ {
+ v := New(ArrayOf(n, tt)).Elem()
+ for j := 0; j < v.Len(); j++ {
+ p := new(uintptr)
+ *p = uintptr(i*n + j)
+ v.Index(j).Set(ValueOf(p).Convert(tt))
+ }
+ x = append(x, v.Interface())
+ }
+ runtime.GC()
+
+ for i, xi := range x {
+ v := ValueOf(xi)
+ for j := 0; j < v.Len(); j++ {
+ k := v.Index(j).Elem().Interface()
+ if k != uintptr(i*n+j) {
+ t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
+ }
+ }
+ }
+}
+
+func TestArrayOfAlg(t *testing.T) {
+ at := ArrayOf(6, TypeOf(byte(0)))
+ v1 := New(at).Elem()
+ v2 := New(at).Elem()
+ if v1.Interface() != v1.Interface() {
+ t.Errorf("constructed array %v not equal to itself", v1.Interface())
+ }
+ v1.Index(5).Set(ValueOf(byte(1)))
+ if i1, i2 := v1.Interface(), v2.Interface(); i1 == i2 {
+ t.Errorf("constructed arrays %v and %v should not be equal", i1, i2)
+ }
+
+ at = ArrayOf(6, TypeOf([]int(nil)))
+ v1 = New(at).Elem()
+ shouldPanic("", func() { _ = v1.Interface() == v1.Interface() })
+}
+
+func TestArrayOfGenericAlg(t *testing.T) {
+ at1 := ArrayOf(5, TypeOf(string("")))
+ at := ArrayOf(6, at1)
+ v1 := New(at).Elem()
+ v2 := New(at).Elem()
+ if v1.Interface() != v1.Interface() {
+ t.Errorf("constructed array %v not equal to itself", v1.Interface())
+ }
+
+ v1.Index(0).Index(0).Set(ValueOf("abc"))
+ v2.Index(0).Index(0).Set(ValueOf("efg"))
+ if i1, i2 := v1.Interface(), v2.Interface(); i1 == i2 {
+ t.Errorf("constructed arrays %v and %v should not be equal", i1, i2)
+ }
+
+ v1.Index(0).Index(0).Set(ValueOf("abc"))
+ v2.Index(0).Index(0).Set(ValueOf((v1.Index(0).Index(0).String() + " ")[:3]))
+ if i1, i2 := v1.Interface(), v2.Interface(); i1 != i2 {
+ t.Errorf("constructed arrays %v and %v should be equal", i1, i2)
+ }
+
+ // Test hash
+ m := MakeMap(MapOf(at, TypeOf(int(0))))
+ m.SetMapIndex(v1, ValueOf(1))
+ if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() {
+ t.Errorf("constructed arrays %v and %v have different hashes", i1, i2)
+ }
+}
+
+func TestArrayOfDirectIface(t *testing.T) {
+ {
+ type T [1]*byte
+ i1 := Zero(TypeOf(T{})).Interface()
+ v1 := ValueOf(&i1).Elem()
+ p1 := v1.InterfaceData()[1]
+
+ i2 := Zero(ArrayOf(1, PointerTo(TypeOf(int8(0))))).Interface()
+ v2 := ValueOf(&i2).Elem()
+ p2 := v2.InterfaceData()[1]
+
+ if p1 != 0 {
+ t.Errorf("got p1=%v. want=%v", p1, nil)
+ }
+
+ if p2 != 0 {
+ t.Errorf("got p2=%v. want=%v", p2, nil)
+ }
+ }
+ {
+ type T [0]*byte
+ i1 := Zero(TypeOf(T{})).Interface()
+ v1 := ValueOf(&i1).Elem()
+ p1 := v1.InterfaceData()[1]
+
+ i2 := Zero(ArrayOf(0, PointerTo(TypeOf(int8(0))))).Interface()
+ v2 := ValueOf(&i2).Elem()
+ p2 := v2.InterfaceData()[1]
+
+ if p1 == 0 {
+ t.Errorf("got p1=%v. want=not-%v", p1, nil)
+ }
+
+ if p2 == 0 {
+ t.Errorf("got p2=%v. want=not-%v", p2, nil)
+ }
+ }
+}
+
+// Ensure passing in negative lengths panics.
+// See https://golang.org/issue/43603
+func TestArrayOfPanicOnNegativeLength(t *testing.T) {
+ shouldPanic("reflect: negative length passed to ArrayOf", func() {
+ ArrayOf(-1, TypeOf(byte(0)))
+ })
+}
+
+func TestSliceOf(t *testing.T) {
+ // check construction and use of type not in binary
+ type T int
+ st := SliceOf(TypeOf(T(1)))
+ if got, want := st.String(), "[]reflect_test.T"; got != want {
+ t.Errorf("SliceOf(T(1)).String()=%q, want %q", got, want)
+ }
+ v := MakeSlice(st, 10, 10)
+ runtime.GC()
+ for i := 0; i < v.Len(); i++ {
+ v.Index(i).Set(ValueOf(T(i)))
+ runtime.GC()
+ }
+ s := fmt.Sprint(v.Interface())
+ want := "[0 1 2 3 4 5 6 7 8 9]"
+ if s != want {
+ t.Errorf("constructed slice = %s, want %s", s, want)
+ }
+
+ // check that type already in binary is found
+ type T1 int
+ checkSameType(t, SliceOf(TypeOf(T1(1))), []T1{})
+}
+
+func TestSliceOverflow(t *testing.T) {
+ // check that MakeSlice panics when size of slice overflows uint
+ const S = 1e6
+ s := uint(S)
+ l := (1<<(unsafe.Sizeof((*byte)(nil))*8)-1)/s + 1
+ if l*s >= s {
+ t.Fatal("slice size does not overflow")
+ }
+ var x [S]byte
+ st := SliceOf(TypeOf(x))
+ defer func() {
+ err := recover()
+ if err == nil {
+ t.Fatal("slice overflow does not panic")
+ }
+ }()
+ MakeSlice(st, int(l), int(l))
+}
+
+func TestSliceOfGC(t *testing.T) {
+ type T *uintptr
+ tt := TypeOf(T(nil))
+ st := SliceOf(tt)
+ const n = 100
+ var x []any
+ for i := 0; i < n; i++ {
+ v := MakeSlice(st, n, n)
+ for j := 0; j < v.Len(); j++ {
+ p := new(uintptr)
+ *p = uintptr(i*n + j)
+ v.Index(j).Set(ValueOf(p).Convert(tt))
+ }
+ x = append(x, v.Interface())
+ }
+ runtime.GC()
+
+ for i, xi := range x {
+ v := ValueOf(xi)
+ for j := 0; j < v.Len(); j++ {
+ k := v.Index(j).Elem().Interface()
+ if k != uintptr(i*n+j) {
+ t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
+ }
+ }
+ }
+}
+
+func TestStructOfFieldName(t *testing.T) {
+ // invalid field name "1nvalid"
+ shouldPanic("has invalid name", func() {
+ StructOf([]StructField{
+ {Name: "Valid", Type: TypeOf("")},
+ {Name: "1nvalid", Type: TypeOf("")},
+ })
+ })
+
+ // invalid field name "+"
+ shouldPanic("has invalid name", func() {
+ StructOf([]StructField{
+ {Name: "Val1d", Type: TypeOf("")},
+ {Name: "+", Type: TypeOf("")},
+ })
+ })
+
+ // no field name
+ shouldPanic("has no name", func() {
+ StructOf([]StructField{
+ {Name: "", Type: TypeOf("")},
+ })
+ })
+
+ // verify creation of a struct with valid struct fields
+ validFields := []StructField{
+ {
+ Name: "φ",
+ Type: TypeOf(""),
+ },
+ {
+ Name: "ValidName",
+ Type: TypeOf(""),
+ },
+ {
+ Name: "Val1dNam5",
+ Type: TypeOf(""),
+ },
+ }
+
+ validStruct := StructOf(validFields)
+
+ const structStr = `struct { φ string; ValidName string; Val1dNam5 string }`
+ if got, want := validStruct.String(), structStr; got != want {
+ t.Errorf("StructOf(validFields).String()=%q, want %q", got, want)
+ }
+}
+
+func TestStructOf(t *testing.T) {
+ // check construction and use of type not in binary
+ fields := []StructField{
+ {
+ Name: "S",
+ Tag: "s",
+ Type: TypeOf(""),
+ },
+ {
+ Name: "X",
+ Tag: "x",
+ Type: TypeOf(byte(0)),
+ },
+ {
+ Name: "Y",
+ Type: TypeOf(uint64(0)),
+ },
+ {
+ Name: "Z",
+ Type: TypeOf([3]uint16{}),
+ },
+ }
+
+ st := StructOf(fields)
+ v := New(st).Elem()
+ runtime.GC()
+ v.FieldByName("X").Set(ValueOf(byte(2)))
+ v.FieldByIndex([]int{1}).Set(ValueOf(byte(1)))
+ runtime.GC()
+
+ s := fmt.Sprint(v.Interface())
+ want := `{ 1 0 [0 0 0]}`
+ if s != want {
+ t.Errorf("constructed struct = %s, want %s", s, want)
+ }
+ const stStr = `struct { S string "s"; X uint8 "x"; Y uint64; Z [3]uint16 }`
+ if got, want := st.String(), stStr; got != want {
+ t.Errorf("StructOf(fields).String()=%q, want %q", got, want)
+ }
+
+ // check the size, alignment and field offsets
+ stt := TypeOf(struct {
+ String string
+ X byte
+ Y uint64
+ Z [3]uint16
+ }{})
+ if st.Size() != stt.Size() {
+ t.Errorf("constructed struct size = %v, want %v", st.Size(), stt.Size())
+ }
+ if st.Align() != stt.Align() {
+ t.Errorf("constructed struct align = %v, want %v", st.Align(), stt.Align())
+ }
+ if st.FieldAlign() != stt.FieldAlign() {
+ t.Errorf("constructed struct field align = %v, want %v", st.FieldAlign(), stt.FieldAlign())
+ }
+ for i := 0; i < st.NumField(); i++ {
+ o1 := st.Field(i).Offset
+ o2 := stt.Field(i).Offset
+ if o1 != o2 {
+ t.Errorf("constructed struct field %v offset = %v, want %v", i, o1, o2)
+ }
+ }
+
+ // Check size and alignment with a trailing zero-sized field.
+ st = StructOf([]StructField{
+ {
+ Name: "F1",
+ Type: TypeOf(byte(0)),
+ },
+ {
+ Name: "F2",
+ Type: TypeOf([0]*byte{}),
+ },
+ })
+ stt = TypeOf(struct {
+ G1 byte
+ G2 [0]*byte
+ }{})
+ if st.Size() != stt.Size() {
+ t.Errorf("constructed zero-padded struct size = %v, want %v", st.Size(), stt.Size())
+ }
+ if st.Align() != stt.Align() {
+ t.Errorf("constructed zero-padded struct align = %v, want %v", st.Align(), stt.Align())
+ }
+ if st.FieldAlign() != stt.FieldAlign() {
+ t.Errorf("constructed zero-padded struct field align = %v, want %v", st.FieldAlign(), stt.FieldAlign())
+ }
+ for i := 0; i < st.NumField(); i++ {
+ o1 := st.Field(i).Offset
+ o2 := stt.Field(i).Offset
+ if o1 != o2 {
+ t.Errorf("constructed zero-padded struct field %v offset = %v, want %v", i, o1, o2)
+ }
+ }
+
+ // check duplicate names
+ shouldPanic("duplicate field", func() {
+ StructOf([]StructField{
+ {Name: "string", PkgPath: "p", Type: TypeOf("")},
+ {Name: "string", PkgPath: "p", Type: TypeOf("")},
+ })
+ })
+ shouldPanic("has no name", func() {
+ StructOf([]StructField{
+ {Type: TypeOf("")},
+ {Name: "string", PkgPath: "p", Type: TypeOf("")},
+ })
+ })
+ shouldPanic("has no name", func() {
+ StructOf([]StructField{
+ {Type: TypeOf("")},
+ {Type: TypeOf("")},
+ })
+ })
+ // check that type already in binary is found
+ checkSameType(t, StructOf(fields[2:3]), struct{ Y uint64 }{})
+
+ // gccgo used to fail this test.
+ type structFieldType any
+ checkSameType(t,
+ StructOf([]StructField{
+ {
+ Name: "F",
+ Type: TypeOf((*structFieldType)(nil)).Elem(),
+ },
+ }),
+ struct{ F structFieldType }{})
+}
+
+func TestStructOfExportRules(t *testing.T) {
+ type S1 struct{}
+ type s2 struct{}
+ type ΦType struct{}
+ type φType struct{}
+
+ testPanic := func(i int, mustPanic bool, f func()) {
+ defer func() {
+ err := recover()
+ if err == nil && mustPanic {
+ t.Errorf("test-%d did not panic", i)
+ }
+ if err != nil && !mustPanic {
+ t.Errorf("test-%d panicked: %v\n", i, err)
+ }
+ }()
+ f()
+ }
+
+ tests := []struct {
+ field StructField
+ mustPanic bool
+ exported bool
+ }{
+ {
+ field: StructField{Name: "S1", Anonymous: true, Type: TypeOf(S1{})},
+ exported: true,
+ },
+ {
+ field: StructField{Name: "S1", Anonymous: true, Type: TypeOf((*S1)(nil))},
+ exported: true,
+ },
+ {
+ field: StructField{Name: "s2", Anonymous: true, Type: TypeOf(s2{})},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "s2", Anonymous: true, Type: TypeOf((*s2)(nil))},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "Name", Type: nil, PkgPath: ""},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "", Type: TypeOf(S1{}), PkgPath: ""},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "S1", Anonymous: true, Type: TypeOf(S1{}), PkgPath: "other/pkg"},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "S1", Anonymous: true, Type: TypeOf((*S1)(nil)), PkgPath: "other/pkg"},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "s2", Anonymous: true, Type: TypeOf(s2{}), PkgPath: "other/pkg"},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "s2", Anonymous: true, Type: TypeOf((*s2)(nil)), PkgPath: "other/pkg"},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "s2", Type: TypeOf(int(0)), PkgPath: "other/pkg"},
+ },
+ {
+ field: StructField{Name: "s2", Type: TypeOf(int(0)), PkgPath: "other/pkg"},
+ },
+ {
+ field: StructField{Name: "S", Type: TypeOf(S1{})},
+ exported: true,
+ },
+ {
+ field: StructField{Name: "S", Type: TypeOf((*S1)(nil))},
+ exported: true,
+ },
+ {
+ field: StructField{Name: "S", Type: TypeOf(s2{})},
+ exported: true,
+ },
+ {
+ field: StructField{Name: "S", Type: TypeOf((*s2)(nil))},
+ exported: true,
+ },
+ {
+ field: StructField{Name: "s", Type: TypeOf(S1{})},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "s", Type: TypeOf((*S1)(nil))},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "s", Type: TypeOf(s2{})},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "s", Type: TypeOf((*s2)(nil))},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "s", Type: TypeOf(S1{}), PkgPath: "other/pkg"},
+ },
+ {
+ field: StructField{Name: "s", Type: TypeOf((*S1)(nil)), PkgPath: "other/pkg"},
+ },
+ {
+ field: StructField{Name: "s", Type: TypeOf(s2{}), PkgPath: "other/pkg"},
+ },
+ {
+ field: StructField{Name: "s", Type: TypeOf((*s2)(nil)), PkgPath: "other/pkg"},
+ },
+ {
+ field: StructField{Name: "", Type: TypeOf(ΦType{})},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "", Type: TypeOf(φType{})},
+ mustPanic: true,
+ },
+ {
+ field: StructField{Name: "Φ", Type: TypeOf(0)},
+ exported: true,
+ },
+ {
+ field: StructField{Name: "φ", Type: TypeOf(0)},
+ exported: false,
+ },
+ }
+
+ for i, test := range tests {
+ testPanic(i, test.mustPanic, func() {
+ typ := StructOf([]StructField{test.field})
+ if typ == nil {
+ t.Errorf("test-%d: error creating struct type", i)
+ return
+ }
+ field := typ.Field(0)
+ n := field.Name
+ if n == "" {
+ panic("field.Name must not be empty")
+ }
+ exported := token.IsExported(n)
+ if exported != test.exported {
+ t.Errorf("test-%d: got exported=%v want exported=%v", i, exported, test.exported)
+ }
+ if field.PkgPath != test.field.PkgPath {
+ t.Errorf("test-%d: got PkgPath=%q want pkgPath=%q", i, field.PkgPath, test.field.PkgPath)
+ }
+ })
+ }
+}
+
+func TestStructOfGC(t *testing.T) {
+ type T *uintptr
+ tt := TypeOf(T(nil))
+ fields := []StructField{
+ {Name: "X", Type: tt},
+ {Name: "Y", Type: tt},
+ }
+ st := StructOf(fields)
+
+ const n = 10000
+ var x []any
+ for i := 0; i < n; i++ {
+ v := New(st).Elem()
+ for j := 0; j < v.NumField(); j++ {
+ p := new(uintptr)
+ *p = uintptr(i*n + j)
+ v.Field(j).Set(ValueOf(p).Convert(tt))
+ }
+ x = append(x, v.Interface())
+ }
+ runtime.GC()
+
+ for i, xi := range x {
+ v := ValueOf(xi)
+ for j := 0; j < v.NumField(); j++ {
+ k := v.Field(j).Elem().Interface()
+ if k != uintptr(i*n+j) {
+ t.Errorf("lost x[%d].%c = %d, want %d", i, "XY"[j], k, i*n+j)
+ }
+ }
+ }
+}
+
+func TestStructOfAlg(t *testing.T) {
+ st := StructOf([]StructField{{Name: "X", Tag: "x", Type: TypeOf(int(0))}})
+ v1 := New(st).Elem()
+ v2 := New(st).Elem()
+ if !DeepEqual(v1.Interface(), v1.Interface()) {
+ t.Errorf("constructed struct %v not equal to itself", v1.Interface())
+ }
+ v1.FieldByName("X").Set(ValueOf(int(1)))
+ if i1, i2 := v1.Interface(), v2.Interface(); DeepEqual(i1, i2) {
+ t.Errorf("constructed structs %v and %v should not be equal", i1, i2)
+ }
+
+ st = StructOf([]StructField{{Name: "X", Tag: "x", Type: TypeOf([]int(nil))}})
+ v1 = New(st).Elem()
+ shouldPanic("", func() { _ = v1.Interface() == v1.Interface() })
+}
+
+func TestStructOfGenericAlg(t *testing.T) {
+ st1 := StructOf([]StructField{
+ {Name: "X", Tag: "x", Type: TypeOf(int64(0))},
+ {Name: "Y", Type: TypeOf(string(""))},
+ })
+ st := StructOf([]StructField{
+ {Name: "S0", Type: st1},
+ {Name: "S1", Type: st1},
+ })
+
+ tests := []struct {
+ rt Type
+ idx []int
+ }{
+ {
+ rt: st,
+ idx: []int{0, 1},
+ },
+ {
+ rt: st1,
+ idx: []int{1},
+ },
+ {
+ rt: StructOf(
+ []StructField{
+ {Name: "XX", Type: TypeOf([0]int{})},
+ {Name: "YY", Type: TypeOf("")},
+ },
+ ),
+ idx: []int{1},
+ },
+ {
+ rt: StructOf(
+ []StructField{
+ {Name: "XX", Type: TypeOf([0]int{})},
+ {Name: "YY", Type: TypeOf("")},
+ {Name: "ZZ", Type: TypeOf([2]int{})},
+ },
+ ),
+ idx: []int{1},
+ },
+ {
+ rt: StructOf(
+ []StructField{
+ {Name: "XX", Type: TypeOf([1]int{})},
+ {Name: "YY", Type: TypeOf("")},
+ },
+ ),
+ idx: []int{1},
+ },
+ {
+ rt: StructOf(
+ []StructField{
+ {Name: "XX", Type: TypeOf([1]int{})},
+ {Name: "YY", Type: TypeOf("")},
+ {Name: "ZZ", Type: TypeOf([1]int{})},
+ },
+ ),
+ idx: []int{1},
+ },
+ {
+ rt: StructOf(
+ []StructField{
+ {Name: "XX", Type: TypeOf([2]int{})},
+ {Name: "YY", Type: TypeOf("")},
+ {Name: "ZZ", Type: TypeOf([2]int{})},
+ },
+ ),
+ idx: []int{1},
+ },
+ {
+ rt: StructOf(
+ []StructField{
+ {Name: "XX", Type: TypeOf(int64(0))},
+ {Name: "YY", Type: TypeOf(byte(0))},
+ {Name: "ZZ", Type: TypeOf("")},
+ },
+ ),
+ idx: []int{2},
+ },
+ {
+ rt: StructOf(
+ []StructField{
+ {Name: "XX", Type: TypeOf(int64(0))},
+ {Name: "YY", Type: TypeOf(int64(0))},
+ {Name: "ZZ", Type: TypeOf("")},
+ {Name: "AA", Type: TypeOf([1]int64{})},
+ },
+ ),
+ idx: []int{2},
+ },
+ }
+
+ for _, table := range tests {
+ v1 := New(table.rt).Elem()
+ v2 := New(table.rt).Elem()
+
+ if !DeepEqual(v1.Interface(), v1.Interface()) {
+ t.Errorf("constructed struct %v not equal to itself", v1.Interface())
+ }
+
+ v1.FieldByIndex(table.idx).Set(ValueOf("abc"))
+ v2.FieldByIndex(table.idx).Set(ValueOf("def"))
+ if i1, i2 := v1.Interface(), v2.Interface(); DeepEqual(i1, i2) {
+ t.Errorf("constructed structs %v and %v should not be equal", i1, i2)
+ }
+
+ abc := "abc"
+ v1.FieldByIndex(table.idx).Set(ValueOf(abc))
+ val := "+" + abc + "-"
+ v2.FieldByIndex(table.idx).Set(ValueOf(val[1:4]))
+ if i1, i2 := v1.Interface(), v2.Interface(); !DeepEqual(i1, i2) {
+ t.Errorf("constructed structs %v and %v should be equal", i1, i2)
+ }
+
+ // Test hash
+ m := MakeMap(MapOf(table.rt, TypeOf(int(0))))
+ m.SetMapIndex(v1, ValueOf(1))
+ if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() {
+ t.Errorf("constructed structs %#v and %#v have different hashes", i1, i2)
+ }
+
+ v2.FieldByIndex(table.idx).Set(ValueOf("abc"))
+ if i1, i2 := v1.Interface(), v2.Interface(); !DeepEqual(i1, i2) {
+ t.Errorf("constructed structs %v and %v should be equal", i1, i2)
+ }
+
+ if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() {
+ t.Errorf("constructed structs %v and %v have different hashes", i1, i2)
+ }
+ }
+}
+
+func TestStructOfDirectIface(t *testing.T) {
+ {
+ type T struct{ X [1]*byte }
+ i1 := Zero(TypeOf(T{})).Interface()
+ v1 := ValueOf(&i1).Elem()
+ p1 := v1.InterfaceData()[1]
+
+ i2 := Zero(StructOf([]StructField{
+ {
+ Name: "X",
+ Type: ArrayOf(1, TypeOf((*int8)(nil))),
+ },
+ })).Interface()
+ v2 := ValueOf(&i2).Elem()
+ p2 := v2.InterfaceData()[1]
+
+ if p1 != 0 {
+ t.Errorf("got p1=%v. want=%v", p1, nil)
+ }
+
+ if p2 != 0 {
+ t.Errorf("got p2=%v. want=%v", p2, nil)
+ }
+ }
+ {
+ type T struct{ X [0]*byte }
+ i1 := Zero(TypeOf(T{})).Interface()
+ v1 := ValueOf(&i1).Elem()
+ p1 := v1.InterfaceData()[1]
+
+ i2 := Zero(StructOf([]StructField{
+ {
+ Name: "X",
+ Type: ArrayOf(0, TypeOf((*int8)(nil))),
+ },
+ })).Interface()
+ v2 := ValueOf(&i2).Elem()
+ p2 := v2.InterfaceData()[1]
+
+ if p1 == 0 {
+ t.Errorf("got p1=%v. want=not-%v", p1, nil)
+ }
+
+ if p2 == 0 {
+ t.Errorf("got p2=%v. want=not-%v", p2, nil)
+ }
+ }
+}
+
+type StructI int
+
+func (i StructI) Get() int { return int(i) }
+
+type StructIPtr int
+
+func (i *StructIPtr) Get() int { return int(*i) }
+func (i *StructIPtr) Set(v int) { *(*int)(i) = v }
+
+type SettableStruct struct {
+ SettableField int
+}
+
+func (p *SettableStruct) Set(v int) { p.SettableField = v }
+
+type SettablePointer struct {
+ SettableField *int
+}
+
+func (p *SettablePointer) Set(v int) { *p.SettableField = v }
+
+func TestStructOfWithInterface(t *testing.T) {
+ const want = 42
+ type Iface interface {
+ Get() int
+ }
+ type IfaceSet interface {
+ Set(int)
+ }
+ tests := []struct {
+ name string
+ typ Type
+ val Value
+ impl bool
+ }{
+ {
+ name: "StructI",
+ typ: TypeOf(StructI(want)),
+ val: ValueOf(StructI(want)),
+ impl: true,
+ },
+ {
+ name: "StructI",
+ typ: PointerTo(TypeOf(StructI(want))),
+ val: ValueOf(func() any {
+ v := StructI(want)
+ return &v
+ }()),
+ impl: true,
+ },
+ {
+ name: "StructIPtr",
+ typ: PointerTo(TypeOf(StructIPtr(want))),
+ val: ValueOf(func() any {
+ v := StructIPtr(want)
+ return &v
+ }()),
+ impl: true,
+ },
+ {
+ name: "StructIPtr",
+ typ: TypeOf(StructIPtr(want)),
+ val: ValueOf(StructIPtr(want)),
+ impl: false,
+ },
+ // {
+ // typ: TypeOf((*Iface)(nil)).Elem(), // FIXME(sbinet): fix method.ifn/tfn
+ // val: ValueOf(StructI(want)),
+ // impl: true,
+ // },
+ }
+
+ for i, table := range tests {
+ for j := 0; j < 2; j++ {
+ var fields []StructField
+ if j == 1 {
+ fields = append(fields, StructField{
+ Name: "Dummy",
+ PkgPath: "",
+ Type: TypeOf(int(0)),
+ })
+ }
+ fields = append(fields, StructField{
+ Name: table.name,
+ Anonymous: true,
+ PkgPath: "",
+ Type: table.typ,
+ })
+
+ // We currently do not correctly implement methods
+ // for embedded fields other than the first.
+ // Therefore, for now, we expect those methods
+ // to not exist. See issues 15924 and 20824.
+ // When those issues are fixed, this test of panic
+ // should be removed.
+ if j == 1 && table.impl {
+ func() {
+ defer func() {
+ if err := recover(); err == nil {
+ t.Errorf("test-%d-%d did not panic", i, j)
+ }
+ }()
+ _ = StructOf(fields)
+ }()
+ continue
+ }
+
+ rt := StructOf(fields)
+ rv := New(rt).Elem()
+ rv.Field(j).Set(table.val)
+
+ if _, ok := rv.Interface().(Iface); ok != table.impl {
+ if table.impl {
+ t.Errorf("test-%d-%d: type=%v fails to implement Iface.\n", i, j, table.typ)
+ } else {
+ t.Errorf("test-%d-%d: type=%v should NOT implement Iface\n", i, j, table.typ)
+ }
+ continue
+ }
+
+ if !table.impl {
+ continue
+ }
+
+ v := rv.Interface().(Iface).Get()
+ if v != want {
+ t.Errorf("test-%d-%d: x.Get()=%v. want=%v\n", i, j, v, want)
+ }
+
+ fct := rv.MethodByName("Get")
+ out := fct.Call(nil)
+ if !DeepEqual(out[0].Interface(), want) {
+ t.Errorf("test-%d-%d: x.Get()=%v. want=%v\n", i, j, out[0].Interface(), want)
+ }
+ }
+ }
+
+ // Test an embedded nil pointer with pointer methods.
+ fields := []StructField{{
+ Name: "StructIPtr",
+ Anonymous: true,
+ Type: PointerTo(TypeOf(StructIPtr(want))),
+ }}
+ rt := StructOf(fields)
+ rv := New(rt).Elem()
+ // This should panic since the pointer is nil.
+ shouldPanic("", func() {
+ rv.Interface().(IfaceSet).Set(want)
+ })
+
+ // Test an embedded nil pointer to a struct with pointer methods.
+
+ fields = []StructField{{
+ Name: "SettableStruct",
+ Anonymous: true,
+ Type: PointerTo(TypeOf(SettableStruct{})),
+ }}
+ rt = StructOf(fields)
+ rv = New(rt).Elem()
+ // This should panic since the pointer is nil.
+ shouldPanic("", func() {
+ rv.Interface().(IfaceSet).Set(want)
+ })
+
+ // The behavior is different if there is a second field,
+ // since now an interface value holds a pointer to the struct
+ // rather than just holding a copy of the struct.
+ fields = []StructField{
+ {
+ Name: "SettableStruct",
+ Anonymous: true,
+ Type: PointerTo(TypeOf(SettableStruct{})),
+ },
+ {
+ Name: "EmptyStruct",
+ Anonymous: true,
+ Type: StructOf(nil),
+ },
+ }
+ // With the current implementation this is expected to panic.
+ // Ideally it should work and we should be able to see a panic
+ // if we call the Set method.
+ shouldPanic("", func() {
+ StructOf(fields)
+ })
+
+ // Embed a field that can be stored directly in an interface,
+ // with a second field.
+ fields = []StructField{
+ {
+ Name: "SettablePointer",
+ Anonymous: true,
+ Type: TypeOf(SettablePointer{}),
+ },
+ {
+ Name: "EmptyStruct",
+ Anonymous: true,
+ Type: StructOf(nil),
+ },
+ }
+ // With the current implementation this is expected to panic.
+ // Ideally it should work and we should be able to call the
+ // Set and Get methods.
+ shouldPanic("", func() {
+ StructOf(fields)
+ })
+}
+
+func TestStructOfTooManyFields(t *testing.T) {
+ // Bug Fix: #25402 - this should not panic
+ tt := StructOf([]StructField{
+ {Name: "Time", Type: TypeOf(time.Time{}), Anonymous: true},
+ })
+
+ if _, present := tt.MethodByName("After"); !present {
+ t.Errorf("Expected method `After` to be found")
+ }
+}
+
+func TestStructOfDifferentPkgPath(t *testing.T) {
+ fields := []StructField{
+ {
+ Name: "f1",
+ PkgPath: "p1",
+ Type: TypeOf(int(0)),
+ },
+ {
+ Name: "f2",
+ PkgPath: "p2",
+ Type: TypeOf(int(0)),
+ },
+ }
+ shouldPanic("different PkgPath", func() {
+ StructOf(fields)
+ })
+}
+
+func TestStructOfTooLarge(t *testing.T) {
+ t1 := TypeOf(byte(0))
+ t2 := TypeOf(int16(0))
+ t4 := TypeOf(int32(0))
+ t0 := ArrayOf(0, t1)
+
+ // 2^64-3 sized type (or 2^32-3 on 32-bit archs)
+ bigType := StructOf([]StructField{
+ {Name: "F1", Type: ArrayOf(int(^uintptr(0)>>1), t1)},
+ {Name: "F2", Type: ArrayOf(int(^uintptr(0)>>1-1), t1)},
+ })
+
+ type test struct {
+ shouldPanic bool
+ fields []StructField
+ }
+
+ tests := [...]test{
+ {
+ shouldPanic: false, // 2^64-1, ok
+ fields: []StructField{
+ {Name: "F1", Type: bigType},
+ {Name: "F2", Type: ArrayOf(2, t1)},
+ },
+ },
+ {
+ shouldPanic: true, // overflow in total size
+ fields: []StructField{
+ {Name: "F1", Type: bigType},
+ {Name: "F2", Type: ArrayOf(3, t1)},
+ },
+ },
+ {
+ shouldPanic: true, // overflow while aligning F2
+ fields: []StructField{
+ {Name: "F1", Type: bigType},
+ {Name: "F2", Type: t4},
+ },
+ },
+ {
+ shouldPanic: true, // overflow while adding trailing byte for zero-sized fields
+ fields: []StructField{
+ {Name: "F1", Type: bigType},
+ {Name: "F2", Type: ArrayOf(2, t1)},
+ {Name: "F3", Type: t0},
+ },
+ },
+ {
+ shouldPanic: true, // overflow while aligning total size
+ fields: []StructField{
+ {Name: "F1", Type: t2},
+ {Name: "F2", Type: bigType},
+ },
+ },
+ }
+
+ for i, tt := range tests {
+ func() {
+ defer func() {
+ err := recover()
+ if !tt.shouldPanic {
+ if err != nil {
+ t.Errorf("test %d should not panic, got %s", i, err)
+ }
+ return
+ }
+ if err == nil {
+ t.Errorf("test %d expected to panic", i)
+ return
+ }
+ s := fmt.Sprintf("%s", err)
+ if s != "reflect.StructOf: struct size would exceed virtual address space" {
+ t.Errorf("test %d wrong panic message: %s", i, s)
+ return
+ }
+ }()
+ _ = StructOf(tt.fields)
+ }()
+ }
+}
+
+func TestChanOf(t *testing.T) {
+ // check construction and use of type not in binary
+ type T string
+ ct := ChanOf(BothDir, TypeOf(T("")))
+ v := MakeChan(ct, 2)
+ runtime.GC()
+ v.Send(ValueOf(T("hello")))
+ runtime.GC()
+ v.Send(ValueOf(T("world")))
+ runtime.GC()
+
+ sv1, _ := v.Recv()
+ sv2, _ := v.Recv()
+ s1 := sv1.String()
+ s2 := sv2.String()
+ if s1 != "hello" || s2 != "world" {
+ t.Errorf("constructed chan: have %q, %q, want %q, %q", s1, s2, "hello", "world")
+ }
+
+ // check that type already in binary is found
+ type T1 int
+ checkSameType(t, ChanOf(BothDir, TypeOf(T1(1))), (chan T1)(nil))
+
+ // Check arrow token association in undefined chan types.
+ var left chan<- chan T
+ var right chan (<-chan T)
+ tLeft := ChanOf(SendDir, ChanOf(BothDir, TypeOf(T(""))))
+ tRight := ChanOf(BothDir, ChanOf(RecvDir, TypeOf(T(""))))
+ if tLeft != TypeOf(left) {
+ t.Errorf("chan<-chan: have %s, want %T", tLeft, left)
+ }
+ if tRight != TypeOf(right) {
+ t.Errorf("chan<-chan: have %s, want %T", tRight, right)
+ }
+}
+
+func TestChanOfDir(t *testing.T) {
+ // check construction and use of type not in binary
+ type T string
+ crt := ChanOf(RecvDir, TypeOf(T("")))
+ cst := ChanOf(SendDir, TypeOf(T("")))
+
+ // check that type already in binary is found
+ type T1 int
+ checkSameType(t, ChanOf(RecvDir, TypeOf(T1(1))), (<-chan T1)(nil))
+ checkSameType(t, ChanOf(SendDir, TypeOf(T1(1))), (chan<- T1)(nil))
+
+ // check String form of ChanDir
+ if crt.ChanDir().String() != "<-chan" {
+ t.Errorf("chan dir: have %q, want %q", crt.ChanDir().String(), "<-chan")
+ }
+ if cst.ChanDir().String() != "chan<-" {
+ t.Errorf("chan dir: have %q, want %q", cst.ChanDir().String(), "chan<-")
+ }
+}
+
+func TestChanOfGC(t *testing.T) {
+ done := make(chan bool, 1)
+ go func() {
+ select {
+ case <-done:
+ case <-time.After(5 * time.Second):
+ panic("deadlock in TestChanOfGC")
+ }
+ }()
+
+ defer func() {
+ done <- true
+ }()
+
+ type T *uintptr
+ tt := TypeOf(T(nil))
+ ct := ChanOf(BothDir, tt)
+
+ // NOTE: The garbage collector handles allocated channels specially,
+ // so we have to save pointers to channels in x; the pointer code will
+ // use the gc info in the newly constructed chan type.
+ const n = 100
+ var x []any
+ for i := 0; i < n; i++ {
+ v := MakeChan(ct, n)
+ for j := 0; j < n; j++ {
+ p := new(uintptr)
+ *p = uintptr(i*n + j)
+ v.Send(ValueOf(p).Convert(tt))
+ }
+ pv := New(ct)
+ pv.Elem().Set(v)
+ x = append(x, pv.Interface())
+ }
+ runtime.GC()
+
+ for i, xi := range x {
+ v := ValueOf(xi).Elem()
+ for j := 0; j < n; j++ {
+ pv, _ := v.Recv()
+ k := pv.Elem().Interface()
+ if k != uintptr(i*n+j) {
+ t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
+ }
+ }
+ }
+}
+
+func TestMapOf(t *testing.T) {
+ // check construction and use of type not in binary
+ type K string
+ type V float64
+
+ v := MakeMap(MapOf(TypeOf(K("")), TypeOf(V(0))))
+ runtime.GC()
+ v.SetMapIndex(ValueOf(K("a")), ValueOf(V(1)))
+ runtime.GC()
+
+ s := fmt.Sprint(v.Interface())
+ want := "map[a:1]"
+ if s != want {
+ t.Errorf("constructed map = %s, want %s", s, want)
+ }
+
+ // check that type already in binary is found
+ checkSameType(t, MapOf(TypeOf(V(0)), TypeOf(K(""))), map[V]K(nil))
+
+ // check that invalid key type panics
+ shouldPanic("invalid key type", func() { MapOf(TypeOf((func())(nil)), TypeOf(false)) })
+}
+
+func TestMapOfGCKeys(t *testing.T) {
+ type T *uintptr
+ tt := TypeOf(T(nil))
+ mt := MapOf(tt, TypeOf(false))
+
+ // NOTE: The garbage collector handles allocated maps specially,
+ // so we have to save pointers to maps in x; the pointer code will
+ // use the gc info in the newly constructed map type.
+ const n = 100
+ var x []any
+ for i := 0; i < n; i++ {
+ v := MakeMap(mt)
+ for j := 0; j < n; j++ {
+ p := new(uintptr)
+ *p = uintptr(i*n + j)
+ v.SetMapIndex(ValueOf(p).Convert(tt), ValueOf(true))
+ }
+ pv := New(mt)
+ pv.Elem().Set(v)
+ x = append(x, pv.Interface())
+ }
+ runtime.GC()
+
+ for i, xi := range x {
+ v := ValueOf(xi).Elem()
+ var out []int
+ for _, kv := range v.MapKeys() {
+ out = append(out, int(kv.Elem().Interface().(uintptr)))
+ }
+ sort.Ints(out)
+ for j, k := range out {
+ if k != i*n+j {
+ t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
+ }
+ }
+ }
+}
+
+func TestMapOfGCValues(t *testing.T) {
+ type T *uintptr
+ tt := TypeOf(T(nil))
+ mt := MapOf(TypeOf(1), tt)
+
+ // NOTE: The garbage collector handles allocated maps specially,
+ // so we have to save pointers to maps in x; the pointer code will
+ // use the gc info in the newly constructed map type.
+ const n = 100
+ var x []any
+ for i := 0; i < n; i++ {
+ v := MakeMap(mt)
+ for j := 0; j < n; j++ {
+ p := new(uintptr)
+ *p = uintptr(i*n + j)
+ v.SetMapIndex(ValueOf(j), ValueOf(p).Convert(tt))
+ }
+ pv := New(mt)
+ pv.Elem().Set(v)
+ x = append(x, pv.Interface())
+ }
+ runtime.GC()
+
+ for i, xi := range x {
+ v := ValueOf(xi).Elem()
+ for j := 0; j < n; j++ {
+ k := v.MapIndex(ValueOf(j)).Elem().Interface().(uintptr)
+ if k != uintptr(i*n+j) {
+ t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j)
+ }
+ }
+ }
+}
+
+func TestTypelinksSorted(t *testing.T) {
+ var last string
+ for i, n := range TypeLinks() {
+ if n < last {
+ t.Errorf("typelinks not sorted: %q [%d] > %q [%d]", last, i-1, n, i)
+ }
+ last = n
+ }
+}
+
+func TestFuncOf(t *testing.T) {
+ // check construction and use of type not in binary
+ type K string
+ type V float64
+
+ fn := func(args []Value) []Value {
+ if len(args) != 1 {
+ t.Errorf("args == %v, want exactly one arg", args)
+ } else if args[0].Type() != TypeOf(K("")) {
+ t.Errorf("args[0] is type %v, want %v", args[0].Type(), TypeOf(K("")))
+ } else if args[0].String() != "gopher" {
+ t.Errorf("args[0] = %q, want %q", args[0].String(), "gopher")
+ }
+ return []Value{ValueOf(V(3.14))}
+ }
+ v := MakeFunc(FuncOf([]Type{TypeOf(K(""))}, []Type{TypeOf(V(0))}, false), fn)
+
+ outs := v.Call([]Value{ValueOf(K("gopher"))})
+ if len(outs) != 1 {
+ t.Fatalf("v.Call returned %v, want exactly one result", outs)
+ } else if outs[0].Type() != TypeOf(V(0)) {
+ t.Fatalf("c.Call[0] is type %v, want %v", outs[0].Type(), TypeOf(V(0)))
+ }
+ f := outs[0].Float()
+ if f != 3.14 {
+ t.Errorf("constructed func returned %f, want %f", f, 3.14)
+ }
+
+ // check that types already in binary are found
+ type T1 int
+ testCases := []struct {
+ in, out []Type
+ variadic bool
+ want any
+ }{
+ {in: []Type{TypeOf(T1(0))}, want: (func(T1))(nil)},
+ {in: []Type{TypeOf(int(0))}, want: (func(int))(nil)},
+ {in: []Type{SliceOf(TypeOf(int(0)))}, variadic: true, want: (func(...int))(nil)},
+ {in: []Type{TypeOf(int(0))}, out: []Type{TypeOf(false)}, want: (func(int) bool)(nil)},
+ {in: []Type{TypeOf(int(0))}, out: []Type{TypeOf(false), TypeOf("")}, want: (func(int) (bool, string))(nil)},
+ }
+ for _, tt := range testCases {
+ checkSameType(t, FuncOf(tt.in, tt.out, tt.variadic), tt.want)
+ }
+
+ // check that variadic requires last element be a slice.
+ FuncOf([]Type{TypeOf(1), TypeOf(""), SliceOf(TypeOf(false))}, nil, true)
+ shouldPanic("must be slice", func() { FuncOf([]Type{TypeOf(0), TypeOf(""), TypeOf(false)}, nil, true) })
+ shouldPanic("must be slice", func() { FuncOf(nil, nil, true) })
+
+ //testcase for #54669
+ var in []Type
+ for i := 0; i < 51; i++ {
+ in = append(in, TypeOf(1))
+ }
+ FuncOf(in, nil, false)
+}
+
+type R0 struct {
+ *R1
+ *R2
+ *R3
+ *R4
+}
+
+type R1 struct {
+ *R5
+ *R6
+ *R7
+ *R8
+}
+
+type R2 R1
+type R3 R1
+type R4 R1
+
+type R5 struct {
+ *R9
+ *R10
+ *R11
+ *R12
+}
+
+type R6 R5
+type R7 R5
+type R8 R5
+
+type R9 struct {
+ *R13
+ *R14
+ *R15
+ *R16
+}
+
+type R10 R9
+type R11 R9
+type R12 R9
+
+type R13 struct {
+ *R17
+ *R18
+ *R19
+ *R20
+}
+
+type R14 R13
+type R15 R13
+type R16 R13
+
+type R17 struct {
+ *R21
+ *R22
+ *R23
+ *R24
+}
+
+type R18 R17
+type R19 R17
+type R20 R17
+
+type R21 struct {
+ X int
+}
+
+type R22 R21
+type R23 R21
+type R24 R21
+
+func TestEmbed(t *testing.T) {
+ typ := TypeOf(R0{})
+ f, ok := typ.FieldByName("X")
+ if ok {
+ t.Fatalf(`FieldByName("X") should fail, returned %v`, f.Index)
+ }
+}
+
+func TestAllocsInterfaceBig(t *testing.T) {
+ if testing.Short() {
+ t.Skip("skipping malloc count in short mode")
+ }
+ v := ValueOf(S{})
+ if allocs := testing.AllocsPerRun(100, func() { v.Interface() }); allocs > 0 {
+ t.Error("allocs:", allocs)
+ }
+}
+
+func TestAllocsInterfaceSmall(t *testing.T) {
+ if testing.Short() {
+ t.Skip("skipping malloc count in short mode")
+ }
+ v := ValueOf(int64(0))
+ if allocs := testing.AllocsPerRun(100, func() { v.Interface() }); allocs > 0 {
+ t.Error("allocs:", allocs)
+ }
+}
+
+// An exhaustive is a mechanism for writing exhaustive or stochastic tests.
+// The basic usage is:
+//
+// for x.Next() {
+// ... code using x.Maybe() or x.Choice(n) to create test cases ...
+// }
+//
+// Each iteration of the loop returns a different set of results, until all
+// possible result sets have been explored. It is okay for different code paths
+// to make different method call sequences on x, but there must be no
+// other source of non-determinism in the call sequences.
+//
+// When faced with a new decision, x chooses randomly. Future explorations
+// of that path will choose successive values for the result. Thus, stopping
+// the loop after a fixed number of iterations gives somewhat stochastic
+// testing.
+//
+// Example:
+//
+// for x.Next() {
+// v := make([]bool, x.Choose(4))
+// for i := range v {
+// v[i] = x.Maybe()
+// }
+// fmt.Println(v)
+// }
+//
+// prints (in some order):
+//
+// []
+// [false]
+// [true]
+// [false false]
+// [false true]
+// ...
+// [true true]
+// [false false false]
+// ...
+// [true true true]
+// [false false false false]
+// ...
+// [true true true true]
+type exhaustive struct {
+ r *rand.Rand
+ pos int
+ last []choice
+}
+
+type choice struct {
+ off int
+ n int
+ max int
+}
+
+func (x *exhaustive) Next() bool {
+ if x.r == nil {
+ x.r = rand.New(rand.NewSource(time.Now().UnixNano()))
+ }
+ x.pos = 0
+ if x.last == nil {
+ x.last = []choice{}
+ return true
+ }
+ for i := len(x.last) - 1; i >= 0; i-- {
+ c := &x.last[i]
+ if c.n+1 < c.max {
+ c.n++
+ x.last = x.last[:i+1]
+ return true
+ }
+ }
+ return false
+}
+
+func (x *exhaustive) Choose(max int) int {
+ if x.pos >= len(x.last) {
+ x.last = append(x.last, choice{x.r.Intn(max), 0, max})
+ }
+ c := &x.last[x.pos]
+ x.pos++
+ if c.max != max {
+ panic("inconsistent use of exhaustive tester")
+ }
+ return (c.n + c.off) % max
+}
+
+func (x *exhaustive) Maybe() bool {
+ return x.Choose(2) == 1
+}
+
+func GCFunc(args []Value) []Value {
+ runtime.GC()
+ return []Value{}
+}
+
+func TestReflectFuncTraceback(t *testing.T) {
+ f := MakeFunc(TypeOf(func() {}), GCFunc)
+ f.Call([]Value{})
+}
+
+func TestReflectMethodTraceback(t *testing.T) {
+ p := Point{3, 4}
+ m := ValueOf(p).MethodByName("GCMethod")
+ i := ValueOf(m.Interface()).Call([]Value{ValueOf(5)})[0].Int()
+ if i != 8 {
+ t.Errorf("Call returned %d; want 8", i)
+ }
+}
+
+func TestSmallZero(t *testing.T) {
+ type T [10]byte
+ typ := TypeOf(T{})
+ if allocs := testing.AllocsPerRun(100, func() { Zero(typ) }); allocs > 0 {
+ t.Errorf("Creating small zero values caused %f allocs, want 0", allocs)
+ }
+}
+
+func TestBigZero(t *testing.T) {
+ const size = 1 << 10
+ var v [size]byte
+ z := Zero(ValueOf(v).Type()).Interface().([size]byte)
+ for i := 0; i < size; i++ {
+ if z[i] != 0 {
+ t.Fatalf("Zero object not all zero, index %d", i)
+ }
+ }
+}
+
+func TestZeroSet(t *testing.T) {
+ type T [16]byte
+ type S struct {
+ a uint64
+ T T
+ b uint64
+ }
+ v := S{
+ a: 0xaaaaaaaaaaaaaaaa,
+ T: T{9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9},
+ b: 0xbbbbbbbbbbbbbbbb,
+ }
+ ValueOf(&v).Elem().Field(1).Set(Zero(TypeOf(T{})))
+ if v != (S{
+ a: 0xaaaaaaaaaaaaaaaa,
+ b: 0xbbbbbbbbbbbbbbbb,
+ }) {
+ t.Fatalf("Setting a field to a Zero value didn't work")
+ }
+}
+
+func TestFieldByIndexNil(t *testing.T) {
+ type P struct {
+ F int
+ }
+ type T struct {
+ *P
+ }
+ v := ValueOf(T{})
+
+ v.FieldByName("P") // should be fine
+
+ defer func() {
+ if err := recover(); err == nil {
+ t.Fatalf("no error")
+ } else if !strings.Contains(fmt.Sprint(err), "nil pointer to embedded struct") {
+ t.Fatalf(`err=%q, wanted error containing "nil pointer to embedded struct"`, err)
+ }
+ }()
+ v.FieldByName("F") // should panic
+
+ t.Fatalf("did not panic")
+}
+
+// Given
+// type Outer struct {
+// *Inner
+// ...
+// }
+// the compiler generates the implementation of (*Outer).M dispatching to the embedded Inner.
+// The implementation is logically:
+// func (p *Outer) M() {
+// (p.Inner).M()
+// }
+// but since the only change here is the replacement of one pointer receiver with another,
+// the actual generated code overwrites the original receiver with the p.Inner pointer and
+// then jumps to the M method expecting the *Inner receiver.
+//
+// During reflect.Value.Call, we create an argument frame and the associated data structures
+// to describe it to the garbage collector, populate the frame, call reflect.call to
+// run a function call using that frame, and then copy the results back out of the frame.
+// The reflect.call function does a memmove of the frame structure onto the
+// stack (to set up the inputs), runs the call, and the memmoves the stack back to
+// the frame structure (to preserve the outputs).
+//
+// Originally reflect.call did not distinguish inputs from outputs: both memmoves
+// were for the full stack frame. However, in the case where the called function was
+// one of these wrappers, the rewritten receiver is almost certainly a different type
+// than the original receiver. This is not a problem on the stack, where we use the
+// program counter to determine the type information and understand that
+// during (*Outer).M the receiver is an *Outer while during (*Inner).M the receiver in the same
+// memory word is now an *Inner. But in the statically typed argument frame created
+// by reflect, the receiver is always an *Outer. Copying the modified receiver pointer
+// off the stack into the frame will store an *Inner there, and then if a garbage collection
+// happens to scan that argument frame before it is discarded, it will scan the *Inner
+// memory as if it were an *Outer. If the two have different memory layouts, the
+// collection will interpret the memory incorrectly.
+//
+// One such possible incorrect interpretation is to treat two arbitrary memory words
+// (Inner.P1 and Inner.P2 below) as an interface (Outer.R below). Because interpreting
+// an interface requires dereferencing the itab word, the misinterpretation will try to
+// deference Inner.P1, causing a crash during garbage collection.
+//
+// This came up in a real program in issue 7725.
+
+type Outer struct {
+ *Inner
+ R io.Reader
+}
+
+type Inner struct {
+ X *Outer
+ P1 uintptr
+ P2 uintptr
+}
+
+func (pi *Inner) M() {
+ // Clear references to pi so that the only way the
+ // garbage collection will find the pointer is in the
+ // argument frame, typed as a *Outer.
+ pi.X.Inner = nil
+
+ // Set up an interface value that will cause a crash.
+ // P1 = 1 is a non-zero, so the interface looks non-nil.
+ // P2 = pi ensures that the data word points into the
+ // allocated heap; if not the collection skips the interface
+ // value as irrelevant, without dereferencing P1.
+ pi.P1 = 1
+ pi.P2 = uintptr(unsafe.Pointer(pi))
+}
+
+func TestCallMethodJump(t *testing.T) {
+ // In reflect.Value.Call, trigger a garbage collection after reflect.call
+ // returns but before the args frame has been discarded.
+ // This is a little clumsy but makes the failure repeatable.
+ *CallGC = true
+
+ p := &Outer{Inner: new(Inner)}
+ p.Inner.X = p
+ ValueOf(p).Method(0).Call(nil)
+
+ // Stop garbage collecting during reflect.call.
+ *CallGC = false
+}
+
+func TestCallArgLive(t *testing.T) {
+ type T struct{ X, Y *string } // pointerful aggregate
+
+ F := func(t T) { *t.X = "ok" }
+
+ // In reflect.Value.Call, trigger a garbage collection in reflect.call
+ // between marshaling argument and the actual call.
+ *CallGC = true
+
+ x := new(string)
+ runtime.SetFinalizer(x, func(p *string) {
+ if *p != "ok" {
+ t.Errorf("x dead prematurely")
+ }
+ })
+ v := T{x, nil}
+
+ ValueOf(F).Call([]Value{ValueOf(v)})
+
+ // Stop garbage collecting during reflect.call.
+ *CallGC = false
+}
+
+func TestMakeFuncStackCopy(t *testing.T) {
+ target := func(in []Value) []Value {
+ runtime.GC()
+ useStack(16)
+ return []Value{ValueOf(9)}
+ }
+
+ var concrete func(*int, int) int
+ fn := MakeFunc(ValueOf(concrete).Type(), target)
+ ValueOf(&concrete).Elem().Set(fn)
+ x := concrete(nil, 7)
+ if x != 9 {
+ t.Errorf("have %#q want 9", x)
+ }
+}
+
+// use about n KB of stack
+func useStack(n int) {
+ if n == 0 {
+ return
+ }
+ var b [1024]byte // makes frame about 1KB
+ useStack(n - 1 + int(b[99]))
+}
+
+type Impl struct{}
+
+func (Impl) F() {}
+
+func TestValueString(t *testing.T) {
+ rv := ValueOf(Impl{})
+ if rv.String() != "<reflect_test.Impl Value>" {
+ t.Errorf("ValueOf(Impl{}).String() = %q, want %q", rv.String(), "<reflect_test.Impl Value>")
+ }
+
+ method := rv.Method(0)
+ if method.String() != "<func() Value>" {
+ t.Errorf("ValueOf(Impl{}).Method(0).String() = %q, want %q", method.String(), "<func() Value>")
+ }
+}
+
+func TestInvalid(t *testing.T) {
+ // Used to have inconsistency between IsValid() and Kind() != Invalid.
+ type T struct{ v any }
+
+ v := ValueOf(T{}).Field(0)
+ if v.IsValid() != true || v.Kind() != Interface {
+ t.Errorf("field: IsValid=%v, Kind=%v, want true, Interface", v.IsValid(), v.Kind())
+ }
+ v = v.Elem()
+ if v.IsValid() != false || v.Kind() != Invalid {
+ t.Errorf("field elem: IsValid=%v, Kind=%v, want false, Invalid", v.IsValid(), v.Kind())
+ }
+}
+
+// Issue 8917.
+func TestLargeGCProg(t *testing.T) {
+ fv := ValueOf(func([256]*byte) {})
+ fv.Call([]Value{ValueOf([256]*byte{})})
+}
+
+func fieldIndexRecover(t Type, i int) (recovered any) {
+ defer func() {
+ recovered = recover()
+ }()
+
+ t.Field(i)
+ return
+}
+
+// Issue 15046.
+func TestTypeFieldOutOfRangePanic(t *testing.T) {
+ typ := TypeOf(struct{ X int }{10})
+ testIndices := [...]struct {
+ i int
+ mustPanic bool
+ }{
+ 0: {-2, true},
+ 1: {0, false},
+ 2: {1, true},
+ 3: {1 << 10, true},
+ }
+ for i, tt := range testIndices {
+ recoveredErr := fieldIndexRecover(typ, tt.i)
+ if tt.mustPanic {
+ if recoveredErr == nil {
+ t.Errorf("#%d: fieldIndex %d expected to panic", i, tt.i)
+ }
+ } else {
+ if recoveredErr != nil {
+ t.Errorf("#%d: got err=%v, expected no panic", i, recoveredErr)
+ }
+ }
+ }
+}
+
+// Issue 9179.
+func TestCallGC(t *testing.T) {
+ f := func(a, b, c, d, e string) {
+ }
+ g := func(in []Value) []Value {
+ runtime.GC()
+ return nil
+ }
+ typ := ValueOf(f).Type()
+ f2 := MakeFunc(typ, g).Interface().(func(string, string, string, string, string))
+ f2("four", "five5", "six666", "seven77", "eight888")
+}
+
+// Issue 18635 (function version).
+func TestKeepFuncLive(t *testing.T) {
+ // Test that we keep makeFuncImpl live as long as it is
+ // referenced on the stack.
+ typ := TypeOf(func(i int) {})
+ var f, g func(in []Value) []Value
+ f = func(in []Value) []Value {
+ clobber()
+ i := int(in[0].Int())
+ if i > 0 {
+ // We can't use Value.Call here because
+ // runtime.call* will keep the makeFuncImpl
+ // alive. However, by converting it to an
+ // interface value and calling that,
+ // reflect.callReflect is the only thing that
+ // can keep the makeFuncImpl live.
+ //
+ // Alternate between f and g so that if we do
+ // reuse the memory prematurely it's more
+ // likely to get obviously corrupted.
+ MakeFunc(typ, g).Interface().(func(i int))(i - 1)
+ }
+ return nil
+ }
+ g = func(in []Value) []Value {
+ clobber()
+ i := int(in[0].Int())
+ MakeFunc(typ, f).Interface().(func(i int))(i)
+ return nil
+ }
+ MakeFunc(typ, f).Call([]Value{ValueOf(10)})
+}
+
+type UnExportedFirst int
+
+func (i UnExportedFirst) ΦExported() {}
+func (i UnExportedFirst) unexported() {}
+
+// Issue 21177
+func TestMethodByNameUnExportedFirst(t *testing.T) {
+ defer func() {
+ if recover() != nil {
+ t.Errorf("should not panic")
+ }
+ }()
+ typ := TypeOf(UnExportedFirst(0))
+ m, _ := typ.MethodByName("ΦExported")
+ if m.Name != "ΦExported" {
+ t.Errorf("got %s, expected ΦExported", m.Name)
+ }
+}
+
+// Issue 18635 (method version).
+type KeepMethodLive struct{}
+
+func (k KeepMethodLive) Method1(i int) {
+ clobber()
+ if i > 0 {
+ ValueOf(k).MethodByName("Method2").Interface().(func(i int))(i - 1)
+ }
+}
+
+func (k KeepMethodLive) Method2(i int) {
+ clobber()
+ ValueOf(k).MethodByName("Method1").Interface().(func(i int))(i)
+}
+
+func TestKeepMethodLive(t *testing.T) {
+ // Test that we keep methodValue live as long as it is
+ // referenced on the stack.
+ KeepMethodLive{}.Method1(10)
+}
+
+// clobber tries to clobber unreachable memory.
+func clobber() {
+ runtime.GC()
+ for i := 1; i < 32; i++ {
+ for j := 0; j < 10; j++ {
+ obj := make([]*byte, i)
+ sink = obj
+ }
+ }
+ runtime.GC()
+}
+
+func TestFuncLayout(t *testing.T) {
+ align := func(x uintptr) uintptr {
+ return (x + goarch.PtrSize - 1) &^ (goarch.PtrSize - 1)
+ }
+ var r []byte
+ if goarch.PtrSize == 4 {
+ r = []byte{0, 0, 0, 1}
+ } else {
+ r = []byte{0, 0, 1}
+ }
+
+ type S struct {
+ a, b uintptr
+ c, d *byte
+ }
+
+ type test struct {
+ rcvr, typ Type
+ size, argsize, retOffset uintptr
+ stack, gc, inRegs, outRegs []byte // pointer bitmap: 1 is pointer, 0 is scalar
+ intRegs, floatRegs int
+ floatRegSize uintptr
+ }
+ tests := []test{
+ {
+ typ: ValueOf(func(a, b string) string { return "" }).Type(),
+ size: 6 * goarch.PtrSize,
+ argsize: 4 * goarch.PtrSize,
+ retOffset: 4 * goarch.PtrSize,
+ stack: []byte{1, 0, 1, 0, 1},
+ gc: []byte{1, 0, 1, 0, 1},
+ },
+ {
+ typ: ValueOf(func(a, b, c uint32, p *byte, d uint16) {}).Type(),
+ size: align(align(3*4) + goarch.PtrSize + 2),
+ argsize: align(3*4) + goarch.PtrSize + 2,
+ retOffset: align(align(3*4) + goarch.PtrSize + 2),
+ stack: r,
+ gc: r,
+ },
+ {
+ typ: ValueOf(func(a map[int]int, b uintptr, c any) {}).Type(),
+ size: 4 * goarch.PtrSize,
+ argsize: 4 * goarch.PtrSize,
+ retOffset: 4 * goarch.PtrSize,
+ stack: []byte{1, 0, 1, 1},
+ gc: []byte{1, 0, 1, 1},
+ },
+ {
+ typ: ValueOf(func(a S) {}).Type(),
+ size: 4 * goarch.PtrSize,
+ argsize: 4 * goarch.PtrSize,
+ retOffset: 4 * goarch.PtrSize,
+ stack: []byte{0, 0, 1, 1},
+ gc: []byte{0, 0, 1, 1},
+ },
+ {
+ rcvr: ValueOf((*byte)(nil)).Type(),
+ typ: ValueOf(func(a uintptr, b *int) {}).Type(),
+ size: 3 * goarch.PtrSize,
+ argsize: 3 * goarch.PtrSize,
+ retOffset: 3 * goarch.PtrSize,
+ stack: []byte{1, 0, 1},
+ gc: []byte{1, 0, 1},
+ },
+ {
+ typ: ValueOf(func(a uintptr) {}).Type(),
+ size: goarch.PtrSize,
+ argsize: goarch.PtrSize,
+ retOffset: goarch.PtrSize,
+ stack: []byte{},
+ gc: []byte{},
+ },
+ {
+ typ: ValueOf(func() uintptr { return 0 }).Type(),
+ size: goarch.PtrSize,
+ argsize: 0,
+ retOffset: 0,
+ stack: []byte{},
+ gc: []byte{},
+ },
+ {
+ rcvr: ValueOf(uintptr(0)).Type(),
+ typ: ValueOf(func(a uintptr) {}).Type(),
+ size: 2 * goarch.PtrSize,
+ argsize: 2 * goarch.PtrSize,
+ retOffset: 2 * goarch.PtrSize,
+ stack: []byte{1},
+ gc: []byte{1},
+ // Note: this one is tricky, as the receiver is not a pointer. But we
+ // pass the receiver by reference to the autogenerated pointer-receiver
+ // version of the function.
+ },
+ // TODO(mknyszek): Add tests for non-zero register count.
+ }
+ for _, lt := range tests {
+ name := lt.typ.String()
+ if lt.rcvr != nil {
+ name = lt.rcvr.String() + "." + name
+ }
+ t.Run(name, func(t *testing.T) {
+ defer SetArgRegs(SetArgRegs(lt.intRegs, lt.floatRegs, lt.floatRegSize))
+
+ typ, argsize, retOffset, stack, gc, inRegs, outRegs, ptrs := FuncLayout(lt.typ, lt.rcvr)
+ if typ.Size() != lt.size {
+ t.Errorf("funcLayout(%v, %v).size=%d, want %d", lt.typ, lt.rcvr, typ.Size(), lt.size)
+ }
+ if argsize != lt.argsize {
+ t.Errorf("funcLayout(%v, %v).argsize=%d, want %d", lt.typ, lt.rcvr, argsize, lt.argsize)
+ }
+ if retOffset != lt.retOffset {
+ t.Errorf("funcLayout(%v, %v).retOffset=%d, want %d", lt.typ, lt.rcvr, retOffset, lt.retOffset)
+ }
+ if !bytes.Equal(stack, lt.stack) {
+ t.Errorf("funcLayout(%v, %v).stack=%v, want %v", lt.typ, lt.rcvr, stack, lt.stack)
+ }
+ if !bytes.Equal(gc, lt.gc) {
+ t.Errorf("funcLayout(%v, %v).gc=%v, want %v", lt.typ, lt.rcvr, gc, lt.gc)
+ }
+ if !bytes.Equal(inRegs, lt.inRegs) {
+ t.Errorf("funcLayout(%v, %v).inRegs=%v, want %v", lt.typ, lt.rcvr, inRegs, lt.inRegs)
+ }
+ if !bytes.Equal(outRegs, lt.outRegs) {
+ t.Errorf("funcLayout(%v, %v).outRegs=%v, want %v", lt.typ, lt.rcvr, outRegs, lt.outRegs)
+ }
+ if ptrs && len(stack) == 0 || !ptrs && len(stack) > 0 {
+ t.Errorf("funcLayout(%v, %v) pointers flag=%v, want %v", lt.typ, lt.rcvr, ptrs, !ptrs)
+ }
+ })
+ }
+}
+
+// trimBitmap removes trailing 0 elements from b and returns the result.
+func trimBitmap(b []byte) []byte {
+ for len(b) > 0 && b[len(b)-1] == 0 {
+ b = b[:len(b)-1]
+ }
+ return b
+}
+
+func verifyGCBits(t *testing.T, typ Type, bits []byte) {
+ heapBits := GCBits(New(typ).Interface())
+
+ // Trim scalars at the end, as bits might end in zero,
+ // e.g. with rep(2, lit(1, 0)).
+ bits = trimBitmap(bits)
+
+ if !bytes.Equal(heapBits, bits) {
+ _, _, line, _ := runtime.Caller(1)
+ t.Errorf("line %d: heapBits incorrect for %v\nhave %v\nwant %v", line, typ, heapBits, bits)
+ }
+}
+
+func verifyGCBitsSlice(t *testing.T, typ Type, cap int, bits []byte) {
+ // Creating a slice causes the runtime to repeat a bitmap,
+ // which exercises a different path from making the compiler
+ // repeat a bitmap for a small array or executing a repeat in
+ // a GC program.
+ val := MakeSlice(typ, 0, cap)
+ data := NewAt(ArrayOf(cap, typ), val.UnsafePointer())
+ heapBits := GCBits(data.Interface())
+ // Repeat the bitmap for the slice size, trimming scalars in
+ // the last element.
+ bits = trimBitmap(rep(cap, bits))
+ if !bytes.Equal(heapBits, bits) {
+ _, _, line, _ := runtime.Caller(1)
+ t.Errorf("line %d: heapBits incorrect for make(%v, 0, %v)\nhave %v\nwant %v", line, typ, cap, heapBits, bits)
+ }
+}
+
+func TestGCBits(t *testing.T) {
+ verifyGCBits(t, TypeOf((*byte)(nil)), []byte{1})
+
+ // Building blocks for types seen by the compiler (like [2]Xscalar).
+ // The compiler will create the type structures for the derived types,
+ // including their GC metadata.
+ type Xscalar struct{ x uintptr }
+ type Xptr struct{ x *byte }
+ type Xptrscalar struct {
+ *byte
+ uintptr
+ }
+ type Xscalarptr struct {
+ uintptr
+ *byte
+ }
+ type Xbigptrscalar struct {
+ _ [100]*byte
+ _ [100]uintptr
+ }
+
+ var Tscalar, Tint64, Tptr, Tscalarptr, Tptrscalar, Tbigptrscalar Type
+ {
+ // Building blocks for types constructed by reflect.
+ // This code is in a separate block so that code below
+ // cannot accidentally refer to these.
+ // The compiler must NOT see types derived from these
+ // (for example, [2]Scalar must NOT appear in the program),
+ // or else reflect will use it instead of having to construct one.
+ // The goal is to test the construction.
+ type Scalar struct{ x uintptr }
+ type Ptr struct{ x *byte }
+ type Ptrscalar struct {
+ *byte
+ uintptr
+ }
+ type Scalarptr struct {
+ uintptr
+ *byte
+ }
+ type Bigptrscalar struct {
+ _ [100]*byte
+ _ [100]uintptr
+ }
+ type Int64 int64
+ Tscalar = TypeOf(Scalar{})
+ Tint64 = TypeOf(Int64(0))
+ Tptr = TypeOf(Ptr{})
+ Tscalarptr = TypeOf(Scalarptr{})
+ Tptrscalar = TypeOf(Ptrscalar{})
+ Tbigptrscalar = TypeOf(Bigptrscalar{})
+ }
+
+ empty := []byte{}
+
+ verifyGCBits(t, TypeOf(Xscalar{}), empty)
+ verifyGCBits(t, Tscalar, empty)
+ verifyGCBits(t, TypeOf(Xptr{}), lit(1))
+ verifyGCBits(t, Tptr, lit(1))
+ verifyGCBits(t, TypeOf(Xscalarptr{}), lit(0, 1))
+ verifyGCBits(t, Tscalarptr, lit(0, 1))
+ verifyGCBits(t, TypeOf(Xptrscalar{}), lit(1))
+ verifyGCBits(t, Tptrscalar, lit(1))
+
+ verifyGCBits(t, TypeOf([0]Xptr{}), empty)
+ verifyGCBits(t, ArrayOf(0, Tptr), empty)
+ verifyGCBits(t, TypeOf([1]Xptrscalar{}), lit(1))
+ verifyGCBits(t, ArrayOf(1, Tptrscalar), lit(1))
+ verifyGCBits(t, TypeOf([2]Xscalar{}), empty)
+ verifyGCBits(t, ArrayOf(2, Tscalar), empty)
+ verifyGCBits(t, TypeOf([10000]Xscalar{}), empty)
+ verifyGCBits(t, ArrayOf(10000, Tscalar), empty)
+ verifyGCBits(t, TypeOf([2]Xptr{}), lit(1, 1))
+ verifyGCBits(t, ArrayOf(2, Tptr), lit(1, 1))
+ verifyGCBits(t, TypeOf([10000]Xptr{}), rep(10000, lit(1)))
+ verifyGCBits(t, ArrayOf(10000, Tptr), rep(10000, lit(1)))
+ verifyGCBits(t, TypeOf([2]Xscalarptr{}), lit(0, 1, 0, 1))
+ verifyGCBits(t, ArrayOf(2, Tscalarptr), lit(0, 1, 0, 1))
+ verifyGCBits(t, TypeOf([10000]Xscalarptr{}), rep(10000, lit(0, 1)))
+ verifyGCBits(t, ArrayOf(10000, Tscalarptr), rep(10000, lit(0, 1)))
+ verifyGCBits(t, TypeOf([2]Xptrscalar{}), lit(1, 0, 1))
+ verifyGCBits(t, ArrayOf(2, Tptrscalar), lit(1, 0, 1))
+ verifyGCBits(t, TypeOf([10000]Xptrscalar{}), rep(10000, lit(1, 0)))
+ verifyGCBits(t, ArrayOf(10000, Tptrscalar), rep(10000, lit(1, 0)))
+ verifyGCBits(t, TypeOf([1][10000]Xptrscalar{}), rep(10000, lit(1, 0)))
+ verifyGCBits(t, ArrayOf(1, ArrayOf(10000, Tptrscalar)), rep(10000, lit(1, 0)))
+ verifyGCBits(t, TypeOf([2][10000]Xptrscalar{}), rep(2*10000, lit(1, 0)))
+ verifyGCBits(t, ArrayOf(2, ArrayOf(10000, Tptrscalar)), rep(2*10000, lit(1, 0)))
+ verifyGCBits(t, TypeOf([4]Xbigptrscalar{}), join(rep(3, join(rep(100, lit(1)), rep(100, lit(0)))), rep(100, lit(1))))
+ verifyGCBits(t, ArrayOf(4, Tbigptrscalar), join(rep(3, join(rep(100, lit(1)), rep(100, lit(0)))), rep(100, lit(1))))
+
+ verifyGCBitsSlice(t, TypeOf([]Xptr{}), 0, empty)
+ verifyGCBitsSlice(t, SliceOf(Tptr), 0, empty)
+ verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 1, lit(1))
+ verifyGCBitsSlice(t, SliceOf(Tptrscalar), 1, lit(1))
+ verifyGCBitsSlice(t, TypeOf([]Xscalar{}), 2, lit(0))
+ verifyGCBitsSlice(t, SliceOf(Tscalar), 2, lit(0))
+ verifyGCBitsSlice(t, TypeOf([]Xscalar{}), 10000, lit(0))
+ verifyGCBitsSlice(t, SliceOf(Tscalar), 10000, lit(0))
+ verifyGCBitsSlice(t, TypeOf([]Xptr{}), 2, lit(1))
+ verifyGCBitsSlice(t, SliceOf(Tptr), 2, lit(1))
+ verifyGCBitsSlice(t, TypeOf([]Xptr{}), 10000, lit(1))
+ verifyGCBitsSlice(t, SliceOf(Tptr), 10000, lit(1))
+ verifyGCBitsSlice(t, TypeOf([]Xscalarptr{}), 2, lit(0, 1))
+ verifyGCBitsSlice(t, SliceOf(Tscalarptr), 2, lit(0, 1))
+ verifyGCBitsSlice(t, TypeOf([]Xscalarptr{}), 10000, lit(0, 1))
+ verifyGCBitsSlice(t, SliceOf(Tscalarptr), 10000, lit(0, 1))
+ verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 2, lit(1, 0))
+ verifyGCBitsSlice(t, SliceOf(Tptrscalar), 2, lit(1, 0))
+ verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 10000, lit(1, 0))
+ verifyGCBitsSlice(t, SliceOf(Tptrscalar), 10000, lit(1, 0))
+ verifyGCBitsSlice(t, TypeOf([][10000]Xptrscalar{}), 1, rep(10000, lit(1, 0)))
+ verifyGCBitsSlice(t, SliceOf(ArrayOf(10000, Tptrscalar)), 1, rep(10000, lit(1, 0)))
+ verifyGCBitsSlice(t, TypeOf([][10000]Xptrscalar{}), 2, rep(10000, lit(1, 0)))
+ verifyGCBitsSlice(t, SliceOf(ArrayOf(10000, Tptrscalar)), 2, rep(10000, lit(1, 0)))
+ verifyGCBitsSlice(t, TypeOf([]Xbigptrscalar{}), 4, join(rep(100, lit(1)), rep(100, lit(0))))
+ verifyGCBitsSlice(t, SliceOf(Tbigptrscalar), 4, join(rep(100, lit(1)), rep(100, lit(0))))
+
+ verifyGCBits(t, TypeOf((chan [100]Xscalar)(nil)), lit(1))
+ verifyGCBits(t, ChanOf(BothDir, ArrayOf(100, Tscalar)), lit(1))
+
+ verifyGCBits(t, TypeOf((func([10000]Xscalarptr))(nil)), lit(1))
+ verifyGCBits(t, FuncOf([]Type{ArrayOf(10000, Tscalarptr)}, nil, false), lit(1))
+
+ verifyGCBits(t, TypeOf((map[[10000]Xscalarptr]Xscalar)(nil)), lit(1))
+ verifyGCBits(t, MapOf(ArrayOf(10000, Tscalarptr), Tscalar), lit(1))
+
+ verifyGCBits(t, TypeOf((*[10000]Xscalar)(nil)), lit(1))
+ verifyGCBits(t, PointerTo(ArrayOf(10000, Tscalar)), lit(1))
+
+ verifyGCBits(t, TypeOf(([][10000]Xscalar)(nil)), lit(1))
+ verifyGCBits(t, SliceOf(ArrayOf(10000, Tscalar)), lit(1))
+
+ hdr := make([]byte, 8/goarch.PtrSize)
+
+ verifyMapBucket := func(t *testing.T, k, e Type, m any, want []byte) {
+ verifyGCBits(t, MapBucketOf(k, e), want)
+ verifyGCBits(t, CachedBucketOf(TypeOf(m)), want)
+ }
+ verifyMapBucket(t,
+ Tscalar, Tptr,
+ map[Xscalar]Xptr(nil),
+ join(hdr, rep(8, lit(0)), rep(8, lit(1)), lit(1)))
+ verifyMapBucket(t,
+ Tscalarptr, Tptr,
+ map[Xscalarptr]Xptr(nil),
+ join(hdr, rep(8, lit(0, 1)), rep(8, lit(1)), lit(1)))
+ verifyMapBucket(t, Tint64, Tptr,
+ map[int64]Xptr(nil),
+ join(hdr, rep(8, rep(8/goarch.PtrSize, lit(0))), rep(8, lit(1)), lit(1)))
+ verifyMapBucket(t,
+ Tscalar, Tscalar,
+ map[Xscalar]Xscalar(nil),
+ empty)
+ verifyMapBucket(t,
+ ArrayOf(2, Tscalarptr), ArrayOf(3, Tptrscalar),
+ map[[2]Xscalarptr][3]Xptrscalar(nil),
+ join(hdr, rep(8*2, lit(0, 1)), rep(8*3, lit(1, 0)), lit(1)))
+ verifyMapBucket(t,
+ ArrayOf(64/goarch.PtrSize, Tscalarptr), ArrayOf(64/goarch.PtrSize, Tptrscalar),
+ map[[64 / goarch.PtrSize]Xscalarptr][64 / goarch.PtrSize]Xptrscalar(nil),
+ join(hdr, rep(8*64/goarch.PtrSize, lit(0, 1)), rep(8*64/goarch.PtrSize, lit(1, 0)), lit(1)))
+ verifyMapBucket(t,
+ ArrayOf(64/goarch.PtrSize+1, Tscalarptr), ArrayOf(64/goarch.PtrSize, Tptrscalar),
+ map[[64/goarch.PtrSize + 1]Xscalarptr][64 / goarch.PtrSize]Xptrscalar(nil),
+ join(hdr, rep(8, lit(1)), rep(8*64/goarch.PtrSize, lit(1, 0)), lit(1)))
+ verifyMapBucket(t,
+ ArrayOf(64/goarch.PtrSize, Tscalarptr), ArrayOf(64/goarch.PtrSize+1, Tptrscalar),
+ map[[64 / goarch.PtrSize]Xscalarptr][64/goarch.PtrSize + 1]Xptrscalar(nil),
+ join(hdr, rep(8*64/goarch.PtrSize, lit(0, 1)), rep(8, lit(1)), lit(1)))
+ verifyMapBucket(t,
+ ArrayOf(64/goarch.PtrSize+1, Tscalarptr), ArrayOf(64/goarch.PtrSize+1, Tptrscalar),
+ map[[64/goarch.PtrSize + 1]Xscalarptr][64/goarch.PtrSize + 1]Xptrscalar(nil),
+ join(hdr, rep(8, lit(1)), rep(8, lit(1)), lit(1)))
+}
+
+func rep(n int, b []byte) []byte { return bytes.Repeat(b, n) }
+func join(b ...[]byte) []byte { return bytes.Join(b, nil) }
+func lit(x ...byte) []byte { return x }
+
+func TestTypeOfTypeOf(t *testing.T) {
+ // Check that all the type constructors return concrete *rtype implementations.
+ // It's difficult to test directly because the reflect package is only at arm's length.
+ // The easiest thing to do is just call a function that crashes if it doesn't get an *rtype.
+ check := func(name string, typ Type) {
+ if underlying := TypeOf(typ).String(); underlying != "*reflect.rtype" {
+ t.Errorf("%v returned %v, not *reflect.rtype", name, underlying)
+ }
+ }
+
+ type T struct{ int }
+ check("TypeOf", TypeOf(T{}))
+
+ check("ArrayOf", ArrayOf(10, TypeOf(T{})))
+ check("ChanOf", ChanOf(BothDir, TypeOf(T{})))
+ check("FuncOf", FuncOf([]Type{TypeOf(T{})}, nil, false))
+ check("MapOf", MapOf(TypeOf(T{}), TypeOf(T{})))
+ check("PtrTo", PointerTo(TypeOf(T{})))
+ check("SliceOf", SliceOf(TypeOf(T{})))
+}
+
+type XM struct{ _ bool }
+
+func (*XM) String() string { return "" }
+
+func TestPtrToMethods(t *testing.T) {
+ var y struct{ XM }
+ yp := New(TypeOf(y)).Interface()
+ _, ok := yp.(fmt.Stringer)
+ if !ok {
+ t.Fatal("does not implement Stringer, but should")
+ }
+}
+
+func TestMapAlloc(t *testing.T) {
+ m := ValueOf(make(map[int]int, 10))
+ k := ValueOf(5)
+ v := ValueOf(7)
+ allocs := testing.AllocsPerRun(100, func() {
+ m.SetMapIndex(k, v)
+ })
+ if allocs > 0.5 {
+ t.Errorf("allocs per map assignment: want 0 got %f", allocs)
+ }
+
+ const size = 1000
+ tmp := 0
+ val := ValueOf(&tmp).Elem()
+ allocs = testing.AllocsPerRun(100, func() {
+ mv := MakeMapWithSize(TypeOf(map[int]int{}), size)
+ // Only adding half of the capacity to not trigger re-allocations due too many overloaded buckets.
+ for i := 0; i < size/2; i++ {
+ val.SetInt(int64(i))
+ mv.SetMapIndex(val, val)
+ }
+ })
+ if allocs > 10 {
+ t.Errorf("allocs per map assignment: want at most 10 got %f", allocs)
+ }
+ // Empirical testing shows that with capacity hint single run will trigger 3 allocations and without 91. I set
+ // the threshold to 10, to not make it overly brittle if something changes in the initial allocation of the
+ // map, but to still catch a regression where we keep re-allocating in the hashmap as new entries are added.
+}
+
+func TestChanAlloc(t *testing.T) {
+ // Note: for a chan int, the return Value must be allocated, so we
+ // use a chan *int instead.
+ c := ValueOf(make(chan *int, 1))
+ v := ValueOf(new(int))
+ allocs := testing.AllocsPerRun(100, func() {
+ c.Send(v)
+ _, _ = c.Recv()
+ })
+ if allocs < 0.5 || allocs > 1.5 {
+ t.Errorf("allocs per chan send/recv: want 1 got %f", allocs)
+ }
+ // Note: there is one allocation in reflect.recv which seems to be
+ // a limitation of escape analysis. If that is ever fixed the
+ // allocs < 0.5 condition will trigger and this test should be fixed.
+}
+
+type TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678 int
+
+type nameTest struct {
+ v any
+ want string
+}
+
+var nameTests = []nameTest{
+ {(*int32)(nil), "int32"},
+ {(*D1)(nil), "D1"},
+ {(*[]D1)(nil), ""},
+ {(*chan D1)(nil), ""},
+ {(*func() D1)(nil), ""},
+ {(*<-chan D1)(nil), ""},
+ {(*chan<- D1)(nil), ""},
+ {(*any)(nil), ""},
+ {(*interface {
+ F()
+ })(nil), ""},
+ {(*TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678)(nil), "TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678"},
+}
+
+func TestNames(t *testing.T) {
+ for _, test := range nameTests {
+ typ := TypeOf(test.v).Elem()
+ if got := typ.Name(); got != test.want {
+ t.Errorf("%v Name()=%q, want %q", typ, got, test.want)
+ }
+ }
+}
+
+func TestExported(t *testing.T) {
+ type ΦExported struct{}
+ type φUnexported struct{}
+ type BigP *big
+ type P int
+ type p *P
+ type P2 p
+ type p3 p
+
+ type exportTest struct {
+ v any
+ want bool
+ }
+ exportTests := []exportTest{
+ {D1{}, true},
+ {(*D1)(nil), true},
+ {big{}, false},
+ {(*big)(nil), false},
+ {(BigP)(nil), true},
+ {(*BigP)(nil), true},
+ {ΦExported{}, true},
+ {φUnexported{}, false},
+ {P(0), true},
+ {(p)(nil), false},
+ {(P2)(nil), true},
+ {(p3)(nil), false},
+ }
+
+ for i, test := range exportTests {
+ typ := TypeOf(test.v)
+ if got := IsExported(typ); got != test.want {
+ t.Errorf("%d: %s exported=%v, want %v", i, typ.Name(), got, test.want)
+ }
+ }
+}
+
+func TestTypeStrings(t *testing.T) {
+ type stringTest struct {
+ typ Type
+ want string
+ }
+ stringTests := []stringTest{
+ {TypeOf(func(int) {}), "func(int)"},
+ {FuncOf([]Type{TypeOf(int(0))}, nil, false), "func(int)"},
+ {TypeOf(XM{}), "reflect_test.XM"},
+ {TypeOf(new(XM)), "*reflect_test.XM"},
+ {TypeOf(new(XM).String), "func() string"},
+ {TypeOf(new(XM)).Method(0).Type, "func(*reflect_test.XM) string"},
+ {ChanOf(3, TypeOf(XM{})), "chan reflect_test.XM"},
+ {MapOf(TypeOf(int(0)), TypeOf(XM{})), "map[int]reflect_test.XM"},
+ {ArrayOf(3, TypeOf(XM{})), "[3]reflect_test.XM"},
+ {ArrayOf(3, TypeOf(struct{}{})), "[3]struct {}"},
+ }
+
+ for i, test := range stringTests {
+ if got, want := test.typ.String(), test.want; got != want {
+ t.Errorf("type %d String()=%q, want %q", i, got, want)
+ }
+ }
+}
+
+func TestOffsetLock(t *testing.T) {
+ var wg sync.WaitGroup
+ for i := 0; i < 4; i++ {
+ i := i
+ wg.Add(1)
+ go func() {
+ for j := 0; j < 50; j++ {
+ ResolveReflectName(fmt.Sprintf("OffsetLockName:%d:%d", i, j))
+ }
+ wg.Done()
+ }()
+ }
+ wg.Wait()
+}
+
+func TestSwapper(t *testing.T) {
+ type I int
+ var a, b, c I
+ type pair struct {
+ x, y int
+ }
+ type pairPtr struct {
+ x, y int
+ p *I
+ }
+ type S string
+
+ tests := []struct {
+ in any
+ i, j int
+ want any
+ }{
+ {
+ in: []int{1, 20, 300},
+ i: 0,
+ j: 2,
+ want: []int{300, 20, 1},
+ },
+ {
+ in: []uintptr{1, 20, 300},
+ i: 0,
+ j: 2,
+ want: []uintptr{300, 20, 1},
+ },
+ {
+ in: []int16{1, 20, 300},
+ i: 0,
+ j: 2,
+ want: []int16{300, 20, 1},
+ },
+ {
+ in: []int8{1, 20, 100},
+ i: 0,
+ j: 2,
+ want: []int8{100, 20, 1},
+ },
+ {
+ in: []*I{&a, &b, &c},
+ i: 0,
+ j: 2,
+ want: []*I{&c, &b, &a},
+ },
+ {
+ in: []string{"eric", "sergey", "larry"},
+ i: 0,
+ j: 2,
+ want: []string{"larry", "sergey", "eric"},
+ },
+ {
+ in: []S{"eric", "sergey", "larry"},
+ i: 0,
+ j: 2,
+ want: []S{"larry", "sergey", "eric"},
+ },
+ {
+ in: []pair{{1, 2}, {3, 4}, {5, 6}},
+ i: 0,
+ j: 2,
+ want: []pair{{5, 6}, {3, 4}, {1, 2}},
+ },
+ {
+ in: []pairPtr{{1, 2, &a}, {3, 4, &b}, {5, 6, &c}},
+ i: 0,
+ j: 2,
+ want: []pairPtr{{5, 6, &c}, {3, 4, &b}, {1, 2, &a}},
+ },
+ }
+
+ for i, tt := range tests {
+ inStr := fmt.Sprint(tt.in)
+ Swapper(tt.in)(tt.i, tt.j)
+ if !DeepEqual(tt.in, tt.want) {
+ t.Errorf("%d. swapping %v and %v of %v = %v; want %v", i, tt.i, tt.j, inStr, tt.in, tt.want)
+ }
+ }
+}
+
+// TestUnaddressableField tests that the reflect package will not allow
+// a type from another package to be used as a named type with an
+// unexported field.
+//
+// This ensures that unexported fields cannot be modified by other packages.
+func TestUnaddressableField(t *testing.T) {
+ var b Buffer // type defined in reflect, a different package
+ var localBuffer struct {
+ buf []byte
+ }
+ lv := ValueOf(&localBuffer).Elem()
+ rv := ValueOf(b)
+ shouldPanic("Set", func() {
+ lv.Set(rv)
+ })
+}
+
+type Tint int
+
+type Tint2 = Tint
+
+type Talias1 struct {
+ byte
+ uint8
+ int
+ int32
+ rune
+}
+
+type Talias2 struct {
+ Tint
+ Tint2
+}
+
+func TestAliasNames(t *testing.T) {
+ t1 := Talias1{byte: 1, uint8: 2, int: 3, int32: 4, rune: 5}
+ out := fmt.Sprintf("%#v", t1)
+ want := "reflect_test.Talias1{byte:0x1, uint8:0x2, int:3, int32:4, rune:5}"
+ if out != want {
+ t.Errorf("Talias1 print:\nhave: %s\nwant: %s", out, want)
+ }
+
+ t2 := Talias2{Tint: 1, Tint2: 2}
+ out = fmt.Sprintf("%#v", t2)
+ want = "reflect_test.Talias2{Tint:1, Tint2:2}"
+ if out != want {
+ t.Errorf("Talias2 print:\nhave: %s\nwant: %s", out, want)
+ }
+}
+
+func TestIssue22031(t *testing.T) {
+ type s []struct{ C int }
+
+ type t1 struct{ s }
+ type t2 struct{ f s }
+
+ tests := []Value{
+ ValueOf(t1{s{{}}}).Field(0).Index(0).Field(0),
+ ValueOf(t2{s{{}}}).Field(0).Index(0).Field(0),
+ }
+
+ for i, test := range tests {
+ if test.CanSet() {
+ t.Errorf("%d: CanSet: got true, want false", i)
+ }
+ }
+}
+
+type NonExportedFirst int
+
+func (i NonExportedFirst) ΦExported() {}
+func (i NonExportedFirst) nonexported() int { panic("wrong") }
+
+func TestIssue22073(t *testing.T) {
+ m := ValueOf(NonExportedFirst(0)).Method(0)
+
+ if got := m.Type().NumOut(); got != 0 {
+ t.Errorf("NumOut: got %v, want 0", got)
+ }
+
+ // Shouldn't panic.
+ m.Call(nil)
+}
+
+func TestMapIterNonEmptyMap(t *testing.T) {
+ m := map[string]int{"one": 1, "two": 2, "three": 3}
+ iter := ValueOf(m).MapRange()
+ if got, want := iterateToString(iter), `[one: 1, three: 3, two: 2]`; got != want {
+ t.Errorf("iterator returned %s (after sorting), want %s", got, want)
+ }
+}
+
+func TestMapIterNilMap(t *testing.T) {
+ var m map[string]int
+ iter := ValueOf(m).MapRange()
+ if got, want := iterateToString(iter), `[]`; got != want {
+ t.Errorf("non-empty result iteratoring nil map: %s", got)
+ }
+}
+
+func TestMapIterReset(t *testing.T) {
+ iter := new(MapIter)
+
+ // Use of zero iterator should panic.
+ func() {
+ defer func() { recover() }()
+ iter.Next()
+ t.Error("Next did not panic")
+ }()
+
+ // Reset to new Map should work.
+ m := map[string]int{"one": 1, "two": 2, "three": 3}
+ iter.Reset(ValueOf(m))
+ if got, want := iterateToString(iter), `[one: 1, three: 3, two: 2]`; got != want {
+ t.Errorf("iterator returned %s (after sorting), want %s", got, want)
+ }
+
+ // Reset to Zero value should work, but iterating over it should panic.
+ iter.Reset(Value{})
+ func() {
+ defer func() { recover() }()
+ iter.Next()
+ t.Error("Next did not panic")
+ }()
+
+ // Reset to a different Map with different types should work.
+ m2 := map[int]string{1: "one", 2: "two", 3: "three"}
+ iter.Reset(ValueOf(m2))
+ if got, want := iterateToString(iter), `[1: one, 2: two, 3: three]`; got != want {
+ t.Errorf("iterator returned %s (after sorting), want %s", got, want)
+ }
+
+ // Check that Reset, Next, and SetKey/SetValue play nicely together.
+ m3 := map[uint64]uint64{
+ 1 << 0: 1 << 1,
+ 1 << 1: 1 << 2,
+ 1 << 2: 1 << 3,
+ }
+ kv := New(TypeOf(uint64(0))).Elem()
+ for i := 0; i < 5; i++ {
+ var seenk, seenv uint64
+ iter.Reset(ValueOf(m3))
+ for iter.Next() {
+ kv.SetIterKey(iter)
+ seenk ^= kv.Uint()
+ kv.SetIterValue(iter)
+ seenv ^= kv.Uint()
+ }
+ if seenk != 0b111 {
+ t.Errorf("iteration yielded keys %b, want %b", seenk, 0b111)
+ }
+ if seenv != 0b1110 {
+ t.Errorf("iteration yielded values %b, want %b", seenv, 0b1110)
+ }
+ }
+
+ // Reset should not allocate.
+ n := int(testing.AllocsPerRun(10, func() {
+ iter.Reset(ValueOf(m2))
+ iter.Reset(Value{})
+ }))
+ if n > 0 {
+ t.Errorf("MapIter.Reset allocated %d times", n)
+ }
+}
+
+func TestMapIterSafety(t *testing.T) {
+ // Using a zero MapIter causes a panic, but not a crash.
+ func() {
+ defer func() { recover() }()
+ new(MapIter).Key()
+ t.Fatal("Key did not panic")
+ }()
+ func() {
+ defer func() { recover() }()
+ new(MapIter).Value()
+ t.Fatal("Value did not panic")
+ }()
+ func() {
+ defer func() { recover() }()
+ new(MapIter).Next()
+ t.Fatal("Next did not panic")
+ }()
+
+ // Calling Key/Value on a MapIter before Next
+ // causes a panic, but not a crash.
+ var m map[string]int
+ iter := ValueOf(m).MapRange()
+
+ func() {
+ defer func() { recover() }()
+ iter.Key()
+ t.Fatal("Key did not panic")
+ }()
+ func() {
+ defer func() { recover() }()
+ iter.Value()
+ t.Fatal("Value did not panic")
+ }()
+
+ // Calling Next, Key, or Value on an exhausted iterator
+ // causes a panic, but not a crash.
+ iter.Next() // -> false
+ func() {
+ defer func() { recover() }()
+ iter.Key()
+ t.Fatal("Key did not panic")
+ }()
+ func() {
+ defer func() { recover() }()
+ iter.Value()
+ t.Fatal("Value did not panic")
+ }()
+ func() {
+ defer func() { recover() }()
+ iter.Next()
+ t.Fatal("Next did not panic")
+ }()
+}
+
+func TestMapIterNext(t *testing.T) {
+ // The first call to Next should reflect any
+ // insertions to the map since the iterator was created.
+ m := map[string]int{}
+ iter := ValueOf(m).MapRange()
+ m["one"] = 1
+ if got, want := iterateToString(iter), `[one: 1]`; got != want {
+ t.Errorf("iterator returned deleted elements: got %s, want %s", got, want)
+ }
+}
+
+func TestMapIterDelete0(t *testing.T) {
+ // Delete all elements before first iteration.
+ m := map[string]int{"one": 1, "two": 2, "three": 3}
+ iter := ValueOf(m).MapRange()
+ delete(m, "one")
+ delete(m, "two")
+ delete(m, "three")
+ if got, want := iterateToString(iter), `[]`; got != want {
+ t.Errorf("iterator returned deleted elements: got %s, want %s", got, want)
+ }
+}
+
+func TestMapIterDelete1(t *testing.T) {
+ // Delete all elements after first iteration.
+ m := map[string]int{"one": 1, "two": 2, "three": 3}
+ iter := ValueOf(m).MapRange()
+ var got []string
+ for iter.Next() {
+ got = append(got, fmt.Sprint(iter.Key(), iter.Value()))
+ delete(m, "one")
+ delete(m, "two")
+ delete(m, "three")
+ }
+ if len(got) != 1 {
+ t.Errorf("iterator returned wrong number of elements: got %d, want 1", len(got))
+ }
+}
+
+// iterateToString returns the set of elements
+// returned by an iterator in readable form.
+func iterateToString(it *MapIter) string {
+ var got []string
+ for it.Next() {
+ line := fmt.Sprintf("%v: %v", it.Key(), it.Value())
+ got = append(got, line)
+ }
+ sort.Strings(got)
+ return "[" + strings.Join(got, ", ") + "]"
+}
+
+func TestConvertibleTo(t *testing.T) {
+ t1 := ValueOf(example1.MyStruct{}).Type()
+ t2 := ValueOf(example2.MyStruct{}).Type()
+
+ // Shouldn't raise stack overflow
+ if t1.ConvertibleTo(t2) {
+ t.Fatalf("(%s).ConvertibleTo(%s) = true, want false", t1, t2)
+ }
+
+ t3 := ValueOf([]example1.MyStruct{}).Type()
+ t4 := ValueOf([]example2.MyStruct{}).Type()
+
+ if t3.ConvertibleTo(t4) {
+ t.Fatalf("(%s).ConvertibleTo(%s) = true, want false", t3, t4)
+ }
+}
+
+func TestSetIter(t *testing.T) {
+ data := map[string]int{
+ "foo": 1,
+ "bar": 2,
+ "baz": 3,
+ }
+
+ m := ValueOf(data)
+ i := m.MapRange()
+ k := New(TypeOf("")).Elem()
+ v := New(TypeOf(0)).Elem()
+ shouldPanic("Value.SetIterKey called before Next", func() {
+ k.SetIterKey(i)
+ })
+ shouldPanic("Value.SetIterValue called before Next", func() {
+ v.SetIterValue(i)
+ })
+ data2 := map[string]int{}
+ for i.Next() {
+ k.SetIterKey(i)
+ v.SetIterValue(i)
+ data2[k.Interface().(string)] = v.Interface().(int)
+ }
+ if !DeepEqual(data, data2) {
+ t.Errorf("maps not equal, got %v want %v", data2, data)
+ }
+ shouldPanic("Value.SetIterKey called on exhausted iterator", func() {
+ k.SetIterKey(i)
+ })
+ shouldPanic("Value.SetIterValue called on exhausted iterator", func() {
+ v.SetIterValue(i)
+ })
+
+ i.Reset(m)
+ i.Next()
+ shouldPanic("Value.SetIterKey using unaddressable value", func() {
+ ValueOf("").SetIterKey(i)
+ })
+ shouldPanic("Value.SetIterValue using unaddressable value", func() {
+ ValueOf(0).SetIterValue(i)
+ })
+ shouldPanic("value of type string is not assignable to type int", func() {
+ New(TypeOf(0)).Elem().SetIterKey(i)
+ })
+ shouldPanic("value of type int is not assignable to type string", func() {
+ New(TypeOf("")).Elem().SetIterValue(i)
+ })
+
+ // Make sure assignment conversion works.
+ var x any
+ y := ValueOf(&x).Elem()
+ y.SetIterKey(i)
+ if _, ok := data[x.(string)]; !ok {
+ t.Errorf("got key %s which is not in map", x)
+ }
+ y.SetIterValue(i)
+ if x.(int) < 1 || x.(int) > 3 {
+ t.Errorf("got value %d which is not in map", x)
+ }
+
+ // Try some key/value types which are direct interfaces.
+ a := 88
+ b := 99
+ pp := map[*int]*int{
+ &a: &b,
+ }
+ i = ValueOf(pp).MapRange()
+ i.Next()
+ y.SetIterKey(i)
+ if got := *y.Interface().(*int); got != a {
+ t.Errorf("pointer incorrect: got %d want %d", got, a)
+ }
+ y.SetIterValue(i)
+ if got := *y.Interface().(*int); got != b {
+ t.Errorf("pointer incorrect: got %d want %d", got, b)
+ }
+
+ // Make sure we panic assigning from an unexported field.
+ m = ValueOf(struct{ m map[string]int }{data}).Field(0)
+ for iter := m.MapRange(); iter.Next(); {
+ shouldPanic("using value obtained using unexported field", func() {
+ k.SetIterKey(iter)
+ })
+ shouldPanic("using value obtained using unexported field", func() {
+ v.SetIterValue(iter)
+ })
+ }
+}
+
+func TestMethodCallValueCodePtr(t *testing.T) {
+ m := ValueOf(Point{}).Method(1)
+ want := MethodValueCallCodePtr()
+ if got := uintptr(m.UnsafePointer()); got != want {
+ t.Errorf("methodValueCall code pointer mismatched, want: %v, got: %v", want, got)
+ }
+ if got := m.Pointer(); got != want {
+ t.Errorf("methodValueCall code pointer mismatched, want: %v, got: %v", want, got)
+ }
+}
+
+type A struct{}
+type B[T any] struct{}
+
+func TestIssue50208(t *testing.T) {
+ want1 := "B[reflect_test.A]"
+ if got := TypeOf(new(B[A])).Elem().Name(); got != want1 {
+ t.Errorf("name of type parameter mismatched, want:%s, got:%s", want1, got)
+ }
+ want2 := "B[reflect_test.B[reflect_test.A]]"
+ if got := TypeOf(new(B[B[A]])).Elem().Name(); got != want2 {
+ t.Errorf("name of type parameter mismatched, want:%s, got:%s", want2, got)
+ }
+}
+
+func TestNegativeKindString(t *testing.T) {
+ x := -1
+ s := Kind(x).String()
+ want := "kind-1"
+ if s != want {
+ t.Fatalf("Kind(-1).String() = %q, want %q", s, want)
+ }
+}
+
+type (
+ namedBool bool
+ namedBytes []byte
+)
+
+func TestValue_Cap(t *testing.T) {
+ a := &[3]int{1, 2, 3}
+ v := ValueOf(a)
+ if v.Cap() != cap(a) {
+ t.Errorf("Cap = %d want %d", v.Cap(), cap(a))
+ }
+
+ a = nil
+ v = ValueOf(a)
+ if v.Cap() != cap(a) {
+ t.Errorf("Cap = %d want %d", v.Cap(), cap(a))
+ }
+
+ getError := func(f func()) (errorStr string) {
+ defer func() {
+ e := recover()
+ if str, ok := e.(string); ok {
+ errorStr = str
+ }
+ }()
+ f()
+ return
+ }
+ e := getError(func() {
+ var ptr *int
+ ValueOf(ptr).Cap()
+ })
+ wantStr := "reflect: call of reflect.Value.Cap on ptr to non-array Value"
+ if e != wantStr {
+ t.Errorf("error is %q, want %q", e, wantStr)
+ }
+}
+
+func TestValue_Len(t *testing.T) {
+ a := &[3]int{1, 2, 3}
+ v := ValueOf(a)
+ if v.Len() != len(a) {
+ t.Errorf("Len = %d want %d", v.Len(), len(a))
+ }
+
+ a = nil
+ v = ValueOf(a)
+ if v.Len() != len(a) {
+ t.Errorf("Len = %d want %d", v.Len(), len(a))
+ }
+
+ getError := func(f func()) (errorStr string) {
+ defer func() {
+ e := recover()
+ if str, ok := e.(string); ok {
+ errorStr = str
+ }
+ }()
+ f()
+ return
+ }
+ e := getError(func() {
+ var ptr *int
+ ValueOf(ptr).Len()
+ })
+ wantStr := "reflect: call of reflect.Value.Len on ptr to non-array Value"
+ if e != wantStr {
+ t.Errorf("error is %q, want %q", e, wantStr)
+ }
+}
+
+func TestValue_Comparable(t *testing.T) {
+ var a int
+ var s []int
+ var i interface{} = a
+ var iSlice interface{} = s
+ var iArrayFalse interface{} = [2]interface{}{1, map[int]int{}}
+ var iArrayTrue interface{} = [2]interface{}{1, struct{ I interface{} }{1}}
+ var testcases = []struct {
+ value Value
+ comparable bool
+ deref bool
+ }{
+ {
+ ValueOf(32),
+ true,
+ false,
+ },
+ {
+ ValueOf(int8(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(int16(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(int32(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(int64(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(uint8(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(uint16(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(uint32(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(uint64(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(float32(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(float64(1)),
+ true,
+ false,
+ },
+ {
+ ValueOf(complex(float32(1), float32(1))),
+ true,
+ false,
+ },
+ {
+ ValueOf(complex(float64(1), float64(1))),
+ true,
+ false,
+ },
+ {
+ ValueOf("abc"),
+ true,
+ false,
+ },
+ {
+ ValueOf(true),
+ true,
+ false,
+ },
+ {
+ ValueOf(map[int]int{}),
+ false,
+ false,
+ },
+ {
+ ValueOf([]int{}),
+ false,
+ false,
+ },
+ {
+ Value{},
+ false,
+ false,
+ },
+ {
+ ValueOf(&a),
+ true,
+ false,
+ },
+ {
+ ValueOf(&s),
+ true,
+ false,
+ },
+ {
+ ValueOf(&i),
+ true,
+ true,
+ },
+ {
+ ValueOf(&iSlice),
+ false,
+ true,
+ },
+ {
+ ValueOf([2]int{}),
+ true,
+ false,
+ },
+ {
+ ValueOf([2]map[int]int{}),
+ false,
+ false,
+ },
+ {
+ ValueOf([0]func(){}),
+ false,
+ false,
+ },
+ {
+ ValueOf([2]struct{ I interface{} }{{1}, {1}}),
+ true,
+ false,
+ },
+ {
+ ValueOf([2]struct{ I interface{} }{{[]int{}}, {1}}),
+ false,
+ false,
+ },
+ {
+ ValueOf([2]interface{}{1, struct{ I int }{1}}),
+ true,
+ false,
+ },
+ {
+ ValueOf([2]interface{}{[1]interface{}{map[int]int{}}, struct{ I int }{1}}),
+ false,
+ false,
+ },
+ {
+ ValueOf(&iArrayFalse),
+ false,
+ true,
+ },
+ {
+ ValueOf(&iArrayTrue),
+ true,
+ true,
+ },
+ }
+
+ for _, cas := range testcases {
+ v := cas.value
+ if cas.deref {
+ v = v.Elem()
+ }
+ got := v.Comparable()
+ if got != cas.comparable {
+ t.Errorf("%T.Comparable = %t, want %t", v, got, cas.comparable)
+ }
+ }
+}
+
+type ValueEqualTest struct {
+ v, u any
+ eq bool
+ vDeref, uDeref bool
+}
+
+var equalI interface{} = 1
+var equalSlice interface{} = []int{1}
+var nilInterface interface{}
+var mapInterface interface{} = map[int]int{}
+
+var valueEqualTests = []ValueEqualTest{
+ {
+ Value{}, Value{},
+ true,
+ false, false,
+ },
+ {
+ true, true,
+ true,
+ false, false,
+ },
+ {
+ 1, 1,
+ true,
+ false, false,
+ },
+ {
+ int8(1), int8(1),
+ true,
+ false, false,
+ },
+ {
+ int16(1), int16(1),
+ true,
+ false, false,
+ },
+ {
+ int32(1), int32(1),
+ true,
+ false, false,
+ },
+ {
+ int64(1), int64(1),
+ true,
+ false, false,
+ },
+ {
+ uint(1), uint(1),
+ true,
+ false, false,
+ },
+ {
+ uint8(1), uint8(1),
+ true,
+ false, false,
+ },
+ {
+ uint16(1), uint16(1),
+ true,
+ false, false,
+ },
+ {
+ uint32(1), uint32(1),
+ true,
+ false, false,
+ },
+ {
+ uint64(1), uint64(1),
+ true,
+ false, false,
+ },
+ {
+ float32(1), float32(1),
+ true,
+ false, false,
+ },
+ {
+ float64(1), float64(1),
+ true,
+ false, false,
+ },
+ {
+ complex(1, 1), complex(1, 1),
+ true,
+ false, false,
+ },
+ {
+ complex128(1 + 1i), complex128(1 + 1i),
+ true,
+ false, false,
+ },
+ {
+ func() {}, nil,
+ false,
+ false, false,
+ },
+ {
+ &equalI, 1,
+ true,
+ true, false,
+ },
+ {
+ (chan int)(nil), nil,
+ false,
+ false, false,
+ },
+ {
+ (chan int)(nil), (chan int)(nil),
+ true,
+ false, false,
+ },
+ {
+ &equalI, &equalI,
+ true,
+ false, false,
+ },
+ {
+ struct{ i int }{1}, struct{ i int }{1},
+ true,
+ false, false,
+ },
+ {
+ struct{ i int }{1}, struct{ i int }{2},
+ false,
+ false, false,
+ },
+ {
+ &nilInterface, &nilInterface,
+ true,
+ true, true,
+ },
+ {
+ 1, ValueOf(struct{ i int }{1}).Field(0),
+ true,
+ false, false,
+ },
+}
+
+func TestValue_Equal(t *testing.T) {
+ for _, test := range valueEqualTests {
+ var v, u Value
+ if vv, ok := test.v.(Value); ok {
+ v = vv
+ } else {
+ v = ValueOf(test.v)
+ }
+
+ if uu, ok := test.u.(Value); ok {
+ u = uu
+ } else {
+ u = ValueOf(test.u)
+ }
+ if test.vDeref {
+ v = v.Elem()
+ }
+
+ if test.uDeref {
+ u = u.Elem()
+ }
+
+ if r := v.Equal(u); r != test.eq {
+ t.Errorf("%s == %s got %t, want %t", v.Type(), u.Type(), r, test.eq)
+ }
+ }
+}
+
+func TestValue_EqualNonComparable(t *testing.T) {
+ var invalid = Value{} // ValueOf(nil)
+ var values = []Value{
+ // Value of slice is non-comparable.
+ ValueOf([]int(nil)),
+ ValueOf(([]int{})),
+
+ // Value of map is non-comparable.
+ ValueOf(map[int]int(nil)),
+ ValueOf((map[int]int{})),
+
+ // Value of func is non-comparable.
+ ValueOf(((func())(nil))),
+ ValueOf(func() {}),
+
+ // Value of struct is non-comparable because of non-comparable elements.
+ ValueOf((NonComparableStruct{})),
+
+ // Value of array is non-comparable because of non-comparable elements.
+ ValueOf([0]map[int]int{}),
+ ValueOf([0]func(){}),
+ ValueOf(([1]struct{ I interface{} }{{[]int{}}})),
+ ValueOf(([1]interface{}{[1]interface{}{map[int]int{}}})),
+ }
+ for _, value := range values {
+ // Panic when reflect.Value.Equal using two valid non-comparable values.
+ shouldPanic("are not comparable", func() { value.Equal(value) })
+
+ // If one is non-comparable and the other is invalid, the expected result is always false.
+ if r := value.Equal(invalid); r != false {
+ t.Errorf("%s == invalid got %t, want false", value.Type(), r)
+ }
+ }
+}
+
+func TestInitFuncTypes(t *testing.T) {
+ n := 100
+ var wg sync.WaitGroup
+
+ wg.Add(n)
+ for i := 0; i < n; i++ {
+ go func() {
+ defer wg.Done()
+ ipT := TypeOf(net.IP{})
+ for i := 0; i < ipT.NumMethod(); i++ {
+ _ = ipT.Method(i)
+ }
+ }()
+ }
+ wg.Wait()
+}