diff options
Diffstat (limited to 'src/reflect/all_test.go')
-rw-r--r-- | src/reflect/all_test.go | 8362 |
1 files changed, 8362 insertions, 0 deletions
diff --git a/src/reflect/all_test.go b/src/reflect/all_test.go new file mode 100644 index 0000000..28a7640 --- /dev/null +++ b/src/reflect/all_test.go @@ -0,0 +1,8362 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package reflect_test + +import ( + "bytes" + "encoding/base64" + "flag" + "fmt" + "go/token" + "internal/goarch" + "internal/testenv" + "io" + "math" + "math/rand" + "net" + "os" + . "reflect" + "reflect/internal/example1" + "reflect/internal/example2" + "runtime" + "sort" + "strconv" + "strings" + "sync" + "sync/atomic" + "testing" + "time" + "unsafe" +) + +var sink any + +func TestBool(t *testing.T) { + v := ValueOf(true) + if v.Bool() != true { + t.Fatal("ValueOf(true).Bool() = false") + } +} + +type integer int +type T struct { + a int + b float64 + c string + d *int +} + +var _ = T{} == T{} // tests depend on T being comparable + +type pair struct { + i any + s string +} + +func assert(t *testing.T, s, want string) { + if s != want { + t.Errorf("have %#q want %#q", s, want) + } +} + +var typeTests = []pair{ + {struct{ x int }{}, "int"}, + {struct{ x int8 }{}, "int8"}, + {struct{ x int16 }{}, "int16"}, + {struct{ x int32 }{}, "int32"}, + {struct{ x int64 }{}, "int64"}, + {struct{ x uint }{}, "uint"}, + {struct{ x uint8 }{}, "uint8"}, + {struct{ x uint16 }{}, "uint16"}, + {struct{ x uint32 }{}, "uint32"}, + {struct{ x uint64 }{}, "uint64"}, + {struct{ x float32 }{}, "float32"}, + {struct{ x float64 }{}, "float64"}, + {struct{ x int8 }{}, "int8"}, + {struct{ x (**int8) }{}, "**int8"}, + {struct{ x (**integer) }{}, "**reflect_test.integer"}, + {struct{ x ([32]int32) }{}, "[32]int32"}, + {struct{ x ([]int8) }{}, "[]int8"}, + {struct{ x (map[string]int32) }{}, "map[string]int32"}, + {struct{ x (chan<- string) }{}, "chan<- string"}, + {struct{ x (chan<- chan string) }{}, "chan<- chan string"}, + {struct{ x (chan<- <-chan string) }{}, "chan<- <-chan string"}, + {struct{ x (<-chan <-chan string) }{}, "<-chan <-chan string"}, + {struct{ x (chan (<-chan string)) }{}, "chan (<-chan string)"}, + {struct { + x struct { + c chan *int32 + d float32 + } + }{}, + "struct { c chan *int32; d float32 }", + }, + {struct{ x (func(a int8, b int32)) }{}, "func(int8, int32)"}, + {struct { + x struct { + c func(chan *integer, *int8) + } + }{}, + "struct { c func(chan *reflect_test.integer, *int8) }", + }, + {struct { + x struct { + a int8 + b int32 + } + }{}, + "struct { a int8; b int32 }", + }, + {struct { + x struct { + a int8 + b int8 + c int32 + } + }{}, + "struct { a int8; b int8; c int32 }", + }, + {struct { + x struct { + a int8 + b int8 + c int8 + d int32 + } + }{}, + "struct { a int8; b int8; c int8; d int32 }", + }, + {struct { + x struct { + a int8 + b int8 + c int8 + d int8 + e int32 + } + }{}, + "struct { a int8; b int8; c int8; d int8; e int32 }", + }, + {struct { + x struct { + a int8 + b int8 + c int8 + d int8 + e int8 + f int32 + } + }{}, + "struct { a int8; b int8; c int8; d int8; e int8; f int32 }", + }, + {struct { + x struct { + a int8 `reflect:"hi there"` + } + }{}, + `struct { a int8 "reflect:\"hi there\"" }`, + }, + {struct { + x struct { + a int8 `reflect:"hi \x00there\t\n\"\\"` + } + }{}, + `struct { a int8 "reflect:\"hi \\x00there\\t\\n\\\"\\\\\"" }`, + }, + {struct { + x struct { + f func(args ...int) + } + }{}, + "struct { f func(...int) }", + }, + {struct { + x (interface { + a(func(func(int) int) func(func(int)) int) + b() + }) + }{}, + "interface { reflect_test.a(func(func(int) int) func(func(int)) int); reflect_test.b() }", + }, + {struct { + x struct { + int32 + int64 + } + }{}, + "struct { int32; int64 }", + }, +} + +var valueTests = []pair{ + {new(int), "132"}, + {new(int8), "8"}, + {new(int16), "16"}, + {new(int32), "32"}, + {new(int64), "64"}, + {new(uint), "132"}, + {new(uint8), "8"}, + {new(uint16), "16"}, + {new(uint32), "32"}, + {new(uint64), "64"}, + {new(float32), "256.25"}, + {new(float64), "512.125"}, + {new(complex64), "532.125+10i"}, + {new(complex128), "564.25+1i"}, + {new(string), "stringy cheese"}, + {new(bool), "true"}, + {new(*int8), "*int8(0)"}, + {new(**int8), "**int8(0)"}, + {new([5]int32), "[5]int32{0, 0, 0, 0, 0}"}, + {new(**integer), "**reflect_test.integer(0)"}, + {new(map[string]int32), "map[string]int32{<can't iterate on maps>}"}, + {new(chan<- string), "chan<- string"}, + {new(func(a int8, b int32)), "func(int8, int32)(0)"}, + {new(struct { + c chan *int32 + d float32 + }), + "struct { c chan *int32; d float32 }{chan *int32, 0}", + }, + {new(struct{ c func(chan *integer, *int8) }), + "struct { c func(chan *reflect_test.integer, *int8) }{func(chan *reflect_test.integer, *int8)(0)}", + }, + {new(struct { + a int8 + b int32 + }), + "struct { a int8; b int32 }{0, 0}", + }, + {new(struct { + a int8 + b int8 + c int32 + }), + "struct { a int8; b int8; c int32 }{0, 0, 0}", + }, +} + +func testType(t *testing.T, i int, typ Type, want string) { + s := typ.String() + if s != want { + t.Errorf("#%d: have %#q, want %#q", i, s, want) + } +} + +func TestTypes(t *testing.T) { + for i, tt := range typeTests { + testType(t, i, ValueOf(tt.i).Field(0).Type(), tt.s) + } +} + +func TestSet(t *testing.T) { + for i, tt := range valueTests { + v := ValueOf(tt.i) + v = v.Elem() + switch v.Kind() { + case Int: + v.SetInt(132) + case Int8: + v.SetInt(8) + case Int16: + v.SetInt(16) + case Int32: + v.SetInt(32) + case Int64: + v.SetInt(64) + case Uint: + v.SetUint(132) + case Uint8: + v.SetUint(8) + case Uint16: + v.SetUint(16) + case Uint32: + v.SetUint(32) + case Uint64: + v.SetUint(64) + case Float32: + v.SetFloat(256.25) + case Float64: + v.SetFloat(512.125) + case Complex64: + v.SetComplex(532.125 + 10i) + case Complex128: + v.SetComplex(564.25 + 1i) + case String: + v.SetString("stringy cheese") + case Bool: + v.SetBool(true) + } + s := valueToString(v) + if s != tt.s { + t.Errorf("#%d: have %#q, want %#q", i, s, tt.s) + } + } +} + +func TestSetValue(t *testing.T) { + for i, tt := range valueTests { + v := ValueOf(tt.i).Elem() + switch v.Kind() { + case Int: + v.Set(ValueOf(int(132))) + case Int8: + v.Set(ValueOf(int8(8))) + case Int16: + v.Set(ValueOf(int16(16))) + case Int32: + v.Set(ValueOf(int32(32))) + case Int64: + v.Set(ValueOf(int64(64))) + case Uint: + v.Set(ValueOf(uint(132))) + case Uint8: + v.Set(ValueOf(uint8(8))) + case Uint16: + v.Set(ValueOf(uint16(16))) + case Uint32: + v.Set(ValueOf(uint32(32))) + case Uint64: + v.Set(ValueOf(uint64(64))) + case Float32: + v.Set(ValueOf(float32(256.25))) + case Float64: + v.Set(ValueOf(512.125)) + case Complex64: + v.Set(ValueOf(complex64(532.125 + 10i))) + case Complex128: + v.Set(ValueOf(complex128(564.25 + 1i))) + case String: + v.Set(ValueOf("stringy cheese")) + case Bool: + v.Set(ValueOf(true)) + } + s := valueToString(v) + if s != tt.s { + t.Errorf("#%d: have %#q, want %#q", i, s, tt.s) + } + } +} + +func TestMapIterSet(t *testing.T) { + m := make(map[string]any, len(valueTests)) + for _, tt := range valueTests { + m[tt.s] = tt.i + } + v := ValueOf(m) + + k := New(v.Type().Key()).Elem() + e := New(v.Type().Elem()).Elem() + + iter := v.MapRange() + for iter.Next() { + k.SetIterKey(iter) + e.SetIterValue(iter) + want := m[k.String()] + got := e.Interface() + if got != want { + t.Errorf("%q: want (%T) %v, got (%T) %v", k.String(), want, want, got, got) + } + if setkey, key := valueToString(k), valueToString(iter.Key()); setkey != key { + t.Errorf("MapIter.Key() = %q, MapIter.SetKey() = %q", key, setkey) + } + if setval, val := valueToString(e), valueToString(iter.Value()); setval != val { + t.Errorf("MapIter.Value() = %q, MapIter.SetValue() = %q", val, setval) + } + } + + if testenv.OptimizationOff() { + return // no inlining with the noopt builder + } + + got := int(testing.AllocsPerRun(10, func() { + iter := v.MapRange() + for iter.Next() { + k.SetIterKey(iter) + e.SetIterValue(iter) + } + })) + // Calling MapRange should not allocate even though it returns a *MapIter. + // The function is inlineable, so if the local usage does not escape + // the *MapIter, it can remain stack allocated. + want := 0 + if got != want { + t.Errorf("wanted %d alloc, got %d", want, got) + } +} + +func TestCanIntUintFloatComplex(t *testing.T) { + type integer int + type uinteger uint + type float float64 + type complex complex128 + + var ops = [...]string{"CanInt", "CanUint", "CanFloat", "CanComplex"} + + var testCases = []struct { + i any + want [4]bool + }{ + // signed integer + {132, [...]bool{true, false, false, false}}, + {int8(8), [...]bool{true, false, false, false}}, + {int16(16), [...]bool{true, false, false, false}}, + {int32(32), [...]bool{true, false, false, false}}, + {int64(64), [...]bool{true, false, false, false}}, + // unsigned integer + {uint(132), [...]bool{false, true, false, false}}, + {uint8(8), [...]bool{false, true, false, false}}, + {uint16(16), [...]bool{false, true, false, false}}, + {uint32(32), [...]bool{false, true, false, false}}, + {uint64(64), [...]bool{false, true, false, false}}, + {uintptr(0xABCD), [...]bool{false, true, false, false}}, + // floating-point + {float32(256.25), [...]bool{false, false, true, false}}, + {float64(512.125), [...]bool{false, false, true, false}}, + // complex + {complex64(532.125 + 10i), [...]bool{false, false, false, true}}, + {complex128(564.25 + 1i), [...]bool{false, false, false, true}}, + // underlying + {integer(-132), [...]bool{true, false, false, false}}, + {uinteger(132), [...]bool{false, true, false, false}}, + {float(256.25), [...]bool{false, false, true, false}}, + {complex(532.125 + 10i), [...]bool{false, false, false, true}}, + // not-acceptable + {"hello world", [...]bool{false, false, false, false}}, + {new(int), [...]bool{false, false, false, false}}, + {new(uint), [...]bool{false, false, false, false}}, + {new(float64), [...]bool{false, false, false, false}}, + {new(complex64), [...]bool{false, false, false, false}}, + {new([5]int), [...]bool{false, false, false, false}}, + {new(integer), [...]bool{false, false, false, false}}, + {new(map[int]int), [...]bool{false, false, false, false}}, + {new(chan<- int), [...]bool{false, false, false, false}}, + {new(func(a int8)), [...]bool{false, false, false, false}}, + {new(struct{ i int }), [...]bool{false, false, false, false}}, + } + + for i, tc := range testCases { + v := ValueOf(tc.i) + got := [...]bool{v.CanInt(), v.CanUint(), v.CanFloat(), v.CanComplex()} + + for j := range tc.want { + if got[j] != tc.want[j] { + t.Errorf( + "#%d: v.%s() returned %t for type %T, want %t", + i, + ops[j], + got[j], + tc.i, + tc.want[j], + ) + } + } + } +} + +func TestCanSetField(t *testing.T) { + type embed struct{ x, X int } + type Embed struct{ x, X int } + type S1 struct { + embed + x, X int + } + type S2 struct { + *embed + x, X int + } + type S3 struct { + Embed + x, X int + } + type S4 struct { + *Embed + x, X int + } + + type testCase struct { + // -1 means Addr().Elem() of current value + index []int + canSet bool + } + tests := []struct { + val Value + cases []testCase + }{{ + val: ValueOf(&S1{}), + cases: []testCase{ + {[]int{0}, false}, + {[]int{0, -1}, false}, + {[]int{0, 0}, false}, + {[]int{0, 0, -1}, false}, + {[]int{0, -1, 0}, false}, + {[]int{0, -1, 0, -1}, false}, + {[]int{0, 1}, true}, + {[]int{0, 1, -1}, true}, + {[]int{0, -1, 1}, true}, + {[]int{0, -1, 1, -1}, true}, + {[]int{1}, false}, + {[]int{1, -1}, false}, + {[]int{2}, true}, + {[]int{2, -1}, true}, + }, + }, { + val: ValueOf(&S2{embed: &embed{}}), + cases: []testCase{ + {[]int{0}, false}, + {[]int{0, -1}, false}, + {[]int{0, 0}, false}, + {[]int{0, 0, -1}, false}, + {[]int{0, -1, 0}, false}, + {[]int{0, -1, 0, -1}, false}, + {[]int{0, 1}, true}, + {[]int{0, 1, -1}, true}, + {[]int{0, -1, 1}, true}, + {[]int{0, -1, 1, -1}, true}, + {[]int{1}, false}, + {[]int{2}, true}, + }, + }, { + val: ValueOf(&S3{}), + cases: []testCase{ + {[]int{0}, true}, + {[]int{0, -1}, true}, + {[]int{0, 0}, false}, + {[]int{0, 0, -1}, false}, + {[]int{0, -1, 0}, false}, + {[]int{0, -1, 0, -1}, false}, + {[]int{0, 1}, true}, + {[]int{0, 1, -1}, true}, + {[]int{0, -1, 1}, true}, + {[]int{0, -1, 1, -1}, true}, + {[]int{1}, false}, + {[]int{2}, true}, + }, + }, { + val: ValueOf(&S4{Embed: &Embed{}}), + cases: []testCase{ + {[]int{0}, true}, + {[]int{0, -1}, true}, + {[]int{0, 0}, false}, + {[]int{0, 0, -1}, false}, + {[]int{0, -1, 0}, false}, + {[]int{0, -1, 0, -1}, false}, + {[]int{0, 1}, true}, + {[]int{0, 1, -1}, true}, + {[]int{0, -1, 1}, true}, + {[]int{0, -1, 1, -1}, true}, + {[]int{1}, false}, + {[]int{2}, true}, + }, + }} + + for _, tt := range tests { + t.Run(tt.val.Type().Name(), func(t *testing.T) { + for _, tc := range tt.cases { + f := tt.val + for _, i := range tc.index { + if f.Kind() == Pointer { + f = f.Elem() + } + if i == -1 { + f = f.Addr().Elem() + } else { + f = f.Field(i) + } + } + if got := f.CanSet(); got != tc.canSet { + t.Errorf("CanSet() = %v, want %v", got, tc.canSet) + } + } + }) + } +} + +var _i = 7 + +var valueToStringTests = []pair{ + {123, "123"}, + {123.5, "123.5"}, + {byte(123), "123"}, + {"abc", "abc"}, + {T{123, 456.75, "hello", &_i}, "reflect_test.T{123, 456.75, hello, *int(&7)}"}, + {new(chan *T), "*chan *reflect_test.T(&chan *reflect_test.T)"}, + {[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"}, + {&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[10]int(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"}, + {[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"}, + {&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[]int(&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"}, +} + +func TestValueToString(t *testing.T) { + for i, test := range valueToStringTests { + s := valueToString(ValueOf(test.i)) + if s != test.s { + t.Errorf("#%d: have %#q, want %#q", i, s, test.s) + } + } +} + +func TestArrayElemSet(t *testing.T) { + v := ValueOf(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}).Elem() + v.Index(4).SetInt(123) + s := valueToString(v) + const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}" + if s != want { + t.Errorf("[10]int: have %#q want %#q", s, want) + } + + v = ValueOf([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) + v.Index(4).SetInt(123) + s = valueToString(v) + const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}" + if s != want1 { + t.Errorf("[]int: have %#q want %#q", s, want1) + } +} + +func TestPtrPointTo(t *testing.T) { + var ip *int32 + var i int32 = 1234 + vip := ValueOf(&ip) + vi := ValueOf(&i).Elem() + vip.Elem().Set(vi.Addr()) + if *ip != 1234 { + t.Errorf("got %d, want 1234", *ip) + } + + ip = nil + vp := ValueOf(&ip).Elem() + vp.Set(Zero(vp.Type())) + if ip != nil { + t.Errorf("got non-nil (%p), want nil", ip) + } +} + +func TestPtrSetNil(t *testing.T) { + var i int32 = 1234 + ip := &i + vip := ValueOf(&ip) + vip.Elem().Set(Zero(vip.Elem().Type())) + if ip != nil { + t.Errorf("got non-nil (%d), want nil", *ip) + } +} + +func TestMapSetNil(t *testing.T) { + m := make(map[string]int) + vm := ValueOf(&m) + vm.Elem().Set(Zero(vm.Elem().Type())) + if m != nil { + t.Errorf("got non-nil (%p), want nil", m) + } +} + +func TestAll(t *testing.T) { + testType(t, 1, TypeOf((int8)(0)), "int8") + testType(t, 2, TypeOf((*int8)(nil)).Elem(), "int8") + + typ := TypeOf((*struct { + c chan *int32 + d float32 + })(nil)) + testType(t, 3, typ, "*struct { c chan *int32; d float32 }") + etyp := typ.Elem() + testType(t, 4, etyp, "struct { c chan *int32; d float32 }") + styp := etyp + f := styp.Field(0) + testType(t, 5, f.Type, "chan *int32") + + f, present := styp.FieldByName("d") + if !present { + t.Errorf("FieldByName says present field is absent") + } + testType(t, 6, f.Type, "float32") + + f, present = styp.FieldByName("absent") + if present { + t.Errorf("FieldByName says absent field is present") + } + + typ = TypeOf([32]int32{}) + testType(t, 7, typ, "[32]int32") + testType(t, 8, typ.Elem(), "int32") + + typ = TypeOf((map[string]*int32)(nil)) + testType(t, 9, typ, "map[string]*int32") + mtyp := typ + testType(t, 10, mtyp.Key(), "string") + testType(t, 11, mtyp.Elem(), "*int32") + + typ = TypeOf((chan<- string)(nil)) + testType(t, 12, typ, "chan<- string") + testType(t, 13, typ.Elem(), "string") + + // make sure tag strings are not part of element type + typ = TypeOf(struct { + d []uint32 `reflect:"TAG"` + }{}).Field(0).Type + testType(t, 14, typ, "[]uint32") +} + +func TestInterfaceGet(t *testing.T) { + var inter struct { + E any + } + inter.E = 123.456 + v1 := ValueOf(&inter) + v2 := v1.Elem().Field(0) + assert(t, v2.Type().String(), "interface {}") + i2 := v2.Interface() + v3 := ValueOf(i2) + assert(t, v3.Type().String(), "float64") +} + +func TestInterfaceValue(t *testing.T) { + var inter struct { + E any + } + inter.E = 123.456 + v1 := ValueOf(&inter) + v2 := v1.Elem().Field(0) + assert(t, v2.Type().String(), "interface {}") + v3 := v2.Elem() + assert(t, v3.Type().String(), "float64") + + i3 := v2.Interface() + if _, ok := i3.(float64); !ok { + t.Error("v2.Interface() did not return float64, got ", TypeOf(i3)) + } +} + +func TestFunctionValue(t *testing.T) { + var x any = func() {} + v := ValueOf(x) + if fmt.Sprint(v.Interface()) != fmt.Sprint(x) { + t.Fatalf("TestFunction returned wrong pointer") + } + assert(t, v.Type().String(), "func()") +} + +func TestGrow(t *testing.T) { + v := ValueOf([]int(nil)) + shouldPanic("reflect.Value.Grow using unaddressable value", func() { v.Grow(0) }) + v = ValueOf(new([]int)).Elem() + v.Grow(0) + if !v.IsNil() { + t.Errorf("v.Grow(0) should still be nil") + } + v.Grow(1) + if v.Cap() == 0 { + t.Errorf("v.Cap = %v, want non-zero", v.Cap()) + } + want := v.UnsafePointer() + v.Grow(1) + got := v.UnsafePointer() + if got != want { + t.Errorf("noop v.Grow should not change pointers") + } + + t.Run("Append", func(t *testing.T) { + var got, want []T + v := ValueOf(&got).Elem() + appendValue := func(vt T) { + v.Grow(1) + v.SetLen(v.Len() + 1) + v.Index(v.Len() - 1).Set(ValueOf(vt)) + } + for i := 0; i < 10; i++ { + vt := T{i, float64(i), strconv.Itoa(i), &i} + appendValue(vt) + want = append(want, vt) + } + if !DeepEqual(got, want) { + t.Errorf("value mismatch:\ngot %v\nwant %v", got, want) + } + }) + + t.Run("Rate", func(t *testing.T) { + var b []byte + v := ValueOf(new([]byte)).Elem() + for i := 0; i < 10; i++ { + b = append(b[:cap(b)], make([]byte, 1)...) + v.SetLen(v.Cap()) + v.Grow(1) + if v.Cap() != cap(b) { + t.Errorf("v.Cap = %v, want %v", v.Cap(), cap(b)) + } + } + }) + + t.Run("ZeroCapacity", func(t *testing.T) { + for i := 0; i < 10; i++ { + v := ValueOf(new([]byte)).Elem() + v.Grow(61) + b := v.Bytes() + b = b[:cap(b)] + for i, c := range b { + if c != 0 { + t.Fatalf("Value.Bytes[%d] = 0x%02x, want 0x00", i, c) + } + b[i] = 0xff + } + runtime.GC() + } + }) +} + +var appendTests = []struct { + orig, extra []int +}{ + {nil, nil}, + {[]int{}, nil}, + {nil, []int{}}, + {[]int{}, []int{}}, + {nil, []int{22}}, + {[]int{}, []int{22}}, + {make([]int, 2, 4), nil}, + {make([]int, 2, 4), []int{}}, + {make([]int, 2, 4), []int{22}}, + {make([]int, 2, 4), []int{22, 33, 44}}, +} + +func TestAppend(t *testing.T) { + for i, test := range appendTests { + origLen, extraLen := len(test.orig), len(test.extra) + want := append(test.orig, test.extra...) + // Convert extra from []int to []Value. + e0 := make([]Value, len(test.extra)) + for j, e := range test.extra { + e0[j] = ValueOf(e) + } + // Convert extra from []int to *SliceValue. + e1 := ValueOf(test.extra) + + // Test Append. + a0 := ValueOf(&test.orig).Elem() + have0 := Append(a0, e0...) + if have0.CanAddr() { + t.Errorf("Append #%d: have slice should not be addressable", i) + } + if !DeepEqual(have0.Interface(), want) { + t.Errorf("Append #%d: have %v, want %v (%p %p)", i, have0, want, test.orig, have0.Interface()) + } + // Check that the orig and extra slices were not modified. + if a0.Len() != len(test.orig) { + t.Errorf("Append #%d: a0.Len: have %d, want %d", i, a0.Len(), origLen) + } + if len(test.orig) != origLen { + t.Errorf("Append #%d origLen: have %v, want %v", i, len(test.orig), origLen) + } + if len(test.extra) != extraLen { + t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen) + } + + // Test AppendSlice. + a1 := ValueOf(&test.orig).Elem() + have1 := AppendSlice(a1, e1) + if have1.CanAddr() { + t.Errorf("AppendSlice #%d: have slice should not be addressable", i) + } + if !DeepEqual(have1.Interface(), want) { + t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want) + } + // Check that the orig and extra slices were not modified. + if a1.Len() != len(test.orig) { + t.Errorf("AppendSlice #%d: a1.Len: have %d, want %d", i, a0.Len(), origLen) + } + if len(test.orig) != origLen { + t.Errorf("AppendSlice #%d origLen: have %v, want %v", i, len(test.orig), origLen) + } + if len(test.extra) != extraLen { + t.Errorf("AppendSlice #%d extraLen: have %v, want %v", i, len(test.extra), extraLen) + } + + // Test Append and AppendSlice with unexported value. + ax := ValueOf(struct{ x []int }{test.orig}).Field(0) + shouldPanic("using unexported field", func() { Append(ax, e0...) }) + shouldPanic("using unexported field", func() { AppendSlice(ax, e1) }) + } +} + +func TestCopy(t *testing.T) { + a := []int{1, 2, 3, 4, 10, 9, 8, 7} + b := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44} + c := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44} + for i := 0; i < len(b); i++ { + if b[i] != c[i] { + t.Fatalf("b != c before test") + } + } + a1 := a + b1 := b + aa := ValueOf(&a1).Elem() + ab := ValueOf(&b1).Elem() + for tocopy := 1; tocopy <= 7; tocopy++ { + aa.SetLen(tocopy) + Copy(ab, aa) + aa.SetLen(8) + for i := 0; i < tocopy; i++ { + if a[i] != b[i] { + t.Errorf("(i) tocopy=%d a[%d]=%d, b[%d]=%d", + tocopy, i, a[i], i, b[i]) + } + } + for i := tocopy; i < len(b); i++ { + if b[i] != c[i] { + if i < len(a) { + t.Errorf("(ii) tocopy=%d a[%d]=%d, b[%d]=%d, c[%d]=%d", + tocopy, i, a[i], i, b[i], i, c[i]) + } else { + t.Errorf("(iii) tocopy=%d b[%d]=%d, c[%d]=%d", + tocopy, i, b[i], i, c[i]) + } + } else { + t.Logf("tocopy=%d elem %d is okay\n", tocopy, i) + } + } + } +} + +func TestCopyString(t *testing.T) { + t.Run("Slice", func(t *testing.T) { + s := bytes.Repeat([]byte{'_'}, 8) + val := ValueOf(s) + + n := Copy(val, ValueOf("")) + if expecting := []byte("________"); n != 0 || !bytes.Equal(s, expecting) { + t.Errorf("got n = %d, s = %s, expecting n = 0, s = %s", n, s, expecting) + } + + n = Copy(val, ValueOf("hello")) + if expecting := []byte("hello___"); n != 5 || !bytes.Equal(s, expecting) { + t.Errorf("got n = %d, s = %s, expecting n = 5, s = %s", n, s, expecting) + } + + n = Copy(val, ValueOf("helloworld")) + if expecting := []byte("hellowor"); n != 8 || !bytes.Equal(s, expecting) { + t.Errorf("got n = %d, s = %s, expecting n = 8, s = %s", n, s, expecting) + } + }) + t.Run("Array", func(t *testing.T) { + s := [...]byte{'_', '_', '_', '_', '_', '_', '_', '_'} + val := ValueOf(&s).Elem() + + n := Copy(val, ValueOf("")) + if expecting := []byte("________"); n != 0 || !bytes.Equal(s[:], expecting) { + t.Errorf("got n = %d, s = %s, expecting n = 0, s = %s", n, s[:], expecting) + } + + n = Copy(val, ValueOf("hello")) + if expecting := []byte("hello___"); n != 5 || !bytes.Equal(s[:], expecting) { + t.Errorf("got n = %d, s = %s, expecting n = 5, s = %s", n, s[:], expecting) + } + + n = Copy(val, ValueOf("helloworld")) + if expecting := []byte("hellowor"); n != 8 || !bytes.Equal(s[:], expecting) { + t.Errorf("got n = %d, s = %s, expecting n = 8, s = %s", n, s[:], expecting) + } + }) +} + +func TestCopyArray(t *testing.T) { + a := [8]int{1, 2, 3, 4, 10, 9, 8, 7} + b := [11]int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44} + c := b + aa := ValueOf(&a).Elem() + ab := ValueOf(&b).Elem() + Copy(ab, aa) + for i := 0; i < len(a); i++ { + if a[i] != b[i] { + t.Errorf("(i) a[%d]=%d, b[%d]=%d", i, a[i], i, b[i]) + } + } + for i := len(a); i < len(b); i++ { + if b[i] != c[i] { + t.Errorf("(ii) b[%d]=%d, c[%d]=%d", i, b[i], i, c[i]) + } else { + t.Logf("elem %d is okay\n", i) + } + } +} + +func TestBigUnnamedStruct(t *testing.T) { + b := struct{ a, b, c, d int64 }{1, 2, 3, 4} + v := ValueOf(b) + b1 := v.Interface().(struct { + a, b, c, d int64 + }) + if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d { + t.Errorf("ValueOf(%v).Interface().(*Big) = %v", b, b1) + } +} + +type big struct { + a, b, c, d, e int64 +} + +func TestBigStruct(t *testing.T) { + b := big{1, 2, 3, 4, 5} + v := ValueOf(b) + b1 := v.Interface().(big) + if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d || b1.e != b.e { + t.Errorf("ValueOf(%v).Interface().(big) = %v", b, b1) + } +} + +type Basic struct { + x int + y float32 +} + +type NotBasic Basic + +type DeepEqualTest struct { + a, b any + eq bool +} + +// Simple functions for DeepEqual tests. +var ( + fn1 func() // nil. + fn2 func() // nil. + fn3 = func() { fn1() } // Not nil. +) + +type self struct{} + +type Loop *Loop +type Loopy any + +var loop1, loop2 Loop +var loopy1, loopy2 Loopy +var cycleMap1, cycleMap2, cycleMap3 map[string]any + +type structWithSelfPtr struct { + p *structWithSelfPtr + s string +} + +func init() { + loop1 = &loop2 + loop2 = &loop1 + + loopy1 = &loopy2 + loopy2 = &loopy1 + + cycleMap1 = map[string]any{} + cycleMap1["cycle"] = cycleMap1 + cycleMap2 = map[string]any{} + cycleMap2["cycle"] = cycleMap2 + cycleMap3 = map[string]any{} + cycleMap3["different"] = cycleMap3 +} + +var deepEqualTests = []DeepEqualTest{ + // Equalities + {nil, nil, true}, + {1, 1, true}, + {int32(1), int32(1), true}, + {0.5, 0.5, true}, + {float32(0.5), float32(0.5), true}, + {"hello", "hello", true}, + {make([]int, 10), make([]int, 10), true}, + {&[3]int{1, 2, 3}, &[3]int{1, 2, 3}, true}, + {Basic{1, 0.5}, Basic{1, 0.5}, true}, + {error(nil), error(nil), true}, + {map[int]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, true}, + {fn1, fn2, true}, + {[]byte{1, 2, 3}, []byte{1, 2, 3}, true}, + {[]MyByte{1, 2, 3}, []MyByte{1, 2, 3}, true}, + {MyBytes{1, 2, 3}, MyBytes{1, 2, 3}, true}, + + // Inequalities + {1, 2, false}, + {int32(1), int32(2), false}, + {0.5, 0.6, false}, + {float32(0.5), float32(0.6), false}, + {"hello", "hey", false}, + {make([]int, 10), make([]int, 11), false}, + {&[3]int{1, 2, 3}, &[3]int{1, 2, 4}, false}, + {Basic{1, 0.5}, Basic{1, 0.6}, false}, + {Basic{1, 0}, Basic{2, 0}, false}, + {map[int]string{1: "one", 3: "two"}, map[int]string{2: "two", 1: "one"}, false}, + {map[int]string{1: "one", 2: "txo"}, map[int]string{2: "two", 1: "one"}, false}, + {map[int]string{1: "one"}, map[int]string{2: "two", 1: "one"}, false}, + {map[int]string{2: "two", 1: "one"}, map[int]string{1: "one"}, false}, + {nil, 1, false}, + {1, nil, false}, + {fn1, fn3, false}, + {fn3, fn3, false}, + {[][]int{{1}}, [][]int{{2}}, false}, + {&structWithSelfPtr{p: &structWithSelfPtr{s: "a"}}, &structWithSelfPtr{p: &structWithSelfPtr{s: "b"}}, false}, + + // Fun with floating point. + {math.NaN(), math.NaN(), false}, + {&[1]float64{math.NaN()}, &[1]float64{math.NaN()}, false}, + {&[1]float64{math.NaN()}, self{}, true}, + {[]float64{math.NaN()}, []float64{math.NaN()}, false}, + {[]float64{math.NaN()}, self{}, true}, + {map[float64]float64{math.NaN(): 1}, map[float64]float64{1: 2}, false}, + {map[float64]float64{math.NaN(): 1}, self{}, true}, + + // Nil vs empty: not the same. + {[]int{}, []int(nil), false}, + {[]int{}, []int{}, true}, + {[]int(nil), []int(nil), true}, + {map[int]int{}, map[int]int(nil), false}, + {map[int]int{}, map[int]int{}, true}, + {map[int]int(nil), map[int]int(nil), true}, + + // Mismatched types + {1, 1.0, false}, + {int32(1), int64(1), false}, + {0.5, "hello", false}, + {[]int{1, 2, 3}, [3]int{1, 2, 3}, false}, + {&[3]any{1, 2, 4}, &[3]any{1, 2, "s"}, false}, + {Basic{1, 0.5}, NotBasic{1, 0.5}, false}, + {map[uint]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, false}, + {[]byte{1, 2, 3}, []MyByte{1, 2, 3}, false}, + {[]MyByte{1, 2, 3}, MyBytes{1, 2, 3}, false}, + {[]byte{1, 2, 3}, MyBytes{1, 2, 3}, false}, + + // Possible loops. + {&loop1, &loop1, true}, + {&loop1, &loop2, true}, + {&loopy1, &loopy1, true}, + {&loopy1, &loopy2, true}, + {&cycleMap1, &cycleMap2, true}, + {&cycleMap1, &cycleMap3, false}, +} + +func TestDeepEqual(t *testing.T) { + for _, test := range deepEqualTests { + if test.b == (self{}) { + test.b = test.a + } + if r := DeepEqual(test.a, test.b); r != test.eq { + t.Errorf("DeepEqual(%#v, %#v) = %v, want %v", test.a, test.b, r, test.eq) + } + } +} + +func TestTypeOf(t *testing.T) { + // Special case for nil + if typ := TypeOf(nil); typ != nil { + t.Errorf("expected nil type for nil value; got %v", typ) + } + for _, test := range deepEqualTests { + v := ValueOf(test.a) + if !v.IsValid() { + continue + } + typ := TypeOf(test.a) + if typ != v.Type() { + t.Errorf("TypeOf(%v) = %v, but ValueOf(%v).Type() = %v", test.a, typ, test.a, v.Type()) + } + } +} + +type Recursive struct { + x int + r *Recursive +} + +func TestDeepEqualRecursiveStruct(t *testing.T) { + a, b := new(Recursive), new(Recursive) + *a = Recursive{12, a} + *b = Recursive{12, b} + if !DeepEqual(a, b) { + t.Error("DeepEqual(recursive same) = false, want true") + } +} + +type _Complex struct { + a int + b [3]*_Complex + c *string + d map[float64]float64 +} + +func TestDeepEqualComplexStruct(t *testing.T) { + m := make(map[float64]float64) + stra, strb := "hello", "hello" + a, b := new(_Complex), new(_Complex) + *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m} + *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m} + if !DeepEqual(a, b) { + t.Error("DeepEqual(complex same) = false, want true") + } +} + +func TestDeepEqualComplexStructInequality(t *testing.T) { + m := make(map[float64]float64) + stra, strb := "hello", "helloo" // Difference is here + a, b := new(_Complex), new(_Complex) + *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m} + *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m} + if DeepEqual(a, b) { + t.Error("DeepEqual(complex different) = true, want false") + } +} + +type UnexpT struct { + m map[int]int +} + +func TestDeepEqualUnexportedMap(t *testing.T) { + // Check that DeepEqual can look at unexported fields. + x1 := UnexpT{map[int]int{1: 2}} + x2 := UnexpT{map[int]int{1: 2}} + if !DeepEqual(&x1, &x2) { + t.Error("DeepEqual(x1, x2) = false, want true") + } + + y1 := UnexpT{map[int]int{2: 3}} + if DeepEqual(&x1, &y1) { + t.Error("DeepEqual(x1, y1) = true, want false") + } +} + +var deepEqualPerfTests = []struct { + x, y any +}{ + {x: int8(99), y: int8(99)}, + {x: []int8{99}, y: []int8{99}}, + {x: int16(99), y: int16(99)}, + {x: []int16{99}, y: []int16{99}}, + {x: int32(99), y: int32(99)}, + {x: []int32{99}, y: []int32{99}}, + {x: int64(99), y: int64(99)}, + {x: []int64{99}, y: []int64{99}}, + {x: int(999999), y: int(999999)}, + {x: []int{999999}, y: []int{999999}}, + + {x: uint8(99), y: uint8(99)}, + {x: []uint8{99}, y: []uint8{99}}, + {x: uint16(99), y: uint16(99)}, + {x: []uint16{99}, y: []uint16{99}}, + {x: uint32(99), y: uint32(99)}, + {x: []uint32{99}, y: []uint32{99}}, + {x: uint64(99), y: uint64(99)}, + {x: []uint64{99}, y: []uint64{99}}, + {x: uint(999999), y: uint(999999)}, + {x: []uint{999999}, y: []uint{999999}}, + {x: uintptr(999999), y: uintptr(999999)}, + {x: []uintptr{999999}, y: []uintptr{999999}}, + + {x: float32(1.414), y: float32(1.414)}, + {x: []float32{1.414}, y: []float32{1.414}}, + {x: float64(1.414), y: float64(1.414)}, + {x: []float64{1.414}, y: []float64{1.414}}, + + {x: complex64(1.414), y: complex64(1.414)}, + {x: []complex64{1.414}, y: []complex64{1.414}}, + {x: complex128(1.414), y: complex128(1.414)}, + {x: []complex128{1.414}, y: []complex128{1.414}}, + + {x: true, y: true}, + {x: []bool{true}, y: []bool{true}}, + + {x: "abcdef", y: "abcdef"}, + {x: []string{"abcdef"}, y: []string{"abcdef"}}, + + {x: []byte("abcdef"), y: []byte("abcdef")}, + {x: [][]byte{[]byte("abcdef")}, y: [][]byte{[]byte("abcdef")}}, + + {x: [6]byte{'a', 'b', 'c', 'a', 'b', 'c'}, y: [6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}, + {x: [][6]byte{[6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}, y: [][6]byte{[6]byte{'a', 'b', 'c', 'a', 'b', 'c'}}}, +} + +func TestDeepEqualAllocs(t *testing.T) { + for _, tt := range deepEqualPerfTests { + t.Run(ValueOf(tt.x).Type().String(), func(t *testing.T) { + got := testing.AllocsPerRun(100, func() { + if !DeepEqual(tt.x, tt.y) { + t.Errorf("DeepEqual(%v, %v)=false", tt.x, tt.y) + } + }) + if int(got) != 0 { + t.Errorf("DeepEqual(%v, %v) allocated %d times", tt.x, tt.y, int(got)) + } + }) + } +} + +func check2ndField(x any, offs uintptr, t *testing.T) { + s := ValueOf(x) + f := s.Type().Field(1) + if f.Offset != offs { + t.Error("mismatched offsets in structure alignment:", f.Offset, offs) + } +} + +// Check that structure alignment & offsets viewed through reflect agree with those +// from the compiler itself. +func TestAlignment(t *testing.T) { + type T1inner struct { + a int + } + type T1 struct { + T1inner + f int + } + type T2inner struct { + a, b int + } + type T2 struct { + T2inner + f int + } + + x := T1{T1inner{2}, 17} + check2ndField(x, uintptr(unsafe.Pointer(&x.f))-uintptr(unsafe.Pointer(&x)), t) + + x1 := T2{T2inner{2, 3}, 17} + check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t) +} + +func Nil(a any, t *testing.T) { + n := ValueOf(a).Field(0) + if !n.IsNil() { + t.Errorf("%v should be nil", a) + } +} + +func NotNil(a any, t *testing.T) { + n := ValueOf(a).Field(0) + if n.IsNil() { + t.Errorf("value of type %v should not be nil", ValueOf(a).Type().String()) + } +} + +func TestIsNil(t *testing.T) { + // These implement IsNil. + // Wrap in extra struct to hide interface type. + doNil := []any{ + struct{ x *int }{}, + struct{ x any }{}, + struct{ x map[string]int }{}, + struct{ x func() bool }{}, + struct{ x chan int }{}, + struct{ x []string }{}, + struct{ x unsafe.Pointer }{}, + } + for _, ts := range doNil { + ty := TypeOf(ts).Field(0).Type + v := Zero(ty) + v.IsNil() // panics if not okay to call + } + + // Check the implementations + var pi struct { + x *int + } + Nil(pi, t) + pi.x = new(int) + NotNil(pi, t) + + var si struct { + x []int + } + Nil(si, t) + si.x = make([]int, 10) + NotNil(si, t) + + var ci struct { + x chan int + } + Nil(ci, t) + ci.x = make(chan int) + NotNil(ci, t) + + var mi struct { + x map[int]int + } + Nil(mi, t) + mi.x = make(map[int]int) + NotNil(mi, t) + + var ii struct { + x any + } + Nil(ii, t) + ii.x = 2 + NotNil(ii, t) + + var fi struct { + x func(t *testing.T) + } + Nil(fi, t) + fi.x = TestIsNil + NotNil(fi, t) +} + +func TestIsZero(t *testing.T) { + for i, tt := range []struct { + x any + want bool + }{ + // Booleans + {true, false}, + {false, true}, + // Numeric types + {int(0), true}, + {int(1), false}, + {int8(0), true}, + {int8(1), false}, + {int16(0), true}, + {int16(1), false}, + {int32(0), true}, + {int32(1), false}, + {int64(0), true}, + {int64(1), false}, + {uint(0), true}, + {uint(1), false}, + {uint8(0), true}, + {uint8(1), false}, + {uint16(0), true}, + {uint16(1), false}, + {uint32(0), true}, + {uint32(1), false}, + {uint64(0), true}, + {uint64(1), false}, + {float32(0), true}, + {float32(1.2), false}, + {float64(0), true}, + {float64(1.2), false}, + {math.Copysign(0, -1), false}, + {complex64(0), true}, + {complex64(1.2), false}, + {complex128(0), true}, + {complex128(1.2), false}, + {complex(math.Copysign(0, -1), 0), false}, + {complex(0, math.Copysign(0, -1)), false}, + {complex(math.Copysign(0, -1), math.Copysign(0, -1)), false}, + {uintptr(0), true}, + {uintptr(128), false}, + // Array + {Zero(TypeOf([5]string{})).Interface(), true}, + {[5]string{}, true}, // comparable array + {[5]string{"", "", "", "a", ""}, false}, // comparable array + {[1]*int{}, true}, // direct pointer array + {[1]*int{new(int)}, false}, // direct pointer array + {[3][]int{}, true}, // incomparable array + {[3][]int{{1}}, false}, // incomparable array + {[1 << 12]byte{}, true}, + {[1 << 12]byte{1}, false}, + {[3]Value{}, true}, + {[3]Value{{}, ValueOf(0), {}}, false}, + // Chan + {(chan string)(nil), true}, + {make(chan string), false}, + {time.After(1), false}, + // Func + {(func())(nil), true}, + {New, false}, + // Interface + {New(TypeOf(new(error)).Elem()).Elem(), true}, + {(io.Reader)(strings.NewReader("")), false}, + // Map + {(map[string]string)(nil), true}, + {map[string]string{}, false}, + {make(map[string]string), false}, + // Pointer + {(*func())(nil), true}, + {(*int)(nil), true}, + {new(int), false}, + // Slice + {[]string{}, false}, + {([]string)(nil), true}, + {make([]string, 0), false}, + // Strings + {"", true}, + {"not-zero", false}, + // Structs + {T{}, true}, // comparable struct + {T{123, 456.75, "hello", &_i}, false}, // comparable struct + {struct{ p *int }{}, true}, // direct pointer struct + {struct{ p *int }{new(int)}, false}, // direct pointer struct + {struct{ s []int }{}, true}, // incomparable struct + {struct{ s []int }{[]int{1}}, false}, // incomparable struct + {struct{ Value }{}, true}, + {struct{ Value }{ValueOf(0)}, false}, + // UnsafePointer + {(unsafe.Pointer)(nil), true}, + {(unsafe.Pointer)(new(int)), false}, + } { + var x Value + if v, ok := tt.x.(Value); ok { + x = v + } else { + x = ValueOf(tt.x) + } + + b := x.IsZero() + if b != tt.want { + t.Errorf("%d: IsZero((%s)(%+v)) = %t, want %t", i, x.Kind(), tt.x, b, tt.want) + } + + if !Zero(TypeOf(tt.x)).IsZero() { + t.Errorf("%d: IsZero(Zero(TypeOf((%s)(%+v)))) is false", i, x.Kind(), tt.x) + } + + p := New(x.Type()).Elem() + p.Set(x) + p.SetZero() + if !p.IsZero() { + t.Errorf("%d: IsZero((%s)(%+v)) is true after SetZero", i, p.Kind(), tt.x) + } + } + + func() { + defer func() { + if r := recover(); r == nil { + t.Error("should panic for invalid value") + } + }() + (Value{}).IsZero() + }() +} + +func TestInterfaceExtraction(t *testing.T) { + var s struct { + W io.Writer + } + + s.W = os.Stdout + v := Indirect(ValueOf(&s)).Field(0).Interface() + if v != s.W.(any) { + t.Error("Interface() on interface: ", v, s.W) + } +} + +func TestNilPtrValueSub(t *testing.T) { + var pi *int + if pv := ValueOf(pi); pv.Elem().IsValid() { + t.Error("ValueOf((*int)(nil)).Elem().IsValid()") + } +} + +func TestMap(t *testing.T) { + m := map[string]int{"a": 1, "b": 2} + mv := ValueOf(m) + if n := mv.Len(); n != len(m) { + t.Errorf("Len = %d, want %d", n, len(m)) + } + keys := mv.MapKeys() + newmap := MakeMap(mv.Type()) + for k, v := range m { + // Check that returned Keys match keys in range. + // These aren't required to be in the same order. + seen := false + for _, kv := range keys { + if kv.String() == k { + seen = true + break + } + } + if !seen { + t.Errorf("Missing key %q", k) + } + + // Check that value lookup is correct. + vv := mv.MapIndex(ValueOf(k)) + if vi := vv.Int(); vi != int64(v) { + t.Errorf("Key %q: have value %d, want %d", k, vi, v) + } + + // Copy into new map. + newmap.SetMapIndex(ValueOf(k), ValueOf(v)) + } + vv := mv.MapIndex(ValueOf("not-present")) + if vv.IsValid() { + t.Errorf("Invalid key: got non-nil value %s", valueToString(vv)) + } + + newm := newmap.Interface().(map[string]int) + if len(newm) != len(m) { + t.Errorf("length after copy: newm=%d, m=%d", len(newm), len(m)) + } + + for k, v := range newm { + mv, ok := m[k] + if mv != v { + t.Errorf("newm[%q] = %d, but m[%q] = %d, %v", k, v, k, mv, ok) + } + } + + newmap.SetMapIndex(ValueOf("a"), Value{}) + v, ok := newm["a"] + if ok { + t.Errorf("newm[\"a\"] = %d after delete", v) + } + + mv = ValueOf(&m).Elem() + mv.Set(Zero(mv.Type())) + if m != nil { + t.Errorf("mv.Set(nil) failed") + } + + type S string + shouldPanic("not assignable", func() { mv.MapIndex(ValueOf(S("key"))) }) + shouldPanic("not assignable", func() { mv.SetMapIndex(ValueOf(S("key")), ValueOf(0)) }) +} + +func TestNilMap(t *testing.T) { + var m map[string]int + mv := ValueOf(m) + keys := mv.MapKeys() + if len(keys) != 0 { + t.Errorf(">0 keys for nil map: %v", keys) + } + + // Check that value for missing key is zero. + x := mv.MapIndex(ValueOf("hello")) + if x.Kind() != Invalid { + t.Errorf("m.MapIndex(\"hello\") for nil map = %v, want Invalid Value", x) + } + + // Check big value too. + var mbig map[string][10 << 20]byte + x = ValueOf(mbig).MapIndex(ValueOf("hello")) + if x.Kind() != Invalid { + t.Errorf("mbig.MapIndex(\"hello\") for nil map = %v, want Invalid Value", x) + } + + // Test that deletes from a nil map succeed. + mv.SetMapIndex(ValueOf("hi"), Value{}) +} + +func TestChan(t *testing.T) { + for loop := 0; loop < 2; loop++ { + var c chan int + var cv Value + + // check both ways to allocate channels + switch loop { + case 1: + c = make(chan int, 1) + cv = ValueOf(c) + case 0: + cv = MakeChan(TypeOf(c), 1) + c = cv.Interface().(chan int) + } + + // Send + cv.Send(ValueOf(2)) + if i := <-c; i != 2 { + t.Errorf("reflect Send 2, native recv %d", i) + } + + // Recv + c <- 3 + if i, ok := cv.Recv(); i.Int() != 3 || !ok { + t.Errorf("native send 3, reflect Recv %d, %t", i.Int(), ok) + } + + // TryRecv fail + val, ok := cv.TryRecv() + if val.IsValid() || ok { + t.Errorf("TryRecv on empty chan: %s, %t", valueToString(val), ok) + } + + // TryRecv success + c <- 4 + val, ok = cv.TryRecv() + if !val.IsValid() { + t.Errorf("TryRecv on ready chan got nil") + } else if i := val.Int(); i != 4 || !ok { + t.Errorf("native send 4, TryRecv %d, %t", i, ok) + } + + // TrySend fail + c <- 100 + ok = cv.TrySend(ValueOf(5)) + i := <-c + if ok { + t.Errorf("TrySend on full chan succeeded: value %d", i) + } + + // TrySend success + ok = cv.TrySend(ValueOf(6)) + if !ok { + t.Errorf("TrySend on empty chan failed") + select { + case x := <-c: + t.Errorf("TrySend failed but it did send %d", x) + default: + } + } else { + if i = <-c; i != 6 { + t.Errorf("TrySend 6, recv %d", i) + } + } + + // Close + c <- 123 + cv.Close() + if i, ok := cv.Recv(); i.Int() != 123 || !ok { + t.Errorf("send 123 then close; Recv %d, %t", i.Int(), ok) + } + if i, ok := cv.Recv(); i.Int() != 0 || ok { + t.Errorf("after close Recv %d, %t", i.Int(), ok) + } + } + + // check creation of unbuffered channel + var c chan int + cv := MakeChan(TypeOf(c), 0) + c = cv.Interface().(chan int) + if cv.TrySend(ValueOf(7)) { + t.Errorf("TrySend on sync chan succeeded") + } + if v, ok := cv.TryRecv(); v.IsValid() || ok { + t.Errorf("TryRecv on sync chan succeeded: isvalid=%v ok=%v", v.IsValid(), ok) + } + + // len/cap + cv = MakeChan(TypeOf(c), 10) + c = cv.Interface().(chan int) + for i := 0; i < 3; i++ { + c <- i + } + if l, m := cv.Len(), cv.Cap(); l != len(c) || m != cap(c) { + t.Errorf("Len/Cap = %d/%d want %d/%d", l, m, len(c), cap(c)) + } +} + +// caseInfo describes a single case in a select test. +type caseInfo struct { + desc string + canSelect bool + recv Value + closed bool + helper func() + panic bool +} + +var allselect = flag.Bool("allselect", false, "exhaustive select test") + +func TestSelect(t *testing.T) { + selectWatch.once.Do(func() { go selectWatcher() }) + + var x exhaustive + nch := 0 + newop := func(n int, cap int) (ch, val Value) { + nch++ + if nch%101%2 == 1 { + c := make(chan int, cap) + ch = ValueOf(c) + val = ValueOf(n) + } else { + c := make(chan string, cap) + ch = ValueOf(c) + val = ValueOf(fmt.Sprint(n)) + } + return + } + + for n := 0; x.Next(); n++ { + if testing.Short() && n >= 1000 { + break + } + if n >= 100000 && !*allselect { + break + } + if n%100000 == 0 && testing.Verbose() { + println("TestSelect", n) + } + var cases []SelectCase + var info []caseInfo + + // Ready send. + if x.Maybe() { + ch, val := newop(len(cases), 1) + cases = append(cases, SelectCase{ + Dir: SelectSend, + Chan: ch, + Send: val, + }) + info = append(info, caseInfo{desc: "ready send", canSelect: true}) + } + + // Ready recv. + if x.Maybe() { + ch, val := newop(len(cases), 1) + ch.Send(val) + cases = append(cases, SelectCase{ + Dir: SelectRecv, + Chan: ch, + }) + info = append(info, caseInfo{desc: "ready recv", canSelect: true, recv: val}) + } + + // Blocking send. + if x.Maybe() { + ch, val := newop(len(cases), 0) + cases = append(cases, SelectCase{ + Dir: SelectSend, + Chan: ch, + Send: val, + }) + // Let it execute? + if x.Maybe() { + f := func() { ch.Recv() } + info = append(info, caseInfo{desc: "blocking send", helper: f}) + } else { + info = append(info, caseInfo{desc: "blocking send"}) + } + } + + // Blocking recv. + if x.Maybe() { + ch, val := newop(len(cases), 0) + cases = append(cases, SelectCase{ + Dir: SelectRecv, + Chan: ch, + }) + // Let it execute? + if x.Maybe() { + f := func() { ch.Send(val) } + info = append(info, caseInfo{desc: "blocking recv", recv: val, helper: f}) + } else { + info = append(info, caseInfo{desc: "blocking recv"}) + } + } + + // Zero Chan send. + if x.Maybe() { + // Maybe include value to send. + var val Value + if x.Maybe() { + val = ValueOf(100) + } + cases = append(cases, SelectCase{ + Dir: SelectSend, + Send: val, + }) + info = append(info, caseInfo{desc: "zero Chan send"}) + } + + // Zero Chan receive. + if x.Maybe() { + cases = append(cases, SelectCase{ + Dir: SelectRecv, + }) + info = append(info, caseInfo{desc: "zero Chan recv"}) + } + + // nil Chan send. + if x.Maybe() { + cases = append(cases, SelectCase{ + Dir: SelectSend, + Chan: ValueOf((chan int)(nil)), + Send: ValueOf(101), + }) + info = append(info, caseInfo{desc: "nil Chan send"}) + } + + // nil Chan recv. + if x.Maybe() { + cases = append(cases, SelectCase{ + Dir: SelectRecv, + Chan: ValueOf((chan int)(nil)), + }) + info = append(info, caseInfo{desc: "nil Chan recv"}) + } + + // closed Chan send. + if x.Maybe() { + ch := make(chan int) + close(ch) + cases = append(cases, SelectCase{ + Dir: SelectSend, + Chan: ValueOf(ch), + Send: ValueOf(101), + }) + info = append(info, caseInfo{desc: "closed Chan send", canSelect: true, panic: true}) + } + + // closed Chan recv. + if x.Maybe() { + ch, val := newop(len(cases), 0) + ch.Close() + val = Zero(val.Type()) + cases = append(cases, SelectCase{ + Dir: SelectRecv, + Chan: ch, + }) + info = append(info, caseInfo{desc: "closed Chan recv", canSelect: true, closed: true, recv: val}) + } + + var helper func() // goroutine to help the select complete + + // Add default? Must be last case here, but will permute. + // Add the default if the select would otherwise + // block forever, and maybe add it anyway. + numCanSelect := 0 + canProceed := false + canBlock := true + canPanic := false + helpers := []int{} + for i, c := range info { + if c.canSelect { + canProceed = true + canBlock = false + numCanSelect++ + if c.panic { + canPanic = true + } + } else if c.helper != nil { + canProceed = true + helpers = append(helpers, i) + } + } + if !canProceed || x.Maybe() { + cases = append(cases, SelectCase{ + Dir: SelectDefault, + }) + info = append(info, caseInfo{desc: "default", canSelect: canBlock}) + numCanSelect++ + } else if canBlock { + // Select needs to communicate with another goroutine. + cas := &info[helpers[x.Choose(len(helpers))]] + helper = cas.helper + cas.canSelect = true + numCanSelect++ + } + + // Permute cases and case info. + // Doing too much here makes the exhaustive loop + // too exhausting, so just do two swaps. + for loop := 0; loop < 2; loop++ { + i := x.Choose(len(cases)) + j := x.Choose(len(cases)) + cases[i], cases[j] = cases[j], cases[i] + info[i], info[j] = info[j], info[i] + } + + if helper != nil { + // We wait before kicking off a goroutine to satisfy a blocked select. + // The pause needs to be big enough to let the select block before + // we run the helper, but if we lose that race once in a while it's okay: the + // select will just proceed immediately. Not a big deal. + // For short tests we can grow [sic] the timeout a bit without fear of taking too long + pause := 10 * time.Microsecond + if testing.Short() { + pause = 100 * time.Microsecond + } + time.AfterFunc(pause, helper) + } + + // Run select. + i, recv, recvOK, panicErr := runSelect(cases, info) + if panicErr != nil && !canPanic { + t.Fatalf("%s\npanicked unexpectedly: %v", fmtSelect(info), panicErr) + } + if panicErr == nil && canPanic && numCanSelect == 1 { + t.Fatalf("%s\nselected #%d incorrectly (should panic)", fmtSelect(info), i) + } + if panicErr != nil { + continue + } + + cas := info[i] + if !cas.canSelect { + recvStr := "" + if recv.IsValid() { + recvStr = fmt.Sprintf(", received %v, %v", recv.Interface(), recvOK) + } + t.Fatalf("%s\nselected #%d incorrectly%s", fmtSelect(info), i, recvStr) + } + if cas.panic { + t.Fatalf("%s\nselected #%d incorrectly (case should panic)", fmtSelect(info), i) + } + + if cases[i].Dir == SelectRecv { + if !recv.IsValid() { + t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, cas.recv.Interface(), !cas.closed) + } + if !cas.recv.IsValid() { + t.Fatalf("%s\nselected #%d but internal error: missing recv value", fmtSelect(info), i) + } + if recv.Interface() != cas.recv.Interface() || recvOK != !cas.closed { + if recv.Interface() == cas.recv.Interface() && recvOK == !cas.closed { + t.Fatalf("%s\nselected #%d, got %#v, %v, and DeepEqual is broken on %T", fmtSelect(info), i, recv.Interface(), recvOK, recv.Interface()) + } + t.Fatalf("%s\nselected #%d but got %#v, %v, want %#v, %v", fmtSelect(info), i, recv.Interface(), recvOK, cas.recv.Interface(), !cas.closed) + } + } else { + if recv.IsValid() || recvOK { + t.Fatalf("%s\nselected #%d but got %v, %v, want %v, %v", fmtSelect(info), i, recv, recvOK, Value{}, false) + } + } + } +} + +func TestSelectMaxCases(t *testing.T) { + var sCases []SelectCase + channel := make(chan int) + close(channel) + for i := 0; i < 65536; i++ { + sCases = append(sCases, SelectCase{ + Dir: SelectRecv, + Chan: ValueOf(channel), + }) + } + // Should not panic + _, _, _ = Select(sCases) + sCases = append(sCases, SelectCase{ + Dir: SelectRecv, + Chan: ValueOf(channel), + }) + defer func() { + if err := recover(); err != nil { + if err.(string) != "reflect.Select: too many cases (max 65536)" { + t.Fatalf("unexpected error from select call with greater than max supported cases") + } + } else { + t.Fatalf("expected select call to panic with greater than max supported cases") + } + }() + // Should panic + _, _, _ = Select(sCases) +} + +func TestSelectNop(t *testing.T) { + // "select { default: }" should always return the default case. + chosen, _, _ := Select([]SelectCase{{Dir: SelectDefault}}) + if chosen != 0 { + t.Fatalf("expected Select to return 0, but got %#v", chosen) + } +} + +// selectWatch and the selectWatcher are a watchdog mechanism for running Select. +// If the selectWatcher notices that the select has been blocked for >1 second, it prints +// an error describing the select and panics the entire test binary. +var selectWatch struct { + sync.Mutex + once sync.Once + now time.Time + info []caseInfo +} + +func selectWatcher() { + for { + time.Sleep(1 * time.Second) + selectWatch.Lock() + if selectWatch.info != nil && time.Since(selectWatch.now) > 10*time.Second { + fmt.Fprintf(os.Stderr, "TestSelect:\n%s blocked indefinitely\n", fmtSelect(selectWatch.info)) + panic("select stuck") + } + selectWatch.Unlock() + } +} + +// runSelect runs a single select test. +// It returns the values returned by Select but also returns +// a panic value if the Select panics. +func runSelect(cases []SelectCase, info []caseInfo) (chosen int, recv Value, recvOK bool, panicErr any) { + defer func() { + panicErr = recover() + + selectWatch.Lock() + selectWatch.info = nil + selectWatch.Unlock() + }() + + selectWatch.Lock() + selectWatch.now = time.Now() + selectWatch.info = info + selectWatch.Unlock() + + chosen, recv, recvOK = Select(cases) + return +} + +// fmtSelect formats the information about a single select test. +func fmtSelect(info []caseInfo) string { + var buf strings.Builder + fmt.Fprintf(&buf, "\nselect {\n") + for i, cas := range info { + fmt.Fprintf(&buf, "%d: %s", i, cas.desc) + if cas.recv.IsValid() { + fmt.Fprintf(&buf, " val=%#v", cas.recv.Interface()) + } + if cas.canSelect { + fmt.Fprintf(&buf, " canselect") + } + if cas.panic { + fmt.Fprintf(&buf, " panic") + } + fmt.Fprintf(&buf, "\n") + } + fmt.Fprintf(&buf, "}") + return buf.String() +} + +type two [2]uintptr + +// Difficult test for function call because of +// implicit padding between arguments. +func dummy(b byte, c int, d byte, e two, f byte, g float32, h byte) (i byte, j int, k byte, l two, m byte, n float32, o byte) { + return b, c, d, e, f, g, h +} + +func TestFunc(t *testing.T) { + ret := ValueOf(dummy).Call([]Value{ + ValueOf(byte(10)), + ValueOf(20), + ValueOf(byte(30)), + ValueOf(two{40, 50}), + ValueOf(byte(60)), + ValueOf(float32(70)), + ValueOf(byte(80)), + }) + if len(ret) != 7 { + t.Fatalf("Call returned %d values, want 7", len(ret)) + } + + i := byte(ret[0].Uint()) + j := int(ret[1].Int()) + k := byte(ret[2].Uint()) + l := ret[3].Interface().(two) + m := byte(ret[4].Uint()) + n := float32(ret[5].Float()) + o := byte(ret[6].Uint()) + + if i != 10 || j != 20 || k != 30 || l != (two{40, 50}) || m != 60 || n != 70 || o != 80 { + t.Errorf("Call returned %d, %d, %d, %v, %d, %g, %d; want 10, 20, 30, [40, 50], 60, 70, 80", i, j, k, l, m, n, o) + } + + for i, v := range ret { + if v.CanAddr() { + t.Errorf("result %d is addressable", i) + } + } +} + +func TestCallConvert(t *testing.T) { + v := ValueOf(new(io.ReadWriter)).Elem() + f := ValueOf(func(r io.Reader) io.Reader { return r }) + out := f.Call([]Value{v}) + if len(out) != 1 || out[0].Type() != TypeOf(new(io.Reader)).Elem() || !out[0].IsNil() { + t.Errorf("expected [nil], got %v", out) + } +} + +type emptyStruct struct{} + +type nonEmptyStruct struct { + member int +} + +func returnEmpty() emptyStruct { + return emptyStruct{} +} + +func takesEmpty(e emptyStruct) { +} + +func returnNonEmpty(i int) nonEmptyStruct { + return nonEmptyStruct{member: i} +} + +func takesNonEmpty(n nonEmptyStruct) int { + return n.member +} + +func TestCallWithStruct(t *testing.T) { + r := ValueOf(returnEmpty).Call(nil) + if len(r) != 1 || r[0].Type() != TypeOf(emptyStruct{}) { + t.Errorf("returning empty struct returned %#v instead", r) + } + r = ValueOf(takesEmpty).Call([]Value{ValueOf(emptyStruct{})}) + if len(r) != 0 { + t.Errorf("takesEmpty returned values: %#v", r) + } + r = ValueOf(returnNonEmpty).Call([]Value{ValueOf(42)}) + if len(r) != 1 || r[0].Type() != TypeOf(nonEmptyStruct{}) || r[0].Field(0).Int() != 42 { + t.Errorf("returnNonEmpty returned %#v", r) + } + r = ValueOf(takesNonEmpty).Call([]Value{ValueOf(nonEmptyStruct{member: 42})}) + if len(r) != 1 || r[0].Type() != TypeOf(1) || r[0].Int() != 42 { + t.Errorf("takesNonEmpty returned %#v", r) + } +} + +func TestCallReturnsEmpty(t *testing.T) { + // Issue 21717: past-the-end pointer write in Call with + // nonzero-sized frame and zero-sized return value. + runtime.GC() + var finalized uint32 + f := func() (emptyStruct, *[2]int64) { + i := new([2]int64) // big enough to not be tinyalloc'd, so finalizer always runs when i dies + runtime.SetFinalizer(i, func(*[2]int64) { atomic.StoreUint32(&finalized, 1) }) + return emptyStruct{}, i + } + v := ValueOf(f).Call(nil)[0] // out[0] should not alias out[1]'s memory, so the finalizer should run. + timeout := time.After(5 * time.Second) + for atomic.LoadUint32(&finalized) == 0 { + select { + case <-timeout: + t.Fatal("finalizer did not run") + default: + } + runtime.Gosched() + runtime.GC() + } + runtime.KeepAlive(v) +} + +func TestMakeFunc(t *testing.T) { + f := dummy + fv := MakeFunc(TypeOf(f), func(in []Value) []Value { return in }) + ValueOf(&f).Elem().Set(fv) + + // Call g with small arguments so that there is + // something predictable (and different from the + // correct results) in those positions on the stack. + g := dummy + g(1, 2, 3, two{4, 5}, 6, 7, 8) + + // Call constructed function f. + i, j, k, l, m, n, o := f(10, 20, 30, two{40, 50}, 60, 70, 80) + if i != 10 || j != 20 || k != 30 || l != (two{40, 50}) || m != 60 || n != 70 || o != 80 { + t.Errorf("Call returned %d, %d, %d, %v, %d, %g, %d; want 10, 20, 30, [40, 50], 60, 70, 80", i, j, k, l, m, n, o) + } +} + +func TestMakeFuncInterface(t *testing.T) { + fn := func(i int) int { return i } + incr := func(in []Value) []Value { + return []Value{ValueOf(int(in[0].Int() + 1))} + } + fv := MakeFunc(TypeOf(fn), incr) + ValueOf(&fn).Elem().Set(fv) + if r := fn(2); r != 3 { + t.Errorf("Call returned %d, want 3", r) + } + if r := fv.Call([]Value{ValueOf(14)})[0].Int(); r != 15 { + t.Errorf("Call returned %d, want 15", r) + } + if r := fv.Interface().(func(int) int)(26); r != 27 { + t.Errorf("Call returned %d, want 27", r) + } +} + +func TestMakeFuncVariadic(t *testing.T) { + // Test that variadic arguments are packed into a slice and passed as last arg + fn := func(_ int, is ...int) []int { return nil } + fv := MakeFunc(TypeOf(fn), func(in []Value) []Value { return in[1:2] }) + ValueOf(&fn).Elem().Set(fv) + + r := fn(1, 2, 3) + if r[0] != 2 || r[1] != 3 { + t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) + } + + r = fn(1, []int{2, 3}...) + if r[0] != 2 || r[1] != 3 { + t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) + } + + r = fv.Call([]Value{ValueOf(1), ValueOf(2), ValueOf(3)})[0].Interface().([]int) + if r[0] != 2 || r[1] != 3 { + t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) + } + + r = fv.CallSlice([]Value{ValueOf(1), ValueOf([]int{2, 3})})[0].Interface().([]int) + if r[0] != 2 || r[1] != 3 { + t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) + } + + f := fv.Interface().(func(int, ...int) []int) + + r = f(1, 2, 3) + if r[0] != 2 || r[1] != 3 { + t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) + } + r = f(1, []int{2, 3}...) + if r[0] != 2 || r[1] != 3 { + t.Errorf("Call returned [%v, %v]; want 2, 3", r[0], r[1]) + } +} + +// Dummy type that implements io.WriteCloser +type WC struct { +} + +func (w *WC) Write(p []byte) (n int, err error) { + return 0, nil +} +func (w *WC) Close() error { + return nil +} + +func TestMakeFuncValidReturnAssignments(t *testing.T) { + // reflect.Values returned from the wrapped function should be assignment-converted + // to the types returned by the result of MakeFunc. + + // Concrete types should be promotable to interfaces they implement. + var f func() error + f = MakeFunc(TypeOf(f), func([]Value) []Value { + return []Value{ValueOf(io.EOF)} + }).Interface().(func() error) + f() + + // Super-interfaces should be promotable to simpler interfaces. + var g func() io.Writer + g = MakeFunc(TypeOf(g), func([]Value) []Value { + var w io.WriteCloser = &WC{} + return []Value{ValueOf(&w).Elem()} + }).Interface().(func() io.Writer) + g() + + // Channels should be promotable to directional channels. + var h func() <-chan int + h = MakeFunc(TypeOf(h), func([]Value) []Value { + return []Value{ValueOf(make(chan int))} + }).Interface().(func() <-chan int) + h() + + // Unnamed types should be promotable to named types. + type T struct{ a, b, c int } + var i func() T + i = MakeFunc(TypeOf(i), func([]Value) []Value { + return []Value{ValueOf(struct{ a, b, c int }{a: 1, b: 2, c: 3})} + }).Interface().(func() T) + i() +} + +func TestMakeFuncInvalidReturnAssignments(t *testing.T) { + // Type doesn't implement the required interface. + shouldPanic("", func() { + var f func() error + f = MakeFunc(TypeOf(f), func([]Value) []Value { + return []Value{ValueOf(int(7))} + }).Interface().(func() error) + f() + }) + // Assigning to an interface with additional methods. + shouldPanic("", func() { + var f func() io.ReadWriteCloser + f = MakeFunc(TypeOf(f), func([]Value) []Value { + var w io.WriteCloser = &WC{} + return []Value{ValueOf(&w).Elem()} + }).Interface().(func() io.ReadWriteCloser) + f() + }) + // Directional channels can't be assigned to bidirectional ones. + shouldPanic("", func() { + var f func() chan int + f = MakeFunc(TypeOf(f), func([]Value) []Value { + var c <-chan int = make(chan int) + return []Value{ValueOf(c)} + }).Interface().(func() chan int) + f() + }) + // Two named types which are otherwise identical. + shouldPanic("", func() { + type T struct{ a, b, c int } + type U struct{ a, b, c int } + var f func() T + f = MakeFunc(TypeOf(f), func([]Value) []Value { + return []Value{ValueOf(U{a: 1, b: 2, c: 3})} + }).Interface().(func() T) + f() + }) +} + +type Point struct { + x, y int +} + +// This will be index 0. +func (p Point) AnotherMethod(scale int) int { + return -1 +} + +// This will be index 1. +func (p Point) Dist(scale int) int { + //println("Point.Dist", p.x, p.y, scale) + return p.x*p.x*scale + p.y*p.y*scale +} + +// This will be index 2. +func (p Point) GCMethod(k int) int { + runtime.GC() + return k + p.x +} + +// This will be index 3. +func (p Point) NoArgs() { + // Exercise no-argument/no-result paths. +} + +// This will be index 4. +func (p Point) TotalDist(points ...Point) int { + tot := 0 + for _, q := range points { + dx := q.x - p.x + dy := q.y - p.y + tot += dx*dx + dy*dy // Should call Sqrt, but it's just a test. + + } + return tot +} + +// This will be index 5. +func (p *Point) Int64Method(x int64) int64 { + return x +} + +// This will be index 6. +func (p *Point) Int32Method(x int32) int32 { + return x +} + +func TestMethod(t *testing.T) { + // Non-curried method of type. + p := Point{3, 4} + i := TypeOf(p).Method(1).Func.Call([]Value{ValueOf(p), ValueOf(10)})[0].Int() + if i != 250 { + t.Errorf("Type Method returned %d; want 250", i) + } + + m, ok := TypeOf(p).MethodByName("Dist") + if !ok { + t.Fatalf("method by name failed") + } + i = m.Func.Call([]Value{ValueOf(p), ValueOf(11)})[0].Int() + if i != 275 { + t.Errorf("Type MethodByName returned %d; want 275", i) + } + + m, ok = TypeOf(p).MethodByName("NoArgs") + if !ok { + t.Fatalf("method by name failed") + } + n := len(m.Func.Call([]Value{ValueOf(p)})) + if n != 0 { + t.Errorf("NoArgs returned %d values; want 0", n) + } + + i = TypeOf(&p).Method(1).Func.Call([]Value{ValueOf(&p), ValueOf(12)})[0].Int() + if i != 300 { + t.Errorf("Pointer Type Method returned %d; want 300", i) + } + + m, ok = TypeOf(&p).MethodByName("Dist") + if !ok { + t.Fatalf("ptr method by name failed") + } + i = m.Func.Call([]Value{ValueOf(&p), ValueOf(13)})[0].Int() + if i != 325 { + t.Errorf("Pointer Type MethodByName returned %d; want 325", i) + } + + m, ok = TypeOf(&p).MethodByName("NoArgs") + if !ok { + t.Fatalf("method by name failed") + } + n = len(m.Func.Call([]Value{ValueOf(&p)})) + if n != 0 { + t.Errorf("NoArgs returned %d values; want 0", n) + } + + _, ok = TypeOf(&p).MethodByName("AA") + if ok { + t.Errorf(`MethodByName("AA") should have failed`) + } + + _, ok = TypeOf(&p).MethodByName("ZZ") + if ok { + t.Errorf(`MethodByName("ZZ") should have failed`) + } + + // Curried method of value. + tfunc := TypeOf((func(int) int)(nil)) + v := ValueOf(p).Method(1) + if tt := v.Type(); tt != tfunc { + t.Errorf("Value Method Type is %s; want %s", tt, tfunc) + } + i = v.Call([]Value{ValueOf(14)})[0].Int() + if i != 350 { + t.Errorf("Value Method returned %d; want 350", i) + } + v = ValueOf(p).MethodByName("Dist") + if tt := v.Type(); tt != tfunc { + t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc) + } + i = v.Call([]Value{ValueOf(15)})[0].Int() + if i != 375 { + t.Errorf("Value MethodByName returned %d; want 375", i) + } + v = ValueOf(p).MethodByName("NoArgs") + v.Call(nil) + + // Curried method of pointer. + v = ValueOf(&p).Method(1) + if tt := v.Type(); tt != tfunc { + t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc) + } + i = v.Call([]Value{ValueOf(16)})[0].Int() + if i != 400 { + t.Errorf("Pointer Value Method returned %d; want 400", i) + } + v = ValueOf(&p).MethodByName("Dist") + if tt := v.Type(); tt != tfunc { + t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc) + } + i = v.Call([]Value{ValueOf(17)})[0].Int() + if i != 425 { + t.Errorf("Pointer Value MethodByName returned %d; want 425", i) + } + v = ValueOf(&p).MethodByName("NoArgs") + v.Call(nil) + + // Curried method of interface value. + // Have to wrap interface value in a struct to get at it. + // Passing it to ValueOf directly would + // access the underlying Point, not the interface. + var x interface { + Dist(int) int + } = p + pv := ValueOf(&x).Elem() + v = pv.Method(0) + if tt := v.Type(); tt != tfunc { + t.Errorf("Interface Method Type is %s; want %s", tt, tfunc) + } + i = v.Call([]Value{ValueOf(18)})[0].Int() + if i != 450 { + t.Errorf("Interface Method returned %d; want 450", i) + } + v = pv.MethodByName("Dist") + if tt := v.Type(); tt != tfunc { + t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc) + } + i = v.Call([]Value{ValueOf(19)})[0].Int() + if i != 475 { + t.Errorf("Interface MethodByName returned %d; want 475", i) + } +} + +func TestMethodValue(t *testing.T) { + p := Point{3, 4} + var i int64 + + // Check that method value have the same underlying code pointers. + if p1, p2 := ValueOf(Point{1, 1}).Method(1), ValueOf(Point{2, 2}).Method(1); p1.Pointer() != p2.Pointer() { + t.Errorf("methodValueCall mismatched: %v - %v", p1, p2) + } + + // Curried method of value. + tfunc := TypeOf((func(int) int)(nil)) + v := ValueOf(p).Method(1) + if tt := v.Type(); tt != tfunc { + t.Errorf("Value Method Type is %s; want %s", tt, tfunc) + } + i = ValueOf(v.Interface()).Call([]Value{ValueOf(10)})[0].Int() + if i != 250 { + t.Errorf("Value Method returned %d; want 250", i) + } + v = ValueOf(p).MethodByName("Dist") + if tt := v.Type(); tt != tfunc { + t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc) + } + i = ValueOf(v.Interface()).Call([]Value{ValueOf(11)})[0].Int() + if i != 275 { + t.Errorf("Value MethodByName returned %d; want 275", i) + } + v = ValueOf(p).MethodByName("NoArgs") + ValueOf(v.Interface()).Call(nil) + v.Interface().(func())() + + // Curried method of pointer. + v = ValueOf(&p).Method(1) + if tt := v.Type(); tt != tfunc { + t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc) + } + i = ValueOf(v.Interface()).Call([]Value{ValueOf(12)})[0].Int() + if i != 300 { + t.Errorf("Pointer Value Method returned %d; want 300", i) + } + v = ValueOf(&p).MethodByName("Dist") + if tt := v.Type(); tt != tfunc { + t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc) + } + i = ValueOf(v.Interface()).Call([]Value{ValueOf(13)})[0].Int() + if i != 325 { + t.Errorf("Pointer Value MethodByName returned %d; want 325", i) + } + v = ValueOf(&p).MethodByName("NoArgs") + ValueOf(v.Interface()).Call(nil) + v.Interface().(func())() + + // Curried method of pointer to pointer. + pp := &p + v = ValueOf(&pp).Elem().Method(1) + if tt := v.Type(); tt != tfunc { + t.Errorf("Pointer Pointer Value Method Type is %s; want %s", tt, tfunc) + } + i = ValueOf(v.Interface()).Call([]Value{ValueOf(14)})[0].Int() + if i != 350 { + t.Errorf("Pointer Pointer Value Method returned %d; want 350", i) + } + v = ValueOf(&pp).Elem().MethodByName("Dist") + if tt := v.Type(); tt != tfunc { + t.Errorf("Pointer Pointer Value MethodByName Type is %s; want %s", tt, tfunc) + } + i = ValueOf(v.Interface()).Call([]Value{ValueOf(15)})[0].Int() + if i != 375 { + t.Errorf("Pointer Pointer Value MethodByName returned %d; want 375", i) + } + + // Curried method of interface value. + // Have to wrap interface value in a struct to get at it. + // Passing it to ValueOf directly would + // access the underlying Point, not the interface. + var s = struct { + X interface { + Dist(int) int + } + }{p} + pv := ValueOf(s).Field(0) + v = pv.Method(0) + if tt := v.Type(); tt != tfunc { + t.Errorf("Interface Method Type is %s; want %s", tt, tfunc) + } + i = ValueOf(v.Interface()).Call([]Value{ValueOf(16)})[0].Int() + if i != 400 { + t.Errorf("Interface Method returned %d; want 400", i) + } + v = pv.MethodByName("Dist") + if tt := v.Type(); tt != tfunc { + t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc) + } + i = ValueOf(v.Interface()).Call([]Value{ValueOf(17)})[0].Int() + if i != 425 { + t.Errorf("Interface MethodByName returned %d; want 425", i) + } + + // For issue #33628: method args are not stored at the right offset + // on amd64p32. + m64 := ValueOf(&p).MethodByName("Int64Method").Interface().(func(int64) int64) + if x := m64(123); x != 123 { + t.Errorf("Int64Method returned %d; want 123", x) + } + m32 := ValueOf(&p).MethodByName("Int32Method").Interface().(func(int32) int32) + if x := m32(456); x != 456 { + t.Errorf("Int32Method returned %d; want 456", x) + } +} + +func TestVariadicMethodValue(t *testing.T) { + p := Point{3, 4} + points := []Point{{20, 21}, {22, 23}, {24, 25}} + want := int64(p.TotalDist(points[0], points[1], points[2])) + + // Variadic method of type. + tfunc := TypeOf((func(Point, ...Point) int)(nil)) + if tt := TypeOf(p).Method(4).Type; tt != tfunc { + t.Errorf("Variadic Method Type from TypeOf is %s; want %s", tt, tfunc) + } + + // Curried method of value. + tfunc = TypeOf((func(...Point) int)(nil)) + v := ValueOf(p).Method(4) + if tt := v.Type(); tt != tfunc { + t.Errorf("Variadic Method Type is %s; want %s", tt, tfunc) + } + i := ValueOf(v.Interface()).Call([]Value{ValueOf(points[0]), ValueOf(points[1]), ValueOf(points[2])})[0].Int() + if i != want { + t.Errorf("Variadic Method returned %d; want %d", i, want) + } + i = ValueOf(v.Interface()).CallSlice([]Value{ValueOf(points)})[0].Int() + if i != want { + t.Errorf("Variadic Method CallSlice returned %d; want %d", i, want) + } + + f := v.Interface().(func(...Point) int) + i = int64(f(points[0], points[1], points[2])) + if i != want { + t.Errorf("Variadic Method Interface returned %d; want %d", i, want) + } + i = int64(f(points...)) + if i != want { + t.Errorf("Variadic Method Interface Slice returned %d; want %d", i, want) + } +} + +type DirectIfaceT struct { + p *int +} + +func (d DirectIfaceT) M() int { return *d.p } + +func TestDirectIfaceMethod(t *testing.T) { + x := 42 + v := DirectIfaceT{&x} + typ := TypeOf(v) + m, ok := typ.MethodByName("M") + if !ok { + t.Fatalf("cannot find method M") + } + in := []Value{ValueOf(v)} + out := m.Func.Call(in) + if got := out[0].Int(); got != 42 { + t.Errorf("Call with value receiver got %d, want 42", got) + } + + pv := &v + typ = TypeOf(pv) + m, ok = typ.MethodByName("M") + if !ok { + t.Fatalf("cannot find method M") + } + in = []Value{ValueOf(pv)} + out = m.Func.Call(in) + if got := out[0].Int(); got != 42 { + t.Errorf("Call with pointer receiver got %d, want 42", got) + } +} + +// Reflect version of $GOROOT/test/method5.go + +// Concrete types implementing M method. +// Smaller than a word, word-sized, larger than a word. +// Value and pointer receivers. + +type Tinter interface { + M(int, byte) (byte, int) +} + +type Tsmallv byte + +func (v Tsmallv) M(x int, b byte) (byte, int) { return b, x + int(v) } + +type Tsmallp byte + +func (p *Tsmallp) M(x int, b byte) (byte, int) { return b, x + int(*p) } + +type Twordv uintptr + +func (v Twordv) M(x int, b byte) (byte, int) { return b, x + int(v) } + +type Twordp uintptr + +func (p *Twordp) M(x int, b byte) (byte, int) { return b, x + int(*p) } + +type Tbigv [2]uintptr + +func (v Tbigv) M(x int, b byte) (byte, int) { return b, x + int(v[0]) + int(v[1]) } + +type Tbigp [2]uintptr + +func (p *Tbigp) M(x int, b byte) (byte, int) { return b, x + int(p[0]) + int(p[1]) } + +type tinter interface { + m(int, byte) (byte, int) +} + +// Embedding via pointer. + +type Tm1 struct { + Tm2 +} + +type Tm2 struct { + *Tm3 +} + +type Tm3 struct { + *Tm4 +} + +type Tm4 struct { +} + +func (t4 Tm4) M(x int, b byte) (byte, int) { return b, x + 40 } + +func TestMethod5(t *testing.T) { + CheckF := func(name string, f func(int, byte) (byte, int), inc int) { + b, x := f(1000, 99) + if b != 99 || x != 1000+inc { + t.Errorf("%s(1000, 99) = %v, %v, want 99, %v", name, b, x, 1000+inc) + } + } + + CheckV := func(name string, i Value, inc int) { + bx := i.Method(0).Call([]Value{ValueOf(1000), ValueOf(byte(99))}) + b := bx[0].Interface() + x := bx[1].Interface() + if b != byte(99) || x != 1000+inc { + t.Errorf("direct %s.M(1000, 99) = %v, %v, want 99, %v", name, b, x, 1000+inc) + } + + CheckF(name+".M", i.Method(0).Interface().(func(int, byte) (byte, int)), inc) + } + + var TinterType = TypeOf(new(Tinter)).Elem() + + CheckI := func(name string, i any, inc int) { + v := ValueOf(i) + CheckV(name, v, inc) + CheckV("(i="+name+")", v.Convert(TinterType), inc) + } + + sv := Tsmallv(1) + CheckI("sv", sv, 1) + CheckI("&sv", &sv, 1) + + sp := Tsmallp(2) + CheckI("&sp", &sp, 2) + + wv := Twordv(3) + CheckI("wv", wv, 3) + CheckI("&wv", &wv, 3) + + wp := Twordp(4) + CheckI("&wp", &wp, 4) + + bv := Tbigv([2]uintptr{5, 6}) + CheckI("bv", bv, 11) + CheckI("&bv", &bv, 11) + + bp := Tbigp([2]uintptr{7, 8}) + CheckI("&bp", &bp, 15) + + t4 := Tm4{} + t3 := Tm3{&t4} + t2 := Tm2{&t3} + t1 := Tm1{t2} + CheckI("t4", t4, 40) + CheckI("&t4", &t4, 40) + CheckI("t3", t3, 40) + CheckI("&t3", &t3, 40) + CheckI("t2", t2, 40) + CheckI("&t2", &t2, 40) + CheckI("t1", t1, 40) + CheckI("&t1", &t1, 40) + + var tnil Tinter + vnil := ValueOf(&tnil).Elem() + shouldPanic("Method", func() { vnil.Method(0) }) +} + +func TestInterfaceSet(t *testing.T) { + p := &Point{3, 4} + + var s struct { + I any + P interface { + Dist(int) int + } + } + sv := ValueOf(&s).Elem() + sv.Field(0).Set(ValueOf(p)) + if q := s.I.(*Point); q != p { + t.Errorf("i: have %p want %p", q, p) + } + + pv := sv.Field(1) + pv.Set(ValueOf(p)) + if q := s.P.(*Point); q != p { + t.Errorf("i: have %p want %p", q, p) + } + + i := pv.Method(0).Call([]Value{ValueOf(10)})[0].Int() + if i != 250 { + t.Errorf("Interface Method returned %d; want 250", i) + } +} + +type T1 struct { + a string + int +} + +func TestAnonymousFields(t *testing.T) { + var field StructField + var ok bool + var t1 T1 + type1 := TypeOf(t1) + if field, ok = type1.FieldByName("int"); !ok { + t.Fatal("no field 'int'") + } + if field.Index[0] != 1 { + t.Error("field index should be 1; is", field.Index) + } +} + +type FTest struct { + s any + name string + index []int + value int +} + +type D1 struct { + d int +} +type D2 struct { + d int +} + +type S0 struct { + A, B, C int + D1 + D2 +} + +type S1 struct { + B int + S0 +} + +type S2 struct { + A int + *S1 +} + +type S1x struct { + S1 +} + +type S1y struct { + S1 +} + +type S3 struct { + S1x + S2 + D, E int + *S1y +} + +type S4 struct { + *S4 + A int +} + +// The X in S6 and S7 annihilate, but they also block the X in S8.S9. +type S5 struct { + S6 + S7 + S8 +} + +type S6 struct { + X int +} + +type S7 S6 + +type S8 struct { + S9 +} + +type S9 struct { + X int + Y int +} + +// The X in S11.S6 and S12.S6 annihilate, but they also block the X in S13.S8.S9. +type S10 struct { + S11 + S12 + S13 +} + +type S11 struct { + S6 +} + +type S12 struct { + S6 +} + +type S13 struct { + S8 +} + +// The X in S15.S11.S1 and S16.S11.S1 annihilate. +type S14 struct { + S15 + S16 +} + +type S15 struct { + S11 +} + +type S16 struct { + S11 +} + +var fieldTests = []FTest{ + {struct{}{}, "", nil, 0}, + {struct{}{}, "Foo", nil, 0}, + {S0{A: 'a'}, "A", []int{0}, 'a'}, + {S0{}, "D", nil, 0}, + {S1{S0: S0{A: 'a'}}, "A", []int{1, 0}, 'a'}, + {S1{B: 'b'}, "B", []int{0}, 'b'}, + {S1{}, "S0", []int{1}, 0}, + {S1{S0: S0{C: 'c'}}, "C", []int{1, 2}, 'c'}, + {S2{A: 'a'}, "A", []int{0}, 'a'}, + {S2{}, "S1", []int{1}, 0}, + {S2{S1: &S1{B: 'b'}}, "B", []int{1, 0}, 'b'}, + {S2{S1: &S1{S0: S0{C: 'c'}}}, "C", []int{1, 1, 2}, 'c'}, + {S2{}, "D", nil, 0}, + {S3{}, "S1", nil, 0}, + {S3{S2: S2{A: 'a'}}, "A", []int{1, 0}, 'a'}, + {S3{}, "B", nil, 0}, + {S3{D: 'd'}, "D", []int{2}, 0}, + {S3{E: 'e'}, "E", []int{3}, 'e'}, + {S4{A: 'a'}, "A", []int{1}, 'a'}, + {S4{}, "B", nil, 0}, + {S5{}, "X", nil, 0}, + {S5{}, "Y", []int{2, 0, 1}, 0}, + {S10{}, "X", nil, 0}, + {S10{}, "Y", []int{2, 0, 0, 1}, 0}, + {S14{}, "X", nil, 0}, +} + +func TestFieldByIndex(t *testing.T) { + for _, test := range fieldTests { + s := TypeOf(test.s) + f := s.FieldByIndex(test.index) + if f.Name != "" { + if test.index != nil { + if f.Name != test.name { + t.Errorf("%s.%s found; want %s", s.Name(), f.Name, test.name) + } + } else { + t.Errorf("%s.%s found", s.Name(), f.Name) + } + } else if len(test.index) > 0 { + t.Errorf("%s.%s not found", s.Name(), test.name) + } + + if test.value != 0 { + v := ValueOf(test.s).FieldByIndex(test.index) + if v.IsValid() { + if x, ok := v.Interface().(int); ok { + if x != test.value { + t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value) + } + } else { + t.Errorf("%s%v value not an int", s.Name(), test.index) + } + } else { + t.Errorf("%s%v value not found", s.Name(), test.index) + } + } + } +} + +func TestFieldByName(t *testing.T) { + for _, test := range fieldTests { + s := TypeOf(test.s) + f, found := s.FieldByName(test.name) + if found { + if test.index != nil { + // Verify field depth and index. + if len(f.Index) != len(test.index) { + t.Errorf("%s.%s depth %d; want %d: %v vs %v", s.Name(), test.name, len(f.Index), len(test.index), f.Index, test.index) + } else { + for i, x := range f.Index { + if x != test.index[i] { + t.Errorf("%s.%s.Index[%d] is %d; want %d", s.Name(), test.name, i, x, test.index[i]) + } + } + } + } else { + t.Errorf("%s.%s found", s.Name(), f.Name) + } + } else if len(test.index) > 0 { + t.Errorf("%s.%s not found", s.Name(), test.name) + } + + if test.value != 0 { + v := ValueOf(test.s).FieldByName(test.name) + if v.IsValid() { + if x, ok := v.Interface().(int); ok { + if x != test.value { + t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value) + } + } else { + t.Errorf("%s.%s value not an int", s.Name(), test.name) + } + } else { + t.Errorf("%s.%s value not found", s.Name(), test.name) + } + } + } +} + +func TestImportPath(t *testing.T) { + tests := []struct { + t Type + path string + }{ + {TypeOf(&base64.Encoding{}).Elem(), "encoding/base64"}, + {TypeOf(int(0)), ""}, + {TypeOf(int8(0)), ""}, + {TypeOf(int16(0)), ""}, + {TypeOf(int32(0)), ""}, + {TypeOf(int64(0)), ""}, + {TypeOf(uint(0)), ""}, + {TypeOf(uint8(0)), ""}, + {TypeOf(uint16(0)), ""}, + {TypeOf(uint32(0)), ""}, + {TypeOf(uint64(0)), ""}, + {TypeOf(uintptr(0)), ""}, + {TypeOf(float32(0)), ""}, + {TypeOf(float64(0)), ""}, + {TypeOf(complex64(0)), ""}, + {TypeOf(complex128(0)), ""}, + {TypeOf(byte(0)), ""}, + {TypeOf(rune(0)), ""}, + {TypeOf([]byte(nil)), ""}, + {TypeOf([]rune(nil)), ""}, + {TypeOf(string("")), ""}, + {TypeOf((*any)(nil)).Elem(), ""}, + {TypeOf((*byte)(nil)), ""}, + {TypeOf((*rune)(nil)), ""}, + {TypeOf((*int64)(nil)), ""}, + {TypeOf(map[string]int{}), ""}, + {TypeOf((*error)(nil)).Elem(), ""}, + {TypeOf((*Point)(nil)), ""}, + {TypeOf((*Point)(nil)).Elem(), "reflect_test"}, + } + for _, test := range tests { + if path := test.t.PkgPath(); path != test.path { + t.Errorf("%v.PkgPath() = %q, want %q", test.t, path, test.path) + } + } +} + +func TestFieldPkgPath(t *testing.T) { + type x int + typ := TypeOf(struct { + Exported string + unexported string + OtherPkgFields + int // issue 21702 + *x // issue 21122 + }{}) + + type pkgpathTest struct { + index []int + pkgPath string + embedded bool + exported bool + } + + checkPkgPath := func(name string, s []pkgpathTest) { + for _, test := range s { + f := typ.FieldByIndex(test.index) + if got, want := f.PkgPath, test.pkgPath; got != want { + t.Errorf("%s: Field(%d).PkgPath = %q, want %q", name, test.index, got, want) + } + if got, want := f.Anonymous, test.embedded; got != want { + t.Errorf("%s: Field(%d).Anonymous = %v, want %v", name, test.index, got, want) + } + if got, want := f.IsExported(), test.exported; got != want { + t.Errorf("%s: Field(%d).IsExported = %v, want %v", name, test.index, got, want) + } + } + } + + checkPkgPath("testStruct", []pkgpathTest{ + {[]int{0}, "", false, true}, // Exported + {[]int{1}, "reflect_test", false, false}, // unexported + {[]int{2}, "", true, true}, // OtherPkgFields + {[]int{2, 0}, "", false, true}, // OtherExported + {[]int{2, 1}, "reflect", false, false}, // otherUnexported + {[]int{3}, "reflect_test", true, false}, // int + {[]int{4}, "reflect_test", true, false}, // *x + }) + + type localOtherPkgFields OtherPkgFields + typ = TypeOf(localOtherPkgFields{}) + checkPkgPath("localOtherPkgFields", []pkgpathTest{ + {[]int{0}, "", false, true}, // OtherExported + {[]int{1}, "reflect", false, false}, // otherUnexported + }) +} + +func TestMethodPkgPath(t *testing.T) { + type I interface { + x() + X() + } + typ := TypeOf((*interface { + I + y() + Y() + })(nil)).Elem() + + tests := []struct { + name string + pkgPath string + exported bool + }{ + {"X", "", true}, + {"Y", "", true}, + {"x", "reflect_test", false}, + {"y", "reflect_test", false}, + } + + for _, test := range tests { + m, _ := typ.MethodByName(test.name) + if got, want := m.PkgPath, test.pkgPath; got != want { + t.Errorf("MethodByName(%q).PkgPath = %q, want %q", test.name, got, want) + } + if got, want := m.IsExported(), test.exported; got != want { + t.Errorf("MethodByName(%q).IsExported = %v, want %v", test.name, got, want) + } + } +} + +func TestVariadicType(t *testing.T) { + // Test example from Type documentation. + var f func(x int, y ...float64) + typ := TypeOf(f) + if typ.NumIn() == 2 && typ.In(0) == TypeOf(int(0)) { + sl := typ.In(1) + if sl.Kind() == Slice { + if sl.Elem() == TypeOf(0.0) { + // ok + return + } + } + } + + // Failed + t.Errorf("want NumIn() = 2, In(0) = int, In(1) = []float64") + s := fmt.Sprintf("have NumIn() = %d", typ.NumIn()) + for i := 0; i < typ.NumIn(); i++ { + s += fmt.Sprintf(", In(%d) = %s", i, typ.In(i)) + } + t.Error(s) +} + +type inner struct { + x int +} + +type outer struct { + y int + inner +} + +func (*inner) M() {} +func (*outer) M() {} + +func TestNestedMethods(t *testing.T) { + typ := TypeOf((*outer)(nil)) + if typ.NumMethod() != 1 || typ.Method(0).Func.UnsafePointer() != ValueOf((*outer).M).UnsafePointer() { + t.Errorf("Wrong method table for outer: (M=%p)", (*outer).M) + for i := 0; i < typ.NumMethod(); i++ { + m := typ.Method(i) + t.Errorf("\t%d: %s %p\n", i, m.Name, m.Func.UnsafePointer()) + } + } +} + +type unexp struct{} + +func (*unexp) f() (int32, int8) { return 7, 7 } +func (*unexp) g() (int64, int8) { return 8, 8 } + +type unexpI interface { + f() (int32, int8) +} + +var unexpi unexpI = new(unexp) + +func TestUnexportedMethods(t *testing.T) { + typ := TypeOf(unexpi) + + if got := typ.NumMethod(); got != 0 { + t.Errorf("NumMethod=%d, want 0 satisfied methods", got) + } +} + +type InnerInt struct { + X int +} + +type OuterInt struct { + Y int + InnerInt +} + +func (i *InnerInt) M() int { + return i.X +} + +func TestEmbeddedMethods(t *testing.T) { + typ := TypeOf((*OuterInt)(nil)) + if typ.NumMethod() != 1 || typ.Method(0).Func.UnsafePointer() != ValueOf((*OuterInt).M).UnsafePointer() { + t.Errorf("Wrong method table for OuterInt: (m=%p)", (*OuterInt).M) + for i := 0; i < typ.NumMethod(); i++ { + m := typ.Method(i) + t.Errorf("\t%d: %s %p\n", i, m.Name, m.Func.UnsafePointer()) + } + } + + i := &InnerInt{3} + if v := ValueOf(i).Method(0).Call(nil)[0].Int(); v != 3 { + t.Errorf("i.M() = %d, want 3", v) + } + + o := &OuterInt{1, InnerInt{2}} + if v := ValueOf(o).Method(0).Call(nil)[0].Int(); v != 2 { + t.Errorf("i.M() = %d, want 2", v) + } + + f := (*OuterInt).M + if v := f(o); v != 2 { + t.Errorf("f(o) = %d, want 2", v) + } +} + +type FuncDDD func(...any) error + +func (f FuncDDD) M() {} + +func TestNumMethodOnDDD(t *testing.T) { + rv := ValueOf((FuncDDD)(nil)) + if n := rv.NumMethod(); n != 1 { + t.Fatalf("NumMethod()=%d, want 1", n) + } +} + +func TestPtrTo(t *testing.T) { + // This block of code means that the ptrToThis field of the + // reflect data for *unsafe.Pointer is non zero, see + // https://golang.org/issue/19003 + var x unsafe.Pointer + var y = &x + var z = &y + + var i int + + typ := TypeOf(z) + for i = 0; i < 100; i++ { + typ = PointerTo(typ) + } + for i = 0; i < 100; i++ { + typ = typ.Elem() + } + if typ != TypeOf(z) { + t.Errorf("after 100 PointerTo and Elem, have %s, want %s", typ, TypeOf(z)) + } +} + +func TestPtrToGC(t *testing.T) { + type T *uintptr + tt := TypeOf(T(nil)) + pt := PointerTo(tt) + const n = 100 + var x []any + for i := 0; i < n; i++ { + v := New(pt) + p := new(*uintptr) + *p = new(uintptr) + **p = uintptr(i) + v.Elem().Set(ValueOf(p).Convert(pt)) + x = append(x, v.Interface()) + } + runtime.GC() + + for i, xi := range x { + k := ValueOf(xi).Elem().Elem().Elem().Interface().(uintptr) + if k != uintptr(i) { + t.Errorf("lost x[%d] = %d, want %d", i, k, i) + } + } +} + +func TestAddr(t *testing.T) { + var p struct { + X, Y int + } + + v := ValueOf(&p) + v = v.Elem() + v = v.Addr() + v = v.Elem() + v = v.Field(0) + v.SetInt(2) + if p.X != 2 { + t.Errorf("Addr.Elem.Set failed to set value") + } + + // Again but take address of the ValueOf value. + // Exercises generation of PtrTypes not present in the binary. + q := &p + v = ValueOf(&q).Elem() + v = v.Addr() + v = v.Elem() + v = v.Elem() + v = v.Addr() + v = v.Elem() + v = v.Field(0) + v.SetInt(3) + if p.X != 3 { + t.Errorf("Addr.Elem.Set failed to set value") + } + + // Starting without pointer we should get changed value + // in interface. + qq := p + v = ValueOf(&qq).Elem() + v0 := v + v = v.Addr() + v = v.Elem() + v = v.Field(0) + v.SetInt(4) + if p.X != 3 { // should be unchanged from last time + t.Errorf("somehow value Set changed original p") + } + p = v0.Interface().(struct { + X, Y int + }) + if p.X != 4 { + t.Errorf("Addr.Elem.Set valued to set value in top value") + } + + // Verify that taking the address of a type gives us a pointer + // which we can convert back using the usual interface + // notation. + var s struct { + B *bool + } + ps := ValueOf(&s).Elem().Field(0).Addr().Interface() + *(ps.(**bool)) = new(bool) + if s.B == nil { + t.Errorf("Addr.Interface direct assignment failed") + } +} + +func noAlloc(t *testing.T, n int, f func(int)) { + if testing.Short() { + t.Skip("skipping malloc count in short mode") + } + if runtime.GOMAXPROCS(0) > 1 { + t.Skip("skipping; GOMAXPROCS>1") + } + i := -1 + allocs := testing.AllocsPerRun(n, func() { + f(i) + i++ + }) + if allocs > 0 { + t.Errorf("%d iterations: got %v mallocs, want 0", n, allocs) + } +} + +func TestAllocations(t *testing.T) { + noAlloc(t, 100, func(j int) { + var i any + var v Value + + // We can uncomment this when compiler escape analysis + // is good enough to see that the integer assigned to i + // does not escape and therefore need not be allocated. + // + // i = 42 + j + // v = ValueOf(i) + // if int(v.Int()) != 42+j { + // panic("wrong int") + // } + + i = func(j int) int { return j } + v = ValueOf(i) + if v.Interface().(func(int) int)(j) != j { + panic("wrong result") + } + }) +} + +func TestSmallNegativeInt(t *testing.T) { + i := int16(-1) + v := ValueOf(i) + if v.Int() != -1 { + t.Errorf("int16(-1).Int() returned %v", v.Int()) + } +} + +func TestIndex(t *testing.T) { + xs := []byte{1, 2, 3, 4, 5, 6, 7, 8} + v := ValueOf(xs).Index(3).Interface().(byte) + if v != xs[3] { + t.Errorf("xs.Index(3) = %v; expected %v", v, xs[3]) + } + xa := [8]byte{10, 20, 30, 40, 50, 60, 70, 80} + v = ValueOf(xa).Index(2).Interface().(byte) + if v != xa[2] { + t.Errorf("xa.Index(2) = %v; expected %v", v, xa[2]) + } + s := "0123456789" + v = ValueOf(s).Index(3).Interface().(byte) + if v != s[3] { + t.Errorf("s.Index(3) = %v; expected %v", v, s[3]) + } +} + +func TestSlice(t *testing.T) { + xs := []int{1, 2, 3, 4, 5, 6, 7, 8} + v := ValueOf(xs).Slice(3, 5).Interface().([]int) + if len(v) != 2 { + t.Errorf("len(xs.Slice(3, 5)) = %d", len(v)) + } + if cap(v) != 5 { + t.Errorf("cap(xs.Slice(3, 5)) = %d", cap(v)) + } + if !DeepEqual(v[0:5], xs[3:]) { + t.Errorf("xs.Slice(3, 5)[0:5] = %v", v[0:5]) + } + xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80} + v = ValueOf(&xa).Elem().Slice(2, 5).Interface().([]int) + if len(v) != 3 { + t.Errorf("len(xa.Slice(2, 5)) = %d", len(v)) + } + if cap(v) != 6 { + t.Errorf("cap(xa.Slice(2, 5)) = %d", cap(v)) + } + if !DeepEqual(v[0:6], xa[2:]) { + t.Errorf("xs.Slice(2, 5)[0:6] = %v", v[0:6]) + } + s := "0123456789" + vs := ValueOf(s).Slice(3, 5).Interface().(string) + if vs != s[3:5] { + t.Errorf("s.Slice(3, 5) = %q; expected %q", vs, s[3:5]) + } + + rv := ValueOf(&xs).Elem() + rv = rv.Slice(3, 4) + ptr2 := rv.UnsafePointer() + rv = rv.Slice(5, 5) + ptr3 := rv.UnsafePointer() + if ptr3 != ptr2 { + t.Errorf("xs.Slice(3,4).Slice3(5,5).UnsafePointer() = %p, want %p", ptr3, ptr2) + } +} + +func TestSlice3(t *testing.T) { + xs := []int{1, 2, 3, 4, 5, 6, 7, 8} + v := ValueOf(xs).Slice3(3, 5, 7).Interface().([]int) + if len(v) != 2 { + t.Errorf("len(xs.Slice3(3, 5, 7)) = %d", len(v)) + } + if cap(v) != 4 { + t.Errorf("cap(xs.Slice3(3, 5, 7)) = %d", cap(v)) + } + if !DeepEqual(v[0:4], xs[3:7:7]) { + t.Errorf("xs.Slice3(3, 5, 7)[0:4] = %v", v[0:4]) + } + rv := ValueOf(&xs).Elem() + shouldPanic("Slice3", func() { rv.Slice3(1, 2, 1) }) + shouldPanic("Slice3", func() { rv.Slice3(1, 1, 11) }) + shouldPanic("Slice3", func() { rv.Slice3(2, 2, 1) }) + + xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80} + v = ValueOf(&xa).Elem().Slice3(2, 5, 6).Interface().([]int) + if len(v) != 3 { + t.Errorf("len(xa.Slice(2, 5, 6)) = %d", len(v)) + } + if cap(v) != 4 { + t.Errorf("cap(xa.Slice(2, 5, 6)) = %d", cap(v)) + } + if !DeepEqual(v[0:4], xa[2:6:6]) { + t.Errorf("xs.Slice(2, 5, 6)[0:4] = %v", v[0:4]) + } + rv = ValueOf(&xa).Elem() + shouldPanic("Slice3", func() { rv.Slice3(1, 2, 1) }) + shouldPanic("Slice3", func() { rv.Slice3(1, 1, 11) }) + shouldPanic("Slice3", func() { rv.Slice3(2, 2, 1) }) + + s := "hello world" + rv = ValueOf(&s).Elem() + shouldPanic("Slice3", func() { rv.Slice3(1, 2, 3) }) + + rv = ValueOf(&xs).Elem() + rv = rv.Slice3(3, 5, 7) + ptr2 := rv.UnsafePointer() + rv = rv.Slice3(4, 4, 4) + ptr3 := rv.UnsafePointer() + if ptr3 != ptr2 { + t.Errorf("xs.Slice3(3,5,7).Slice3(4,4,4).UnsafePointer() = %p, want %p", ptr3, ptr2) + } +} + +func TestSetLenCap(t *testing.T) { + xs := []int{1, 2, 3, 4, 5, 6, 7, 8} + xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80} + + vs := ValueOf(&xs).Elem() + shouldPanic("SetLen", func() { vs.SetLen(10) }) + shouldPanic("SetCap", func() { vs.SetCap(10) }) + shouldPanic("SetLen", func() { vs.SetLen(-1) }) + shouldPanic("SetCap", func() { vs.SetCap(-1) }) + shouldPanic("SetCap", func() { vs.SetCap(6) }) // smaller than len + vs.SetLen(5) + if len(xs) != 5 || cap(xs) != 8 { + t.Errorf("after SetLen(5), len, cap = %d, %d, want 5, 8", len(xs), cap(xs)) + } + vs.SetCap(6) + if len(xs) != 5 || cap(xs) != 6 { + t.Errorf("after SetCap(6), len, cap = %d, %d, want 5, 6", len(xs), cap(xs)) + } + vs.SetCap(5) + if len(xs) != 5 || cap(xs) != 5 { + t.Errorf("after SetCap(5), len, cap = %d, %d, want 5, 5", len(xs), cap(xs)) + } + shouldPanic("SetCap", func() { vs.SetCap(4) }) // smaller than len + shouldPanic("SetLen", func() { vs.SetLen(6) }) // bigger than cap + + va := ValueOf(&xa).Elem() + shouldPanic("SetLen", func() { va.SetLen(8) }) + shouldPanic("SetCap", func() { va.SetCap(8) }) +} + +func TestVariadic(t *testing.T) { + var b strings.Builder + V := ValueOf + + b.Reset() + V(fmt.Fprintf).Call([]Value{V(&b), V("%s, %d world"), V("hello"), V(42)}) + if b.String() != "hello, 42 world" { + t.Errorf("after Fprintf Call: %q != %q", b.String(), "hello 42 world") + } + + b.Reset() + V(fmt.Fprintf).CallSlice([]Value{V(&b), V("%s, %d world"), V([]any{"hello", 42})}) + if b.String() != "hello, 42 world" { + t.Errorf("after Fprintf CallSlice: %q != %q", b.String(), "hello 42 world") + } +} + +func TestFuncArg(t *testing.T) { + f1 := func(i int, f func(int) int) int { return f(i) } + f2 := func(i int) int { return i + 1 } + r := ValueOf(f1).Call([]Value{ValueOf(100), ValueOf(f2)}) + if r[0].Int() != 101 { + t.Errorf("function returned %d, want 101", r[0].Int()) + } +} + +func TestStructArg(t *testing.T) { + type padded struct { + B string + C int32 + } + var ( + gotA padded + gotB uint32 + wantA = padded{"3", 4} + wantB = uint32(5) + ) + f := func(a padded, b uint32) { + gotA, gotB = a, b + } + ValueOf(f).Call([]Value{ValueOf(wantA), ValueOf(wantB)}) + if gotA != wantA || gotB != wantB { + t.Errorf("function called with (%v, %v), want (%v, %v)", gotA, gotB, wantA, wantB) + } +} + +var tagGetTests = []struct { + Tag StructTag + Key string + Value string +}{ + {`protobuf:"PB(1,2)"`, `protobuf`, `PB(1,2)`}, + {`protobuf:"PB(1,2)"`, `foo`, ``}, + {`protobuf:"PB(1,2)"`, `rotobuf`, ``}, + {`protobuf:"PB(1,2)" json:"name"`, `json`, `name`}, + {`protobuf:"PB(1,2)" json:"name"`, `protobuf`, `PB(1,2)`}, + {`k0:"values contain spaces" k1:"and\ttabs"`, "k0", "values contain spaces"}, + {`k0:"values contain spaces" k1:"and\ttabs"`, "k1", "and\ttabs"}, +} + +func TestTagGet(t *testing.T) { + for _, tt := range tagGetTests { + if v := tt.Tag.Get(tt.Key); v != tt.Value { + t.Errorf("StructTag(%#q).Get(%#q) = %#q, want %#q", tt.Tag, tt.Key, v, tt.Value) + } + } +} + +func TestBytes(t *testing.T) { + shouldPanic("on int Value", func() { ValueOf(0).Bytes() }) + shouldPanic("of non-byte slice", func() { ValueOf([]string{}).Bytes() }) + + type S []byte + x := S{1, 2, 3, 4} + y := ValueOf(x).Bytes() + if !bytes.Equal(x, y) { + t.Fatalf("ValueOf(%v).Bytes() = %v", x, y) + } + if &x[0] != &y[0] { + t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0]) + } + + type A [4]byte + a := A{1, 2, 3, 4} + shouldPanic("unaddressable", func() { ValueOf(a).Bytes() }) + shouldPanic("on ptr Value", func() { ValueOf(&a).Bytes() }) + b := ValueOf(&a).Elem().Bytes() + if !bytes.Equal(a[:], y) { + t.Fatalf("ValueOf(%v).Bytes() = %v", a, b) + } + if &a[0] != &b[0] { + t.Errorf("ValueOf(%p).Bytes() = %p", &a[0], &b[0]) + } + + // Per issue #24746, it was decided that Bytes can be called on byte slices + // that normally cannot be converted from per Go language semantics. + type B byte + type SB []B + type AB [4]B + ValueOf([]B{1, 2, 3, 4}).Bytes() // should not panic + ValueOf(new([4]B)).Elem().Bytes() // should not panic + ValueOf(SB{1, 2, 3, 4}).Bytes() // should not panic + ValueOf(new(AB)).Elem().Bytes() // should not panic +} + +func TestSetBytes(t *testing.T) { + type B []byte + var x B + y := []byte{1, 2, 3, 4} + ValueOf(&x).Elem().SetBytes(y) + if !bytes.Equal(x, y) { + t.Fatalf("ValueOf(%v).Bytes() = %v", x, y) + } + if &x[0] != &y[0] { + t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0]) + } +} + +type Private struct { + x int + y **int + Z int +} + +func (p *Private) m() { +} + +type private struct { + Z int + z int + S string + A [1]Private + T []Private +} + +func (p *private) P() { +} + +type Public struct { + X int + Y **int + private +} + +func (p *Public) M() { +} + +func TestUnexported(t *testing.T) { + var pub Public + pub.S = "S" + pub.T = pub.A[:] + v := ValueOf(&pub) + isValid(v.Elem().Field(0)) + isValid(v.Elem().Field(1)) + isValid(v.Elem().Field(2)) + isValid(v.Elem().FieldByName("X")) + isValid(v.Elem().FieldByName("Y")) + isValid(v.Elem().FieldByName("Z")) + isValid(v.Type().Method(0).Func) + m, _ := v.Type().MethodByName("M") + isValid(m.Func) + m, _ = v.Type().MethodByName("P") + isValid(m.Func) + isNonNil(v.Elem().Field(0).Interface()) + isNonNil(v.Elem().Field(1).Interface()) + isNonNil(v.Elem().Field(2).Field(2).Index(0)) + isNonNil(v.Elem().FieldByName("X").Interface()) + isNonNil(v.Elem().FieldByName("Y").Interface()) + isNonNil(v.Elem().FieldByName("Z").Interface()) + isNonNil(v.Elem().FieldByName("S").Index(0).Interface()) + isNonNil(v.Type().Method(0).Func.Interface()) + m, _ = v.Type().MethodByName("P") + isNonNil(m.Func.Interface()) + + var priv Private + v = ValueOf(&priv) + isValid(v.Elem().Field(0)) + isValid(v.Elem().Field(1)) + isValid(v.Elem().FieldByName("x")) + isValid(v.Elem().FieldByName("y")) + shouldPanic("Interface", func() { v.Elem().Field(0).Interface() }) + shouldPanic("Interface", func() { v.Elem().Field(1).Interface() }) + shouldPanic("Interface", func() { v.Elem().FieldByName("x").Interface() }) + shouldPanic("Interface", func() { v.Elem().FieldByName("y").Interface() }) + shouldPanic("Method", func() { v.Type().Method(0) }) +} + +func TestSetPanic(t *testing.T) { + ok := func(f func()) { f() } + bad := func(f func()) { shouldPanic("Set", f) } + clear := func(v Value) { v.Set(Zero(v.Type())) } + + type t0 struct { + W int + } + + type t1 struct { + Y int + t0 + } + + type T2 struct { + Z int + namedT0 t0 + } + + type T struct { + X int + t1 + T2 + NamedT1 t1 + NamedT2 T2 + namedT1 t1 + namedT2 T2 + } + + // not addressable + v := ValueOf(T{}) + bad(func() { clear(v.Field(0)) }) // .X + bad(func() { clear(v.Field(1)) }) // .t1 + bad(func() { clear(v.Field(1).Field(0)) }) // .t1.Y + bad(func() { clear(v.Field(1).Field(1)) }) // .t1.t0 + bad(func() { clear(v.Field(1).Field(1).Field(0)) }) // .t1.t0.W + bad(func() { clear(v.Field(2)) }) // .T2 + bad(func() { clear(v.Field(2).Field(0)) }) // .T2.Z + bad(func() { clear(v.Field(2).Field(1)) }) // .T2.namedT0 + bad(func() { clear(v.Field(2).Field(1).Field(0)) }) // .T2.namedT0.W + bad(func() { clear(v.Field(3)) }) // .NamedT1 + bad(func() { clear(v.Field(3).Field(0)) }) // .NamedT1.Y + bad(func() { clear(v.Field(3).Field(1)) }) // .NamedT1.t0 + bad(func() { clear(v.Field(3).Field(1).Field(0)) }) // .NamedT1.t0.W + bad(func() { clear(v.Field(4)) }) // .NamedT2 + bad(func() { clear(v.Field(4).Field(0)) }) // .NamedT2.Z + bad(func() { clear(v.Field(4).Field(1)) }) // .NamedT2.namedT0 + bad(func() { clear(v.Field(4).Field(1).Field(0)) }) // .NamedT2.namedT0.W + bad(func() { clear(v.Field(5)) }) // .namedT1 + bad(func() { clear(v.Field(5).Field(0)) }) // .namedT1.Y + bad(func() { clear(v.Field(5).Field(1)) }) // .namedT1.t0 + bad(func() { clear(v.Field(5).Field(1).Field(0)) }) // .namedT1.t0.W + bad(func() { clear(v.Field(6)) }) // .namedT2 + bad(func() { clear(v.Field(6).Field(0)) }) // .namedT2.Z + bad(func() { clear(v.Field(6).Field(1)) }) // .namedT2.namedT0 + bad(func() { clear(v.Field(6).Field(1).Field(0)) }) // .namedT2.namedT0.W + + // addressable + v = ValueOf(&T{}).Elem() + ok(func() { clear(v.Field(0)) }) // .X + bad(func() { clear(v.Field(1)) }) // .t1 + ok(func() { clear(v.Field(1).Field(0)) }) // .t1.Y + bad(func() { clear(v.Field(1).Field(1)) }) // .t1.t0 + ok(func() { clear(v.Field(1).Field(1).Field(0)) }) // .t1.t0.W + ok(func() { clear(v.Field(2)) }) // .T2 + ok(func() { clear(v.Field(2).Field(0)) }) // .T2.Z + bad(func() { clear(v.Field(2).Field(1)) }) // .T2.namedT0 + bad(func() { clear(v.Field(2).Field(1).Field(0)) }) // .T2.namedT0.W + ok(func() { clear(v.Field(3)) }) // .NamedT1 + ok(func() { clear(v.Field(3).Field(0)) }) // .NamedT1.Y + bad(func() { clear(v.Field(3).Field(1)) }) // .NamedT1.t0 + ok(func() { clear(v.Field(3).Field(1).Field(0)) }) // .NamedT1.t0.W + ok(func() { clear(v.Field(4)) }) // .NamedT2 + ok(func() { clear(v.Field(4).Field(0)) }) // .NamedT2.Z + bad(func() { clear(v.Field(4).Field(1)) }) // .NamedT2.namedT0 + bad(func() { clear(v.Field(4).Field(1).Field(0)) }) // .NamedT2.namedT0.W + bad(func() { clear(v.Field(5)) }) // .namedT1 + bad(func() { clear(v.Field(5).Field(0)) }) // .namedT1.Y + bad(func() { clear(v.Field(5).Field(1)) }) // .namedT1.t0 + bad(func() { clear(v.Field(5).Field(1).Field(0)) }) // .namedT1.t0.W + bad(func() { clear(v.Field(6)) }) // .namedT2 + bad(func() { clear(v.Field(6).Field(0)) }) // .namedT2.Z + bad(func() { clear(v.Field(6).Field(1)) }) // .namedT2.namedT0 + bad(func() { clear(v.Field(6).Field(1).Field(0)) }) // .namedT2.namedT0.W +} + +type timp int + +func (t timp) W() {} +func (t timp) Y() {} +func (t timp) w() {} +func (t timp) y() {} + +func TestCallPanic(t *testing.T) { + type t0 interface { + W() + w() + } + type T1 interface { + Y() + y() + } + type T2 struct { + T1 + t0 + } + type T struct { + t0 // 0 + T1 // 1 + + NamedT0 t0 // 2 + NamedT1 T1 // 3 + NamedT2 T2 // 4 + + namedT0 t0 // 5 + namedT1 T1 // 6 + namedT2 T2 // 7 + } + ok := func(f func()) { f() } + badCall := func(f func()) { shouldPanic("Call", f) } + badMethod := func(f func()) { shouldPanic("Method", f) } + call := func(v Value) { v.Call(nil) } + + i := timp(0) + v := ValueOf(T{i, i, i, i, T2{i, i}, i, i, T2{i, i}}) + badCall(func() { call(v.Field(0).Method(0)) }) // .t0.W + badCall(func() { call(v.Field(0).Elem().Method(0)) }) // .t0.W + badCall(func() { call(v.Field(0).Method(1)) }) // .t0.w + badMethod(func() { call(v.Field(0).Elem().Method(2)) }) // .t0.w + ok(func() { call(v.Field(1).Method(0)) }) // .T1.Y + ok(func() { call(v.Field(1).Elem().Method(0)) }) // .T1.Y + badCall(func() { call(v.Field(1).Method(1)) }) // .T1.y + badMethod(func() { call(v.Field(1).Elem().Method(2)) }) // .T1.y + + ok(func() { call(v.Field(2).Method(0)) }) // .NamedT0.W + ok(func() { call(v.Field(2).Elem().Method(0)) }) // .NamedT0.W + badCall(func() { call(v.Field(2).Method(1)) }) // .NamedT0.w + badMethod(func() { call(v.Field(2).Elem().Method(2)) }) // .NamedT0.w + + ok(func() { call(v.Field(3).Method(0)) }) // .NamedT1.Y + ok(func() { call(v.Field(3).Elem().Method(0)) }) // .NamedT1.Y + badCall(func() { call(v.Field(3).Method(1)) }) // .NamedT1.y + badMethod(func() { call(v.Field(3).Elem().Method(3)) }) // .NamedT1.y + + ok(func() { call(v.Field(4).Field(0).Method(0)) }) // .NamedT2.T1.Y + ok(func() { call(v.Field(4).Field(0).Elem().Method(0)) }) // .NamedT2.T1.W + badCall(func() { call(v.Field(4).Field(1).Method(0)) }) // .NamedT2.t0.W + badCall(func() { call(v.Field(4).Field(1).Elem().Method(0)) }) // .NamedT2.t0.W + + badCall(func() { call(v.Field(5).Method(0)) }) // .namedT0.W + badCall(func() { call(v.Field(5).Elem().Method(0)) }) // .namedT0.W + badCall(func() { call(v.Field(5).Method(1)) }) // .namedT0.w + badMethod(func() { call(v.Field(5).Elem().Method(2)) }) // .namedT0.w + + badCall(func() { call(v.Field(6).Method(0)) }) // .namedT1.Y + badCall(func() { call(v.Field(6).Elem().Method(0)) }) // .namedT1.Y + badCall(func() { call(v.Field(6).Method(0)) }) // .namedT1.y + badCall(func() { call(v.Field(6).Elem().Method(0)) }) // .namedT1.y + + badCall(func() { call(v.Field(7).Field(0).Method(0)) }) // .namedT2.T1.Y + badCall(func() { call(v.Field(7).Field(0).Elem().Method(0)) }) // .namedT2.T1.W + badCall(func() { call(v.Field(7).Field(1).Method(0)) }) // .namedT2.t0.W + badCall(func() { call(v.Field(7).Field(1).Elem().Method(0)) }) // .namedT2.t0.W +} + +func TestValuePanic(t *testing.T) { + vo := ValueOf + shouldPanic("reflect.Value.Addr of unaddressable value", func() { vo(0).Addr() }) + shouldPanic("call of reflect.Value.Bool on float64 Value", func() { vo(0.0).Bool() }) + shouldPanic("call of reflect.Value.Bytes on string Value", func() { vo("").Bytes() }) + shouldPanic("call of reflect.Value.Call on bool Value", func() { vo(true).Call(nil) }) + shouldPanic("call of reflect.Value.CallSlice on int Value", func() { vo(0).CallSlice(nil) }) + shouldPanic("call of reflect.Value.Close on string Value", func() { vo("").Close() }) + shouldPanic("call of reflect.Value.Complex on float64 Value", func() { vo(0.0).Complex() }) + shouldPanic("call of reflect.Value.Elem on bool Value", func() { vo(false).Elem() }) + shouldPanic("call of reflect.Value.Field on int Value", func() { vo(0).Field(0) }) + shouldPanic("call of reflect.Value.Float on string Value", func() { vo("").Float() }) + shouldPanic("call of reflect.Value.Index on float64 Value", func() { vo(0.0).Index(0) }) + shouldPanic("call of reflect.Value.Int on bool Value", func() { vo(false).Int() }) + shouldPanic("call of reflect.Value.IsNil on int Value", func() { vo(0).IsNil() }) + shouldPanic("call of reflect.Value.Len on bool Value", func() { vo(false).Len() }) + shouldPanic("call of reflect.Value.MapIndex on float64 Value", func() { vo(0.0).MapIndex(vo(0.0)) }) + shouldPanic("call of reflect.Value.MapKeys on string Value", func() { vo("").MapKeys() }) + shouldPanic("call of reflect.Value.MapRange on int Value", func() { vo(0).MapRange() }) + shouldPanic("call of reflect.Value.Method on zero Value", func() { vo(nil).Method(0) }) + shouldPanic("call of reflect.Value.NumField on string Value", func() { vo("").NumField() }) + shouldPanic("call of reflect.Value.NumMethod on zero Value", func() { vo(nil).NumMethod() }) + shouldPanic("call of reflect.Value.OverflowComplex on float64 Value", func() { vo(float64(0)).OverflowComplex(0) }) + shouldPanic("call of reflect.Value.OverflowFloat on int64 Value", func() { vo(int64(0)).OverflowFloat(0) }) + shouldPanic("call of reflect.Value.OverflowInt on uint64 Value", func() { vo(uint64(0)).OverflowInt(0) }) + shouldPanic("call of reflect.Value.OverflowUint on complex64 Value", func() { vo(complex64(0)).OverflowUint(0) }) + shouldPanic("call of reflect.Value.Recv on string Value", func() { vo("").Recv() }) + shouldPanic("call of reflect.Value.Send on bool Value", func() { vo(true).Send(vo(true)) }) + shouldPanic("value of type string is not assignable to type bool", func() { vo(new(bool)).Elem().Set(vo("")) }) + shouldPanic("call of reflect.Value.SetBool on string Value", func() { vo(new(string)).Elem().SetBool(false) }) + shouldPanic("reflect.Value.SetBytes using unaddressable value", func() { vo("").SetBytes(nil) }) + shouldPanic("call of reflect.Value.SetCap on string Value", func() { vo(new(string)).Elem().SetCap(0) }) + shouldPanic("call of reflect.Value.SetComplex on string Value", func() { vo(new(string)).Elem().SetComplex(0) }) + shouldPanic("call of reflect.Value.SetFloat on string Value", func() { vo(new(string)).Elem().SetFloat(0) }) + shouldPanic("call of reflect.Value.SetInt on string Value", func() { vo(new(string)).Elem().SetInt(0) }) + shouldPanic("call of reflect.Value.SetLen on string Value", func() { vo(new(string)).Elem().SetLen(0) }) + shouldPanic("call of reflect.Value.SetString on int Value", func() { vo(new(int)).Elem().SetString("") }) + shouldPanic("reflect.Value.SetUint using unaddressable value", func() { vo(0.0).SetUint(0) }) + shouldPanic("call of reflect.Value.Slice on bool Value", func() { vo(true).Slice(1, 2) }) + shouldPanic("call of reflect.Value.Slice3 on int Value", func() { vo(0).Slice3(1, 2, 3) }) + shouldPanic("call of reflect.Value.TryRecv on bool Value", func() { vo(true).TryRecv() }) + shouldPanic("call of reflect.Value.TrySend on string Value", func() { vo("").TrySend(vo("")) }) + shouldPanic("call of reflect.Value.Uint on float64 Value", func() { vo(0.0).Uint() }) +} + +func shouldPanic(expect string, f func()) { + defer func() { + r := recover() + if r == nil { + panic("did not panic") + } + if expect != "" { + var s string + switch r := r.(type) { + case string: + s = r + case *ValueError: + s = r.Error() + default: + panic(fmt.Sprintf("panicked with unexpected type %T", r)) + } + if !strings.HasPrefix(s, "reflect") { + panic(`panic string does not start with "reflect": ` + s) + } + if !strings.Contains(s, expect) { + panic(`panic string does not contain "` + expect + `": ` + s) + } + } + }() + f() +} + +func isNonNil(x any) { + if x == nil { + panic("nil interface") + } +} + +func isValid(v Value) { + if !v.IsValid() { + panic("zero Value") + } +} + +func TestAlias(t *testing.T) { + x := string("hello") + v := ValueOf(&x).Elem() + oldvalue := v.Interface() + v.SetString("world") + newvalue := v.Interface() + + if oldvalue != "hello" || newvalue != "world" { + t.Errorf("aliasing: old=%q new=%q, want hello, world", oldvalue, newvalue) + } +} + +var V = ValueOf + +func EmptyInterfaceV(x any) Value { + return ValueOf(&x).Elem() +} + +func ReaderV(x io.Reader) Value { + return ValueOf(&x).Elem() +} + +func ReadWriterV(x io.ReadWriter) Value { + return ValueOf(&x).Elem() +} + +type Empty struct{} +type MyStruct struct { + x int `some:"tag"` +} +type MyStruct1 struct { + x struct { + int `some:"bar"` + } +} +type MyStruct2 struct { + x struct { + int `some:"foo"` + } +} +type MyString string +type MyBytes []byte +type MyBytesArrayPtr0 *[0]byte +type MyBytesArrayPtr *[4]byte +type MyBytesArray0 [0]byte +type MyBytesArray [4]byte +type MyRunes []int32 +type MyFunc func() +type MyByte byte + +type IntChan chan int +type IntChanRecv <-chan int +type IntChanSend chan<- int +type BytesChan chan []byte +type BytesChanRecv <-chan []byte +type BytesChanSend chan<- []byte + +var convertTests = []struct { + in Value + out Value +}{ + // numbers + /* + Edit .+1,/\*\//-1>cat >/tmp/x.go && go run /tmp/x.go + + package main + + import "fmt" + + var numbers = []string{ + "int8", "uint8", "int16", "uint16", + "int32", "uint32", "int64", "uint64", + "int", "uint", "uintptr", + "float32", "float64", + } + + func main() { + // all pairs but in an unusual order, + // to emit all the int8, uint8 cases + // before n grows too big. + n := 1 + for i, f := range numbers { + for _, g := range numbers[i:] { + fmt.Printf("\t{V(%s(%d)), V(%s(%d))},\n", f, n, g, n) + n++ + if f != g { + fmt.Printf("\t{V(%s(%d)), V(%s(%d))},\n", g, n, f, n) + n++ + } + } + } + } + */ + {V(int8(1)), V(int8(1))}, + {V(int8(2)), V(uint8(2))}, + {V(uint8(3)), V(int8(3))}, + {V(int8(4)), V(int16(4))}, + {V(int16(5)), V(int8(5))}, + {V(int8(6)), V(uint16(6))}, + {V(uint16(7)), V(int8(7))}, + {V(int8(8)), V(int32(8))}, + {V(int32(9)), V(int8(9))}, + {V(int8(10)), V(uint32(10))}, + {V(uint32(11)), V(int8(11))}, + {V(int8(12)), V(int64(12))}, + {V(int64(13)), V(int8(13))}, + {V(int8(14)), V(uint64(14))}, + {V(uint64(15)), V(int8(15))}, + {V(int8(16)), V(int(16))}, + {V(int(17)), V(int8(17))}, + {V(int8(18)), V(uint(18))}, + {V(uint(19)), V(int8(19))}, + {V(int8(20)), V(uintptr(20))}, + {V(uintptr(21)), V(int8(21))}, + {V(int8(22)), V(float32(22))}, + {V(float32(23)), V(int8(23))}, + {V(int8(24)), V(float64(24))}, + {V(float64(25)), V(int8(25))}, + {V(uint8(26)), V(uint8(26))}, + {V(uint8(27)), V(int16(27))}, + {V(int16(28)), V(uint8(28))}, + {V(uint8(29)), V(uint16(29))}, + {V(uint16(30)), V(uint8(30))}, + {V(uint8(31)), V(int32(31))}, + {V(int32(32)), V(uint8(32))}, + {V(uint8(33)), V(uint32(33))}, + {V(uint32(34)), V(uint8(34))}, + {V(uint8(35)), V(int64(35))}, + {V(int64(36)), V(uint8(36))}, + {V(uint8(37)), V(uint64(37))}, + {V(uint64(38)), V(uint8(38))}, + {V(uint8(39)), V(int(39))}, + {V(int(40)), V(uint8(40))}, + {V(uint8(41)), V(uint(41))}, + {V(uint(42)), V(uint8(42))}, + {V(uint8(43)), V(uintptr(43))}, + {V(uintptr(44)), V(uint8(44))}, + {V(uint8(45)), V(float32(45))}, + {V(float32(46)), V(uint8(46))}, + {V(uint8(47)), V(float64(47))}, + {V(float64(48)), V(uint8(48))}, + {V(int16(49)), V(int16(49))}, + {V(int16(50)), V(uint16(50))}, + {V(uint16(51)), V(int16(51))}, + {V(int16(52)), V(int32(52))}, + {V(int32(53)), V(int16(53))}, + {V(int16(54)), V(uint32(54))}, + {V(uint32(55)), V(int16(55))}, + {V(int16(56)), V(int64(56))}, + {V(int64(57)), V(int16(57))}, + {V(int16(58)), V(uint64(58))}, + {V(uint64(59)), V(int16(59))}, + {V(int16(60)), V(int(60))}, + {V(int(61)), V(int16(61))}, + {V(int16(62)), V(uint(62))}, + {V(uint(63)), V(int16(63))}, + {V(int16(64)), V(uintptr(64))}, + {V(uintptr(65)), V(int16(65))}, + {V(int16(66)), V(float32(66))}, + {V(float32(67)), V(int16(67))}, + {V(int16(68)), V(float64(68))}, + {V(float64(69)), V(int16(69))}, + {V(uint16(70)), V(uint16(70))}, + {V(uint16(71)), V(int32(71))}, + {V(int32(72)), V(uint16(72))}, + {V(uint16(73)), V(uint32(73))}, + {V(uint32(74)), V(uint16(74))}, + {V(uint16(75)), V(int64(75))}, + {V(int64(76)), V(uint16(76))}, + {V(uint16(77)), V(uint64(77))}, + {V(uint64(78)), V(uint16(78))}, + {V(uint16(79)), V(int(79))}, + {V(int(80)), V(uint16(80))}, + {V(uint16(81)), V(uint(81))}, + {V(uint(82)), V(uint16(82))}, + {V(uint16(83)), V(uintptr(83))}, + {V(uintptr(84)), V(uint16(84))}, + {V(uint16(85)), V(float32(85))}, + {V(float32(86)), V(uint16(86))}, + {V(uint16(87)), V(float64(87))}, + {V(float64(88)), V(uint16(88))}, + {V(int32(89)), V(int32(89))}, + {V(int32(90)), V(uint32(90))}, + {V(uint32(91)), V(int32(91))}, + {V(int32(92)), V(int64(92))}, + {V(int64(93)), V(int32(93))}, + {V(int32(94)), V(uint64(94))}, + {V(uint64(95)), V(int32(95))}, + {V(int32(96)), V(int(96))}, + {V(int(97)), V(int32(97))}, + {V(int32(98)), V(uint(98))}, + {V(uint(99)), V(int32(99))}, + {V(int32(100)), V(uintptr(100))}, + {V(uintptr(101)), V(int32(101))}, + {V(int32(102)), V(float32(102))}, + {V(float32(103)), V(int32(103))}, + {V(int32(104)), V(float64(104))}, + {V(float64(105)), V(int32(105))}, + {V(uint32(106)), V(uint32(106))}, + {V(uint32(107)), V(int64(107))}, + {V(int64(108)), V(uint32(108))}, + {V(uint32(109)), V(uint64(109))}, + {V(uint64(110)), V(uint32(110))}, + {V(uint32(111)), V(int(111))}, + {V(int(112)), V(uint32(112))}, + {V(uint32(113)), V(uint(113))}, + {V(uint(114)), V(uint32(114))}, + {V(uint32(115)), V(uintptr(115))}, + {V(uintptr(116)), V(uint32(116))}, + {V(uint32(117)), V(float32(117))}, + {V(float32(118)), V(uint32(118))}, + {V(uint32(119)), V(float64(119))}, + {V(float64(120)), V(uint32(120))}, + {V(int64(121)), V(int64(121))}, + {V(int64(122)), V(uint64(122))}, + {V(uint64(123)), V(int64(123))}, + {V(int64(124)), V(int(124))}, + {V(int(125)), V(int64(125))}, + {V(int64(126)), V(uint(126))}, + {V(uint(127)), V(int64(127))}, + {V(int64(128)), V(uintptr(128))}, + {V(uintptr(129)), V(int64(129))}, + {V(int64(130)), V(float32(130))}, + {V(float32(131)), V(int64(131))}, + {V(int64(132)), V(float64(132))}, + {V(float64(133)), V(int64(133))}, + {V(uint64(134)), V(uint64(134))}, + {V(uint64(135)), V(int(135))}, + {V(int(136)), V(uint64(136))}, + {V(uint64(137)), V(uint(137))}, + {V(uint(138)), V(uint64(138))}, + {V(uint64(139)), V(uintptr(139))}, + {V(uintptr(140)), V(uint64(140))}, + {V(uint64(141)), V(float32(141))}, + {V(float32(142)), V(uint64(142))}, + {V(uint64(143)), V(float64(143))}, + {V(float64(144)), V(uint64(144))}, + {V(int(145)), V(int(145))}, + {V(int(146)), V(uint(146))}, + {V(uint(147)), V(int(147))}, + {V(int(148)), V(uintptr(148))}, + {V(uintptr(149)), V(int(149))}, + {V(int(150)), V(float32(150))}, + {V(float32(151)), V(int(151))}, + {V(int(152)), V(float64(152))}, + {V(float64(153)), V(int(153))}, + {V(uint(154)), V(uint(154))}, + {V(uint(155)), V(uintptr(155))}, + {V(uintptr(156)), V(uint(156))}, + {V(uint(157)), V(float32(157))}, + {V(float32(158)), V(uint(158))}, + {V(uint(159)), V(float64(159))}, + {V(float64(160)), V(uint(160))}, + {V(uintptr(161)), V(uintptr(161))}, + {V(uintptr(162)), V(float32(162))}, + {V(float32(163)), V(uintptr(163))}, + {V(uintptr(164)), V(float64(164))}, + {V(float64(165)), V(uintptr(165))}, + {V(float32(166)), V(float32(166))}, + {V(float32(167)), V(float64(167))}, + {V(float64(168)), V(float32(168))}, + {V(float64(169)), V(float64(169))}, + + // truncation + {V(float64(1.5)), V(int(1))}, + + // complex + {V(complex64(1i)), V(complex64(1i))}, + {V(complex64(2i)), V(complex128(2i))}, + {V(complex128(3i)), V(complex64(3i))}, + {V(complex128(4i)), V(complex128(4i))}, + + // string + {V(string("hello")), V(string("hello"))}, + {V(string("bytes1")), V([]byte("bytes1"))}, + {V([]byte("bytes2")), V(string("bytes2"))}, + {V([]byte("bytes3")), V([]byte("bytes3"))}, + {V(string("runes♝")), V([]rune("runes♝"))}, + {V([]rune("runes♕")), V(string("runes♕"))}, + {V([]rune("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))}, + {V(int('a')), V(string("a"))}, + {V(int8('a')), V(string("a"))}, + {V(int16('a')), V(string("a"))}, + {V(int32('a')), V(string("a"))}, + {V(int64('a')), V(string("a"))}, + {V(uint('a')), V(string("a"))}, + {V(uint8('a')), V(string("a"))}, + {V(uint16('a')), V(string("a"))}, + {V(uint32('a')), V(string("a"))}, + {V(uint64('a')), V(string("a"))}, + {V(uintptr('a')), V(string("a"))}, + {V(int(-1)), V(string("\uFFFD"))}, + {V(int8(-2)), V(string("\uFFFD"))}, + {V(int16(-3)), V(string("\uFFFD"))}, + {V(int32(-4)), V(string("\uFFFD"))}, + {V(int64(-5)), V(string("\uFFFD"))}, + {V(int64(-1 << 32)), V(string("\uFFFD"))}, + {V(int64(1 << 32)), V(string("\uFFFD"))}, + {V(uint(0x110001)), V(string("\uFFFD"))}, + {V(uint32(0x110002)), V(string("\uFFFD"))}, + {V(uint64(0x110003)), V(string("\uFFFD"))}, + {V(uint64(1 << 32)), V(string("\uFFFD"))}, + {V(uintptr(0x110004)), V(string("\uFFFD"))}, + + // named string + {V(MyString("hello")), V(string("hello"))}, + {V(string("hello")), V(MyString("hello"))}, + {V(string("hello")), V(string("hello"))}, + {V(MyString("hello")), V(MyString("hello"))}, + {V(MyString("bytes1")), V([]byte("bytes1"))}, + {V([]byte("bytes2")), V(MyString("bytes2"))}, + {V([]byte("bytes3")), V([]byte("bytes3"))}, + {V(MyString("runes♝")), V([]rune("runes♝"))}, + {V([]rune("runes♕")), V(MyString("runes♕"))}, + {V([]rune("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))}, + {V([]rune("runes🙈🙉🙊")), V(MyRunes("runes🙈🙉🙊"))}, + {V(MyRunes("runes🙈🙉🙊")), V([]rune("runes🙈🙉🙊"))}, + {V(int('a')), V(MyString("a"))}, + {V(int8('a')), V(MyString("a"))}, + {V(int16('a')), V(MyString("a"))}, + {V(int32('a')), V(MyString("a"))}, + {V(int64('a')), V(MyString("a"))}, + {V(uint('a')), V(MyString("a"))}, + {V(uint8('a')), V(MyString("a"))}, + {V(uint16('a')), V(MyString("a"))}, + {V(uint32('a')), V(MyString("a"))}, + {V(uint64('a')), V(MyString("a"))}, + {V(uintptr('a')), V(MyString("a"))}, + {V(int(-1)), V(MyString("\uFFFD"))}, + {V(int8(-2)), V(MyString("\uFFFD"))}, + {V(int16(-3)), V(MyString("\uFFFD"))}, + {V(int32(-4)), V(MyString("\uFFFD"))}, + {V(int64(-5)), V(MyString("\uFFFD"))}, + {V(uint(0x110001)), V(MyString("\uFFFD"))}, + {V(uint32(0x110002)), V(MyString("\uFFFD"))}, + {V(uint64(0x110003)), V(MyString("\uFFFD"))}, + {V(uintptr(0x110004)), V(MyString("\uFFFD"))}, + + // named []byte + {V(string("bytes1")), V(MyBytes("bytes1"))}, + {V(MyBytes("bytes2")), V(string("bytes2"))}, + {V(MyBytes("bytes3")), V(MyBytes("bytes3"))}, + {V(MyString("bytes1")), V(MyBytes("bytes1"))}, + {V(MyBytes("bytes2")), V(MyString("bytes2"))}, + + // named []rune + {V(string("runes♝")), V(MyRunes("runes♝"))}, + {V(MyRunes("runes♕")), V(string("runes♕"))}, + {V(MyRunes("runes🙈🙉🙊")), V(MyRunes("runes🙈🙉🙊"))}, + {V(MyString("runes♝")), V(MyRunes("runes♝"))}, + {V(MyRunes("runes♕")), V(MyString("runes♕"))}, + + // slice to array + {V([]byte(nil)), V([0]byte{})}, + {V([]byte{}), V([0]byte{})}, + {V([]byte{1}), V([1]byte{1})}, + {V([]byte{1, 2}), V([2]byte{1, 2})}, + {V([]byte{1, 2, 3}), V([3]byte{1, 2, 3})}, + {V(MyBytes([]byte(nil))), V([0]byte{})}, + {V(MyBytes{}), V([0]byte{})}, + {V(MyBytes{1}), V([1]byte{1})}, + {V(MyBytes{1, 2}), V([2]byte{1, 2})}, + {V(MyBytes{1, 2, 3}), V([3]byte{1, 2, 3})}, + {V([]byte(nil)), V(MyBytesArray0{})}, + {V([]byte{}), V(MyBytesArray0([0]byte{}))}, + {V([]byte{1, 2, 3, 4}), V(MyBytesArray([4]byte{1, 2, 3, 4}))}, + {V(MyBytes{}), V(MyBytesArray0([0]byte{}))}, + {V(MyBytes{5, 6, 7, 8}), V(MyBytesArray([4]byte{5, 6, 7, 8}))}, + {V([]MyByte{}), V([0]MyByte{})}, + {V([]MyByte{1, 2}), V([2]MyByte{1, 2})}, + + // slice to array pointer + {V([]byte(nil)), V((*[0]byte)(nil))}, + {V([]byte{}), V(new([0]byte))}, + {V([]byte{7}), V(&[1]byte{7})}, + {V(MyBytes([]byte(nil))), V((*[0]byte)(nil))}, + {V(MyBytes([]byte{})), V(new([0]byte))}, + {V(MyBytes([]byte{9})), V(&[1]byte{9})}, + {V([]byte(nil)), V(MyBytesArrayPtr0(nil))}, + {V([]byte{}), V(MyBytesArrayPtr0(new([0]byte)))}, + {V([]byte{1, 2, 3, 4}), V(MyBytesArrayPtr(&[4]byte{1, 2, 3, 4}))}, + {V(MyBytes([]byte{})), V(MyBytesArrayPtr0(new([0]byte)))}, + {V(MyBytes([]byte{5, 6, 7, 8})), V(MyBytesArrayPtr(&[4]byte{5, 6, 7, 8}))}, + + {V([]byte(nil)), V((*MyBytesArray0)(nil))}, + {V([]byte{}), V((*MyBytesArray0)(new([0]byte)))}, + {V([]byte{1, 2, 3, 4}), V(&MyBytesArray{1, 2, 3, 4})}, + {V(MyBytes([]byte(nil))), V((*MyBytesArray0)(nil))}, + {V(MyBytes([]byte{})), V((*MyBytesArray0)(new([0]byte)))}, + {V(MyBytes([]byte{5, 6, 7, 8})), V(&MyBytesArray{5, 6, 7, 8})}, + {V(new([0]byte)), V(new(MyBytesArray0))}, + {V(new(MyBytesArray0)), V(new([0]byte))}, + {V(MyBytesArrayPtr0(nil)), V((*[0]byte)(nil))}, + {V((*[0]byte)(nil)), V(MyBytesArrayPtr0(nil))}, + + // named types and equal underlying types + {V(new(int)), V(new(integer))}, + {V(new(integer)), V(new(int))}, + {V(Empty{}), V(struct{}{})}, + {V(new(Empty)), V(new(struct{}))}, + {V(struct{}{}), V(Empty{})}, + {V(new(struct{})), V(new(Empty))}, + {V(Empty{}), V(Empty{})}, + {V(MyBytes{}), V([]byte{})}, + {V([]byte{}), V(MyBytes{})}, + {V((func())(nil)), V(MyFunc(nil))}, + {V((MyFunc)(nil)), V((func())(nil))}, + + // structs with different tags + {V(struct { + x int `some:"foo"` + }{}), V(struct { + x int `some:"bar"` + }{})}, + + {V(struct { + x int `some:"bar"` + }{}), V(struct { + x int `some:"foo"` + }{})}, + + {V(MyStruct{}), V(struct { + x int `some:"foo"` + }{})}, + + {V(struct { + x int `some:"foo"` + }{}), V(MyStruct{})}, + + {V(MyStruct{}), V(struct { + x int `some:"bar"` + }{})}, + + {V(struct { + x int `some:"bar"` + }{}), V(MyStruct{})}, + + {V(MyStruct1{}), V(MyStruct2{})}, + {V(MyStruct2{}), V(MyStruct1{})}, + + // can convert *byte and *MyByte + {V((*byte)(nil)), V((*MyByte)(nil))}, + {V((*MyByte)(nil)), V((*byte)(nil))}, + + // cannot convert mismatched array sizes + {V([2]byte{}), V([2]byte{})}, + {V([3]byte{}), V([3]byte{})}, + {V(MyBytesArray0{}), V([0]byte{})}, + {V([0]byte{}), V(MyBytesArray0{})}, + + // cannot convert other instances + {V((**byte)(nil)), V((**byte)(nil))}, + {V((**MyByte)(nil)), V((**MyByte)(nil))}, + {V((chan byte)(nil)), V((chan byte)(nil))}, + {V((chan MyByte)(nil)), V((chan MyByte)(nil))}, + {V(([]byte)(nil)), V(([]byte)(nil))}, + {V(([]MyByte)(nil)), V(([]MyByte)(nil))}, + {V((map[int]byte)(nil)), V((map[int]byte)(nil))}, + {V((map[int]MyByte)(nil)), V((map[int]MyByte)(nil))}, + {V((map[byte]int)(nil)), V((map[byte]int)(nil))}, + {V((map[MyByte]int)(nil)), V((map[MyByte]int)(nil))}, + {V([2]byte{}), V([2]byte{})}, + {V([2]MyByte{}), V([2]MyByte{})}, + + // other + {V((***int)(nil)), V((***int)(nil))}, + {V((***byte)(nil)), V((***byte)(nil))}, + {V((***int32)(nil)), V((***int32)(nil))}, + {V((***int64)(nil)), V((***int64)(nil))}, + {V((chan byte)(nil)), V((chan byte)(nil))}, + {V((chan MyByte)(nil)), V((chan MyByte)(nil))}, + {V((map[int]bool)(nil)), V((map[int]bool)(nil))}, + {V((map[int]byte)(nil)), V((map[int]byte)(nil))}, + {V((map[uint]bool)(nil)), V((map[uint]bool)(nil))}, + {V([]uint(nil)), V([]uint(nil))}, + {V([]int(nil)), V([]int(nil))}, + {V(new(any)), V(new(any))}, + {V(new(io.Reader)), V(new(io.Reader))}, + {V(new(io.Writer)), V(new(io.Writer))}, + + // channels + {V(IntChan(nil)), V((chan<- int)(nil))}, + {V(IntChan(nil)), V((<-chan int)(nil))}, + {V((chan int)(nil)), V(IntChanRecv(nil))}, + {V((chan int)(nil)), V(IntChanSend(nil))}, + {V(IntChanRecv(nil)), V((<-chan int)(nil))}, + {V((<-chan int)(nil)), V(IntChanRecv(nil))}, + {V(IntChanSend(nil)), V((chan<- int)(nil))}, + {V((chan<- int)(nil)), V(IntChanSend(nil))}, + {V(IntChan(nil)), V((chan int)(nil))}, + {V((chan int)(nil)), V(IntChan(nil))}, + {V((chan int)(nil)), V((<-chan int)(nil))}, + {V((chan int)(nil)), V((chan<- int)(nil))}, + {V(BytesChan(nil)), V((chan<- []byte)(nil))}, + {V(BytesChan(nil)), V((<-chan []byte)(nil))}, + {V((chan []byte)(nil)), V(BytesChanRecv(nil))}, + {V((chan []byte)(nil)), V(BytesChanSend(nil))}, + {V(BytesChanRecv(nil)), V((<-chan []byte)(nil))}, + {V((<-chan []byte)(nil)), V(BytesChanRecv(nil))}, + {V(BytesChanSend(nil)), V((chan<- []byte)(nil))}, + {V((chan<- []byte)(nil)), V(BytesChanSend(nil))}, + {V(BytesChan(nil)), V((chan []byte)(nil))}, + {V((chan []byte)(nil)), V(BytesChan(nil))}, + {V((chan []byte)(nil)), V((<-chan []byte)(nil))}, + {V((chan []byte)(nil)), V((chan<- []byte)(nil))}, + + // cannot convert other instances (channels) + {V(IntChan(nil)), V(IntChan(nil))}, + {V(IntChanRecv(nil)), V(IntChanRecv(nil))}, + {V(IntChanSend(nil)), V(IntChanSend(nil))}, + {V(BytesChan(nil)), V(BytesChan(nil))}, + {V(BytesChanRecv(nil)), V(BytesChanRecv(nil))}, + {V(BytesChanSend(nil)), V(BytesChanSend(nil))}, + + // interfaces + {V(int(1)), EmptyInterfaceV(int(1))}, + {V(string("hello")), EmptyInterfaceV(string("hello"))}, + {V(new(bytes.Buffer)), ReaderV(new(bytes.Buffer))}, + {ReadWriterV(new(bytes.Buffer)), ReaderV(new(bytes.Buffer))}, + {V(new(bytes.Buffer)), ReadWriterV(new(bytes.Buffer))}, +} + +func TestConvert(t *testing.T) { + canConvert := map[[2]Type]bool{} + all := map[Type]bool{} + + for _, tt := range convertTests { + t1 := tt.in.Type() + if !t1.ConvertibleTo(t1) { + t.Errorf("(%s).ConvertibleTo(%s) = false, want true", t1, t1) + continue + } + + t2 := tt.out.Type() + if !t1.ConvertibleTo(t2) { + t.Errorf("(%s).ConvertibleTo(%s) = false, want true", t1, t2) + continue + } + + all[t1] = true + all[t2] = true + canConvert[[2]Type{t1, t2}] = true + + // vout1 represents the in value converted to the in type. + v1 := tt.in + if !v1.CanConvert(t1) { + t.Errorf("ValueOf(%T(%[1]v)).CanConvert(%s) = false, want true", tt.in.Interface(), t1) + } + vout1 := v1.Convert(t1) + out1 := vout1.Interface() + if vout1.Type() != tt.in.Type() || !DeepEqual(out1, tt.in.Interface()) { + t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t1, out1, tt.in.Interface()) + } + + // vout2 represents the in value converted to the out type. + if !v1.CanConvert(t2) { + t.Errorf("ValueOf(%T(%[1]v)).CanConvert(%s) = false, want true", tt.in.Interface(), t2) + } + vout2 := v1.Convert(t2) + out2 := vout2.Interface() + if vout2.Type() != tt.out.Type() || !DeepEqual(out2, tt.out.Interface()) { + t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t2, out2, tt.out.Interface()) + } + if got, want := vout2.Kind(), vout2.Type().Kind(); got != want { + t.Errorf("ValueOf(%T(%[1]v)).Convert(%s) has internal kind %v want %v", tt.in.Interface(), t1, got, want) + } + + // vout3 represents a new value of the out type, set to vout2. This makes + // sure the converted value vout2 is really usable as a regular value. + vout3 := New(t2).Elem() + vout3.Set(vout2) + out3 := vout3.Interface() + if vout3.Type() != tt.out.Type() || !DeepEqual(out3, tt.out.Interface()) { + t.Errorf("Set(ValueOf(%T(%[1]v)).Convert(%s)) = %T(%[3]v), want %T(%[4]v)", tt.in.Interface(), t2, out3, tt.out.Interface()) + } + + if IsRO(v1) { + t.Errorf("table entry %v is RO, should not be", v1) + } + if IsRO(vout1) { + t.Errorf("self-conversion output %v is RO, should not be", vout1) + } + if IsRO(vout2) { + t.Errorf("conversion output %v is RO, should not be", vout2) + } + if IsRO(vout3) { + t.Errorf("set(conversion output) %v is RO, should not be", vout3) + } + if !IsRO(MakeRO(v1).Convert(t1)) { + t.Errorf("RO self-conversion output %v is not RO, should be", v1) + } + if !IsRO(MakeRO(v1).Convert(t2)) { + t.Errorf("RO conversion output %v is not RO, should be", v1) + } + } + + // Assume that of all the types we saw during the tests, + // if there wasn't an explicit entry for a conversion between + // a pair of types, then it's not to be allowed. This checks for + // things like 'int64' converting to '*int'. + for t1 := range all { + for t2 := range all { + expectOK := t1 == t2 || canConvert[[2]Type{t1, t2}] || t2.Kind() == Interface && t2.NumMethod() == 0 + if ok := t1.ConvertibleTo(t2); ok != expectOK { + t.Errorf("(%s).ConvertibleTo(%s) = %v, want %v", t1, t2, ok, expectOK) + } + } + } +} + +func TestConvertPanic(t *testing.T) { + s := make([]byte, 4) + p := new([8]byte) + v := ValueOf(s) + pt := TypeOf(p) + if !v.Type().ConvertibleTo(pt) { + t.Errorf("[]byte should be convertible to *[8]byte") + } + if v.CanConvert(pt) { + t.Errorf("slice with length 4 should not be convertible to *[8]byte") + } + shouldPanic("reflect: cannot convert slice with length 4 to pointer to array with length 8", func() { + _ = v.Convert(pt) + }) + + if v.CanConvert(pt.Elem()) { + t.Errorf("slice with length 4 should not be convertible to [8]byte") + } + shouldPanic("reflect: cannot convert slice with length 4 to array with length 8", func() { + _ = v.Convert(pt.Elem()) + }) +} + +func TestConvertSlice2Array(t *testing.T) { + s := make([]int, 4) + p := [4]int{} + pt := TypeOf(p) + ov := ValueOf(s) + v := ov.Convert(pt) + // Converting a slice to non-empty array needs to return + // a non-addressable copy of the original memory. + if v.CanAddr() { + t.Fatalf("convert slice to non-empty array returns a addressable copy array") + } + for i := range s { + ov.Index(i).Set(ValueOf(i + 1)) + } + for i := range s { + if v.Index(i).Int() != 0 { + t.Fatalf("slice (%v) mutation visible in converted result (%v)", ov, v) + } + } +} + +var gFloat32 float32 + +const snan uint32 = 0x7f800001 + +func TestConvertNaNs(t *testing.T) { + // Test to see if a store followed by a load of a signaling NaN + // maintains the signaling bit. (This used to fail on the 387 port.) + gFloat32 = math.Float32frombits(snan) + runtime.Gosched() // make sure we don't optimize the store/load away + if got := math.Float32bits(gFloat32); got != snan { + t.Errorf("store/load of sNaN not faithful, got %x want %x", got, snan) + } + // Test reflect's conversion between float32s. See issue 36400. + type myFloat32 float32 + x := V(myFloat32(math.Float32frombits(snan))) + y := x.Convert(TypeOf(float32(0))) + z := y.Interface().(float32) + if got := math.Float32bits(z); got != snan { + t.Errorf("signaling nan conversion got %x, want %x", got, snan) + } +} + +type ComparableStruct struct { + X int +} + +type NonComparableStruct struct { + X int + Y map[string]int +} + +var comparableTests = []struct { + typ Type + ok bool +}{ + {TypeOf(1), true}, + {TypeOf("hello"), true}, + {TypeOf(new(byte)), true}, + {TypeOf((func())(nil)), false}, + {TypeOf([]byte{}), false}, + {TypeOf(map[string]int{}), false}, + {TypeOf(make(chan int)), true}, + {TypeOf(1.5), true}, + {TypeOf(false), true}, + {TypeOf(1i), true}, + {TypeOf(ComparableStruct{}), true}, + {TypeOf(NonComparableStruct{}), false}, + {TypeOf([10]map[string]int{}), false}, + {TypeOf([10]string{}), true}, + {TypeOf(new(any)).Elem(), true}, +} + +func TestComparable(t *testing.T) { + for _, tt := range comparableTests { + if ok := tt.typ.Comparable(); ok != tt.ok { + t.Errorf("TypeOf(%v).Comparable() = %v, want %v", tt.typ, ok, tt.ok) + } + } +} + +func TestOverflow(t *testing.T) { + if ovf := V(float64(0)).OverflowFloat(1e300); ovf { + t.Errorf("%v wrongly overflows float64", 1e300) + } + + maxFloat32 := float64((1<<24 - 1) << (127 - 23)) + if ovf := V(float32(0)).OverflowFloat(maxFloat32); ovf { + t.Errorf("%v wrongly overflows float32", maxFloat32) + } + ovfFloat32 := float64((1<<24-1)<<(127-23) + 1<<(127-52)) + if ovf := V(float32(0)).OverflowFloat(ovfFloat32); !ovf { + t.Errorf("%v should overflow float32", ovfFloat32) + } + if ovf := V(float32(0)).OverflowFloat(-ovfFloat32); !ovf { + t.Errorf("%v should overflow float32", -ovfFloat32) + } + + maxInt32 := int64(0x7fffffff) + if ovf := V(int32(0)).OverflowInt(maxInt32); ovf { + t.Errorf("%v wrongly overflows int32", maxInt32) + } + if ovf := V(int32(0)).OverflowInt(-1 << 31); ovf { + t.Errorf("%v wrongly overflows int32", -int64(1)<<31) + } + ovfInt32 := int64(1 << 31) + if ovf := V(int32(0)).OverflowInt(ovfInt32); !ovf { + t.Errorf("%v should overflow int32", ovfInt32) + } + + maxUint32 := uint64(0xffffffff) + if ovf := V(uint32(0)).OverflowUint(maxUint32); ovf { + t.Errorf("%v wrongly overflows uint32", maxUint32) + } + ovfUint32 := uint64(1 << 32) + if ovf := V(uint32(0)).OverflowUint(ovfUint32); !ovf { + t.Errorf("%v should overflow uint32", ovfUint32) + } +} + +func checkSameType(t *testing.T, x Type, y any) { + if x != TypeOf(y) || TypeOf(Zero(x).Interface()) != TypeOf(y) { + t.Errorf("did not find preexisting type for %s (vs %s)", TypeOf(x), TypeOf(y)) + } +} + +func TestArrayOf(t *testing.T) { + // check construction and use of type not in binary + tests := []struct { + n int + value func(i int) any + comparable bool + want string + }{ + { + n: 0, + value: func(i int) any { type Tint int; return Tint(i) }, + comparable: true, + want: "[]", + }, + { + n: 10, + value: func(i int) any { type Tint int; return Tint(i) }, + comparable: true, + want: "[0 1 2 3 4 5 6 7 8 9]", + }, + { + n: 10, + value: func(i int) any { type Tfloat float64; return Tfloat(i) }, + comparable: true, + want: "[0 1 2 3 4 5 6 7 8 9]", + }, + { + n: 10, + value: func(i int) any { type Tstring string; return Tstring(strconv.Itoa(i)) }, + comparable: true, + want: "[0 1 2 3 4 5 6 7 8 9]", + }, + { + n: 10, + value: func(i int) any { type Tstruct struct{ V int }; return Tstruct{i} }, + comparable: true, + want: "[{0} {1} {2} {3} {4} {5} {6} {7} {8} {9}]", + }, + { + n: 10, + value: func(i int) any { type Tint int; return []Tint{Tint(i)} }, + comparable: false, + want: "[[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]]", + }, + { + n: 10, + value: func(i int) any { type Tint int; return [1]Tint{Tint(i)} }, + comparable: true, + want: "[[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]]", + }, + { + n: 10, + value: func(i int) any { type Tstruct struct{ V [1]int }; return Tstruct{[1]int{i}} }, + comparable: true, + want: "[{[0]} {[1]} {[2]} {[3]} {[4]} {[5]} {[6]} {[7]} {[8]} {[9]}]", + }, + { + n: 10, + value: func(i int) any { type Tstruct struct{ V []int }; return Tstruct{[]int{i}} }, + comparable: false, + want: "[{[0]} {[1]} {[2]} {[3]} {[4]} {[5]} {[6]} {[7]} {[8]} {[9]}]", + }, + { + n: 10, + value: func(i int) any { type TstructUV struct{ U, V int }; return TstructUV{i, i} }, + comparable: true, + want: "[{0 0} {1 1} {2 2} {3 3} {4 4} {5 5} {6 6} {7 7} {8 8} {9 9}]", + }, + { + n: 10, + value: func(i int) any { + type TstructUV struct { + U int + V float64 + } + return TstructUV{i, float64(i)} + }, + comparable: true, + want: "[{0 0} {1 1} {2 2} {3 3} {4 4} {5 5} {6 6} {7 7} {8 8} {9 9}]", + }, + } + + for _, table := range tests { + at := ArrayOf(table.n, TypeOf(table.value(0))) + v := New(at).Elem() + vok := New(at).Elem() + vnot := New(at).Elem() + for i := 0; i < v.Len(); i++ { + v.Index(i).Set(ValueOf(table.value(i))) + vok.Index(i).Set(ValueOf(table.value(i))) + j := i + if i+1 == v.Len() { + j = i + 1 + } + vnot.Index(i).Set(ValueOf(table.value(j))) // make it differ only by last element + } + s := fmt.Sprint(v.Interface()) + if s != table.want { + t.Errorf("constructed array = %s, want %s", s, table.want) + } + + if table.comparable != at.Comparable() { + t.Errorf("constructed array (%#v) is comparable=%v, want=%v", v.Interface(), at.Comparable(), table.comparable) + } + if table.comparable { + if table.n > 0 { + if DeepEqual(vnot.Interface(), v.Interface()) { + t.Errorf( + "arrays (%#v) compare ok (but should not)", + v.Interface(), + ) + } + } + if !DeepEqual(vok.Interface(), v.Interface()) { + t.Errorf( + "arrays (%#v) compare NOT-ok (but should)", + v.Interface(), + ) + } + } + } + + // check that type already in binary is found + type T int + checkSameType(t, ArrayOf(5, TypeOf(T(1))), [5]T{}) +} + +func TestArrayOfGC(t *testing.T) { + type T *uintptr + tt := TypeOf(T(nil)) + const n = 100 + var x []any + for i := 0; i < n; i++ { + v := New(ArrayOf(n, tt)).Elem() + for j := 0; j < v.Len(); j++ { + p := new(uintptr) + *p = uintptr(i*n + j) + v.Index(j).Set(ValueOf(p).Convert(tt)) + } + x = append(x, v.Interface()) + } + runtime.GC() + + for i, xi := range x { + v := ValueOf(xi) + for j := 0; j < v.Len(); j++ { + k := v.Index(j).Elem().Interface() + if k != uintptr(i*n+j) { + t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) + } + } + } +} + +func TestArrayOfAlg(t *testing.T) { + at := ArrayOf(6, TypeOf(byte(0))) + v1 := New(at).Elem() + v2 := New(at).Elem() + if v1.Interface() != v1.Interface() { + t.Errorf("constructed array %v not equal to itself", v1.Interface()) + } + v1.Index(5).Set(ValueOf(byte(1))) + if i1, i2 := v1.Interface(), v2.Interface(); i1 == i2 { + t.Errorf("constructed arrays %v and %v should not be equal", i1, i2) + } + + at = ArrayOf(6, TypeOf([]int(nil))) + v1 = New(at).Elem() + shouldPanic("", func() { _ = v1.Interface() == v1.Interface() }) +} + +func TestArrayOfGenericAlg(t *testing.T) { + at1 := ArrayOf(5, TypeOf(string(""))) + at := ArrayOf(6, at1) + v1 := New(at).Elem() + v2 := New(at).Elem() + if v1.Interface() != v1.Interface() { + t.Errorf("constructed array %v not equal to itself", v1.Interface()) + } + + v1.Index(0).Index(0).Set(ValueOf("abc")) + v2.Index(0).Index(0).Set(ValueOf("efg")) + if i1, i2 := v1.Interface(), v2.Interface(); i1 == i2 { + t.Errorf("constructed arrays %v and %v should not be equal", i1, i2) + } + + v1.Index(0).Index(0).Set(ValueOf("abc")) + v2.Index(0).Index(0).Set(ValueOf((v1.Index(0).Index(0).String() + " ")[:3])) + if i1, i2 := v1.Interface(), v2.Interface(); i1 != i2 { + t.Errorf("constructed arrays %v and %v should be equal", i1, i2) + } + + // Test hash + m := MakeMap(MapOf(at, TypeOf(int(0)))) + m.SetMapIndex(v1, ValueOf(1)) + if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() { + t.Errorf("constructed arrays %v and %v have different hashes", i1, i2) + } +} + +func TestArrayOfDirectIface(t *testing.T) { + { + type T [1]*byte + i1 := Zero(TypeOf(T{})).Interface() + v1 := ValueOf(&i1).Elem() + p1 := v1.InterfaceData()[1] + + i2 := Zero(ArrayOf(1, PointerTo(TypeOf(int8(0))))).Interface() + v2 := ValueOf(&i2).Elem() + p2 := v2.InterfaceData()[1] + + if p1 != 0 { + t.Errorf("got p1=%v. want=%v", p1, nil) + } + + if p2 != 0 { + t.Errorf("got p2=%v. want=%v", p2, nil) + } + } + { + type T [0]*byte + i1 := Zero(TypeOf(T{})).Interface() + v1 := ValueOf(&i1).Elem() + p1 := v1.InterfaceData()[1] + + i2 := Zero(ArrayOf(0, PointerTo(TypeOf(int8(0))))).Interface() + v2 := ValueOf(&i2).Elem() + p2 := v2.InterfaceData()[1] + + if p1 == 0 { + t.Errorf("got p1=%v. want=not-%v", p1, nil) + } + + if p2 == 0 { + t.Errorf("got p2=%v. want=not-%v", p2, nil) + } + } +} + +// Ensure passing in negative lengths panics. +// See https://golang.org/issue/43603 +func TestArrayOfPanicOnNegativeLength(t *testing.T) { + shouldPanic("reflect: negative length passed to ArrayOf", func() { + ArrayOf(-1, TypeOf(byte(0))) + }) +} + +func TestSliceOf(t *testing.T) { + // check construction and use of type not in binary + type T int + st := SliceOf(TypeOf(T(1))) + if got, want := st.String(), "[]reflect_test.T"; got != want { + t.Errorf("SliceOf(T(1)).String()=%q, want %q", got, want) + } + v := MakeSlice(st, 10, 10) + runtime.GC() + for i := 0; i < v.Len(); i++ { + v.Index(i).Set(ValueOf(T(i))) + runtime.GC() + } + s := fmt.Sprint(v.Interface()) + want := "[0 1 2 3 4 5 6 7 8 9]" + if s != want { + t.Errorf("constructed slice = %s, want %s", s, want) + } + + // check that type already in binary is found + type T1 int + checkSameType(t, SliceOf(TypeOf(T1(1))), []T1{}) +} + +func TestSliceOverflow(t *testing.T) { + // check that MakeSlice panics when size of slice overflows uint + const S = 1e6 + s := uint(S) + l := (1<<(unsafe.Sizeof((*byte)(nil))*8)-1)/s + 1 + if l*s >= s { + t.Fatal("slice size does not overflow") + } + var x [S]byte + st := SliceOf(TypeOf(x)) + defer func() { + err := recover() + if err == nil { + t.Fatal("slice overflow does not panic") + } + }() + MakeSlice(st, int(l), int(l)) +} + +func TestSliceOfGC(t *testing.T) { + type T *uintptr + tt := TypeOf(T(nil)) + st := SliceOf(tt) + const n = 100 + var x []any + for i := 0; i < n; i++ { + v := MakeSlice(st, n, n) + for j := 0; j < v.Len(); j++ { + p := new(uintptr) + *p = uintptr(i*n + j) + v.Index(j).Set(ValueOf(p).Convert(tt)) + } + x = append(x, v.Interface()) + } + runtime.GC() + + for i, xi := range x { + v := ValueOf(xi) + for j := 0; j < v.Len(); j++ { + k := v.Index(j).Elem().Interface() + if k != uintptr(i*n+j) { + t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) + } + } + } +} + +func TestStructOfFieldName(t *testing.T) { + // invalid field name "1nvalid" + shouldPanic("has invalid name", func() { + StructOf([]StructField{ + {Name: "Valid", Type: TypeOf("")}, + {Name: "1nvalid", Type: TypeOf("")}, + }) + }) + + // invalid field name "+" + shouldPanic("has invalid name", func() { + StructOf([]StructField{ + {Name: "Val1d", Type: TypeOf("")}, + {Name: "+", Type: TypeOf("")}, + }) + }) + + // no field name + shouldPanic("has no name", func() { + StructOf([]StructField{ + {Name: "", Type: TypeOf("")}, + }) + }) + + // verify creation of a struct with valid struct fields + validFields := []StructField{ + { + Name: "φ", + Type: TypeOf(""), + }, + { + Name: "ValidName", + Type: TypeOf(""), + }, + { + Name: "Val1dNam5", + Type: TypeOf(""), + }, + } + + validStruct := StructOf(validFields) + + const structStr = `struct { φ string; ValidName string; Val1dNam5 string }` + if got, want := validStruct.String(), structStr; got != want { + t.Errorf("StructOf(validFields).String()=%q, want %q", got, want) + } +} + +func TestStructOf(t *testing.T) { + // check construction and use of type not in binary + fields := []StructField{ + { + Name: "S", + Tag: "s", + Type: TypeOf(""), + }, + { + Name: "X", + Tag: "x", + Type: TypeOf(byte(0)), + }, + { + Name: "Y", + Type: TypeOf(uint64(0)), + }, + { + Name: "Z", + Type: TypeOf([3]uint16{}), + }, + } + + st := StructOf(fields) + v := New(st).Elem() + runtime.GC() + v.FieldByName("X").Set(ValueOf(byte(2))) + v.FieldByIndex([]int{1}).Set(ValueOf(byte(1))) + runtime.GC() + + s := fmt.Sprint(v.Interface()) + want := `{ 1 0 [0 0 0]}` + if s != want { + t.Errorf("constructed struct = %s, want %s", s, want) + } + const stStr = `struct { S string "s"; X uint8 "x"; Y uint64; Z [3]uint16 }` + if got, want := st.String(), stStr; got != want { + t.Errorf("StructOf(fields).String()=%q, want %q", got, want) + } + + // check the size, alignment and field offsets + stt := TypeOf(struct { + String string + X byte + Y uint64 + Z [3]uint16 + }{}) + if st.Size() != stt.Size() { + t.Errorf("constructed struct size = %v, want %v", st.Size(), stt.Size()) + } + if st.Align() != stt.Align() { + t.Errorf("constructed struct align = %v, want %v", st.Align(), stt.Align()) + } + if st.FieldAlign() != stt.FieldAlign() { + t.Errorf("constructed struct field align = %v, want %v", st.FieldAlign(), stt.FieldAlign()) + } + for i := 0; i < st.NumField(); i++ { + o1 := st.Field(i).Offset + o2 := stt.Field(i).Offset + if o1 != o2 { + t.Errorf("constructed struct field %v offset = %v, want %v", i, o1, o2) + } + } + + // Check size and alignment with a trailing zero-sized field. + st = StructOf([]StructField{ + { + Name: "F1", + Type: TypeOf(byte(0)), + }, + { + Name: "F2", + Type: TypeOf([0]*byte{}), + }, + }) + stt = TypeOf(struct { + G1 byte + G2 [0]*byte + }{}) + if st.Size() != stt.Size() { + t.Errorf("constructed zero-padded struct size = %v, want %v", st.Size(), stt.Size()) + } + if st.Align() != stt.Align() { + t.Errorf("constructed zero-padded struct align = %v, want %v", st.Align(), stt.Align()) + } + if st.FieldAlign() != stt.FieldAlign() { + t.Errorf("constructed zero-padded struct field align = %v, want %v", st.FieldAlign(), stt.FieldAlign()) + } + for i := 0; i < st.NumField(); i++ { + o1 := st.Field(i).Offset + o2 := stt.Field(i).Offset + if o1 != o2 { + t.Errorf("constructed zero-padded struct field %v offset = %v, want %v", i, o1, o2) + } + } + + // check duplicate names + shouldPanic("duplicate field", func() { + StructOf([]StructField{ + {Name: "string", PkgPath: "p", Type: TypeOf("")}, + {Name: "string", PkgPath: "p", Type: TypeOf("")}, + }) + }) + shouldPanic("has no name", func() { + StructOf([]StructField{ + {Type: TypeOf("")}, + {Name: "string", PkgPath: "p", Type: TypeOf("")}, + }) + }) + shouldPanic("has no name", func() { + StructOf([]StructField{ + {Type: TypeOf("")}, + {Type: TypeOf("")}, + }) + }) + // check that type already in binary is found + checkSameType(t, StructOf(fields[2:3]), struct{ Y uint64 }{}) + + // gccgo used to fail this test. + type structFieldType any + checkSameType(t, + StructOf([]StructField{ + { + Name: "F", + Type: TypeOf((*structFieldType)(nil)).Elem(), + }, + }), + struct{ F structFieldType }{}) +} + +func TestStructOfExportRules(t *testing.T) { + type S1 struct{} + type s2 struct{} + type ΦType struct{} + type φType struct{} + + testPanic := func(i int, mustPanic bool, f func()) { + defer func() { + err := recover() + if err == nil && mustPanic { + t.Errorf("test-%d did not panic", i) + } + if err != nil && !mustPanic { + t.Errorf("test-%d panicked: %v\n", i, err) + } + }() + f() + } + + tests := []struct { + field StructField + mustPanic bool + exported bool + }{ + { + field: StructField{Name: "S1", Anonymous: true, Type: TypeOf(S1{})}, + exported: true, + }, + { + field: StructField{Name: "S1", Anonymous: true, Type: TypeOf((*S1)(nil))}, + exported: true, + }, + { + field: StructField{Name: "s2", Anonymous: true, Type: TypeOf(s2{})}, + mustPanic: true, + }, + { + field: StructField{Name: "s2", Anonymous: true, Type: TypeOf((*s2)(nil))}, + mustPanic: true, + }, + { + field: StructField{Name: "Name", Type: nil, PkgPath: ""}, + mustPanic: true, + }, + { + field: StructField{Name: "", Type: TypeOf(S1{}), PkgPath: ""}, + mustPanic: true, + }, + { + field: StructField{Name: "S1", Anonymous: true, Type: TypeOf(S1{}), PkgPath: "other/pkg"}, + mustPanic: true, + }, + { + field: StructField{Name: "S1", Anonymous: true, Type: TypeOf((*S1)(nil)), PkgPath: "other/pkg"}, + mustPanic: true, + }, + { + field: StructField{Name: "s2", Anonymous: true, Type: TypeOf(s2{}), PkgPath: "other/pkg"}, + mustPanic: true, + }, + { + field: StructField{Name: "s2", Anonymous: true, Type: TypeOf((*s2)(nil)), PkgPath: "other/pkg"}, + mustPanic: true, + }, + { + field: StructField{Name: "s2", Type: TypeOf(int(0)), PkgPath: "other/pkg"}, + }, + { + field: StructField{Name: "s2", Type: TypeOf(int(0)), PkgPath: "other/pkg"}, + }, + { + field: StructField{Name: "S", Type: TypeOf(S1{})}, + exported: true, + }, + { + field: StructField{Name: "S", Type: TypeOf((*S1)(nil))}, + exported: true, + }, + { + field: StructField{Name: "S", Type: TypeOf(s2{})}, + exported: true, + }, + { + field: StructField{Name: "S", Type: TypeOf((*s2)(nil))}, + exported: true, + }, + { + field: StructField{Name: "s", Type: TypeOf(S1{})}, + mustPanic: true, + }, + { + field: StructField{Name: "s", Type: TypeOf((*S1)(nil))}, + mustPanic: true, + }, + { + field: StructField{Name: "s", Type: TypeOf(s2{})}, + mustPanic: true, + }, + { + field: StructField{Name: "s", Type: TypeOf((*s2)(nil))}, + mustPanic: true, + }, + { + field: StructField{Name: "s", Type: TypeOf(S1{}), PkgPath: "other/pkg"}, + }, + { + field: StructField{Name: "s", Type: TypeOf((*S1)(nil)), PkgPath: "other/pkg"}, + }, + { + field: StructField{Name: "s", Type: TypeOf(s2{}), PkgPath: "other/pkg"}, + }, + { + field: StructField{Name: "s", Type: TypeOf((*s2)(nil)), PkgPath: "other/pkg"}, + }, + { + field: StructField{Name: "", Type: TypeOf(ΦType{})}, + mustPanic: true, + }, + { + field: StructField{Name: "", Type: TypeOf(φType{})}, + mustPanic: true, + }, + { + field: StructField{Name: "Φ", Type: TypeOf(0)}, + exported: true, + }, + { + field: StructField{Name: "φ", Type: TypeOf(0)}, + exported: false, + }, + } + + for i, test := range tests { + testPanic(i, test.mustPanic, func() { + typ := StructOf([]StructField{test.field}) + if typ == nil { + t.Errorf("test-%d: error creating struct type", i) + return + } + field := typ.Field(0) + n := field.Name + if n == "" { + panic("field.Name must not be empty") + } + exported := token.IsExported(n) + if exported != test.exported { + t.Errorf("test-%d: got exported=%v want exported=%v", i, exported, test.exported) + } + if field.PkgPath != test.field.PkgPath { + t.Errorf("test-%d: got PkgPath=%q want pkgPath=%q", i, field.PkgPath, test.field.PkgPath) + } + }) + } +} + +func TestStructOfGC(t *testing.T) { + type T *uintptr + tt := TypeOf(T(nil)) + fields := []StructField{ + {Name: "X", Type: tt}, + {Name: "Y", Type: tt}, + } + st := StructOf(fields) + + const n = 10000 + var x []any + for i := 0; i < n; i++ { + v := New(st).Elem() + for j := 0; j < v.NumField(); j++ { + p := new(uintptr) + *p = uintptr(i*n + j) + v.Field(j).Set(ValueOf(p).Convert(tt)) + } + x = append(x, v.Interface()) + } + runtime.GC() + + for i, xi := range x { + v := ValueOf(xi) + for j := 0; j < v.NumField(); j++ { + k := v.Field(j).Elem().Interface() + if k != uintptr(i*n+j) { + t.Errorf("lost x[%d].%c = %d, want %d", i, "XY"[j], k, i*n+j) + } + } + } +} + +func TestStructOfAlg(t *testing.T) { + st := StructOf([]StructField{{Name: "X", Tag: "x", Type: TypeOf(int(0))}}) + v1 := New(st).Elem() + v2 := New(st).Elem() + if !DeepEqual(v1.Interface(), v1.Interface()) { + t.Errorf("constructed struct %v not equal to itself", v1.Interface()) + } + v1.FieldByName("X").Set(ValueOf(int(1))) + if i1, i2 := v1.Interface(), v2.Interface(); DeepEqual(i1, i2) { + t.Errorf("constructed structs %v and %v should not be equal", i1, i2) + } + + st = StructOf([]StructField{{Name: "X", Tag: "x", Type: TypeOf([]int(nil))}}) + v1 = New(st).Elem() + shouldPanic("", func() { _ = v1.Interface() == v1.Interface() }) +} + +func TestStructOfGenericAlg(t *testing.T) { + st1 := StructOf([]StructField{ + {Name: "X", Tag: "x", Type: TypeOf(int64(0))}, + {Name: "Y", Type: TypeOf(string(""))}, + }) + st := StructOf([]StructField{ + {Name: "S0", Type: st1}, + {Name: "S1", Type: st1}, + }) + + tests := []struct { + rt Type + idx []int + }{ + { + rt: st, + idx: []int{0, 1}, + }, + { + rt: st1, + idx: []int{1}, + }, + { + rt: StructOf( + []StructField{ + {Name: "XX", Type: TypeOf([0]int{})}, + {Name: "YY", Type: TypeOf("")}, + }, + ), + idx: []int{1}, + }, + { + rt: StructOf( + []StructField{ + {Name: "XX", Type: TypeOf([0]int{})}, + {Name: "YY", Type: TypeOf("")}, + {Name: "ZZ", Type: TypeOf([2]int{})}, + }, + ), + idx: []int{1}, + }, + { + rt: StructOf( + []StructField{ + {Name: "XX", Type: TypeOf([1]int{})}, + {Name: "YY", Type: TypeOf("")}, + }, + ), + idx: []int{1}, + }, + { + rt: StructOf( + []StructField{ + {Name: "XX", Type: TypeOf([1]int{})}, + {Name: "YY", Type: TypeOf("")}, + {Name: "ZZ", Type: TypeOf([1]int{})}, + }, + ), + idx: []int{1}, + }, + { + rt: StructOf( + []StructField{ + {Name: "XX", Type: TypeOf([2]int{})}, + {Name: "YY", Type: TypeOf("")}, + {Name: "ZZ", Type: TypeOf([2]int{})}, + }, + ), + idx: []int{1}, + }, + { + rt: StructOf( + []StructField{ + {Name: "XX", Type: TypeOf(int64(0))}, + {Name: "YY", Type: TypeOf(byte(0))}, + {Name: "ZZ", Type: TypeOf("")}, + }, + ), + idx: []int{2}, + }, + { + rt: StructOf( + []StructField{ + {Name: "XX", Type: TypeOf(int64(0))}, + {Name: "YY", Type: TypeOf(int64(0))}, + {Name: "ZZ", Type: TypeOf("")}, + {Name: "AA", Type: TypeOf([1]int64{})}, + }, + ), + idx: []int{2}, + }, + } + + for _, table := range tests { + v1 := New(table.rt).Elem() + v2 := New(table.rt).Elem() + + if !DeepEqual(v1.Interface(), v1.Interface()) { + t.Errorf("constructed struct %v not equal to itself", v1.Interface()) + } + + v1.FieldByIndex(table.idx).Set(ValueOf("abc")) + v2.FieldByIndex(table.idx).Set(ValueOf("def")) + if i1, i2 := v1.Interface(), v2.Interface(); DeepEqual(i1, i2) { + t.Errorf("constructed structs %v and %v should not be equal", i1, i2) + } + + abc := "abc" + v1.FieldByIndex(table.idx).Set(ValueOf(abc)) + val := "+" + abc + "-" + v2.FieldByIndex(table.idx).Set(ValueOf(val[1:4])) + if i1, i2 := v1.Interface(), v2.Interface(); !DeepEqual(i1, i2) { + t.Errorf("constructed structs %v and %v should be equal", i1, i2) + } + + // Test hash + m := MakeMap(MapOf(table.rt, TypeOf(int(0)))) + m.SetMapIndex(v1, ValueOf(1)) + if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() { + t.Errorf("constructed structs %#v and %#v have different hashes", i1, i2) + } + + v2.FieldByIndex(table.idx).Set(ValueOf("abc")) + if i1, i2 := v1.Interface(), v2.Interface(); !DeepEqual(i1, i2) { + t.Errorf("constructed structs %v and %v should be equal", i1, i2) + } + + if i1, i2 := v1.Interface(), v2.Interface(); !m.MapIndex(v2).IsValid() { + t.Errorf("constructed structs %v and %v have different hashes", i1, i2) + } + } +} + +func TestStructOfDirectIface(t *testing.T) { + { + type T struct{ X [1]*byte } + i1 := Zero(TypeOf(T{})).Interface() + v1 := ValueOf(&i1).Elem() + p1 := v1.InterfaceData()[1] + + i2 := Zero(StructOf([]StructField{ + { + Name: "X", + Type: ArrayOf(1, TypeOf((*int8)(nil))), + }, + })).Interface() + v2 := ValueOf(&i2).Elem() + p2 := v2.InterfaceData()[1] + + if p1 != 0 { + t.Errorf("got p1=%v. want=%v", p1, nil) + } + + if p2 != 0 { + t.Errorf("got p2=%v. want=%v", p2, nil) + } + } + { + type T struct{ X [0]*byte } + i1 := Zero(TypeOf(T{})).Interface() + v1 := ValueOf(&i1).Elem() + p1 := v1.InterfaceData()[1] + + i2 := Zero(StructOf([]StructField{ + { + Name: "X", + Type: ArrayOf(0, TypeOf((*int8)(nil))), + }, + })).Interface() + v2 := ValueOf(&i2).Elem() + p2 := v2.InterfaceData()[1] + + if p1 == 0 { + t.Errorf("got p1=%v. want=not-%v", p1, nil) + } + + if p2 == 0 { + t.Errorf("got p2=%v. want=not-%v", p2, nil) + } + } +} + +type StructI int + +func (i StructI) Get() int { return int(i) } + +type StructIPtr int + +func (i *StructIPtr) Get() int { return int(*i) } +func (i *StructIPtr) Set(v int) { *(*int)(i) = v } + +type SettableStruct struct { + SettableField int +} + +func (p *SettableStruct) Set(v int) { p.SettableField = v } + +type SettablePointer struct { + SettableField *int +} + +func (p *SettablePointer) Set(v int) { *p.SettableField = v } + +func TestStructOfWithInterface(t *testing.T) { + const want = 42 + type Iface interface { + Get() int + } + type IfaceSet interface { + Set(int) + } + tests := []struct { + name string + typ Type + val Value + impl bool + }{ + { + name: "StructI", + typ: TypeOf(StructI(want)), + val: ValueOf(StructI(want)), + impl: true, + }, + { + name: "StructI", + typ: PointerTo(TypeOf(StructI(want))), + val: ValueOf(func() any { + v := StructI(want) + return &v + }()), + impl: true, + }, + { + name: "StructIPtr", + typ: PointerTo(TypeOf(StructIPtr(want))), + val: ValueOf(func() any { + v := StructIPtr(want) + return &v + }()), + impl: true, + }, + { + name: "StructIPtr", + typ: TypeOf(StructIPtr(want)), + val: ValueOf(StructIPtr(want)), + impl: false, + }, + // { + // typ: TypeOf((*Iface)(nil)).Elem(), // FIXME(sbinet): fix method.ifn/tfn + // val: ValueOf(StructI(want)), + // impl: true, + // }, + } + + for i, table := range tests { + for j := 0; j < 2; j++ { + var fields []StructField + if j == 1 { + fields = append(fields, StructField{ + Name: "Dummy", + PkgPath: "", + Type: TypeOf(int(0)), + }) + } + fields = append(fields, StructField{ + Name: table.name, + Anonymous: true, + PkgPath: "", + Type: table.typ, + }) + + // We currently do not correctly implement methods + // for embedded fields other than the first. + // Therefore, for now, we expect those methods + // to not exist. See issues 15924 and 20824. + // When those issues are fixed, this test of panic + // should be removed. + if j == 1 && table.impl { + func() { + defer func() { + if err := recover(); err == nil { + t.Errorf("test-%d-%d did not panic", i, j) + } + }() + _ = StructOf(fields) + }() + continue + } + + rt := StructOf(fields) + rv := New(rt).Elem() + rv.Field(j).Set(table.val) + + if _, ok := rv.Interface().(Iface); ok != table.impl { + if table.impl { + t.Errorf("test-%d-%d: type=%v fails to implement Iface.\n", i, j, table.typ) + } else { + t.Errorf("test-%d-%d: type=%v should NOT implement Iface\n", i, j, table.typ) + } + continue + } + + if !table.impl { + continue + } + + v := rv.Interface().(Iface).Get() + if v != want { + t.Errorf("test-%d-%d: x.Get()=%v. want=%v\n", i, j, v, want) + } + + fct := rv.MethodByName("Get") + out := fct.Call(nil) + if !DeepEqual(out[0].Interface(), want) { + t.Errorf("test-%d-%d: x.Get()=%v. want=%v\n", i, j, out[0].Interface(), want) + } + } + } + + // Test an embedded nil pointer with pointer methods. + fields := []StructField{{ + Name: "StructIPtr", + Anonymous: true, + Type: PointerTo(TypeOf(StructIPtr(want))), + }} + rt := StructOf(fields) + rv := New(rt).Elem() + // This should panic since the pointer is nil. + shouldPanic("", func() { + rv.Interface().(IfaceSet).Set(want) + }) + + // Test an embedded nil pointer to a struct with pointer methods. + + fields = []StructField{{ + Name: "SettableStruct", + Anonymous: true, + Type: PointerTo(TypeOf(SettableStruct{})), + }} + rt = StructOf(fields) + rv = New(rt).Elem() + // This should panic since the pointer is nil. + shouldPanic("", func() { + rv.Interface().(IfaceSet).Set(want) + }) + + // The behavior is different if there is a second field, + // since now an interface value holds a pointer to the struct + // rather than just holding a copy of the struct. + fields = []StructField{ + { + Name: "SettableStruct", + Anonymous: true, + Type: PointerTo(TypeOf(SettableStruct{})), + }, + { + Name: "EmptyStruct", + Anonymous: true, + Type: StructOf(nil), + }, + } + // With the current implementation this is expected to panic. + // Ideally it should work and we should be able to see a panic + // if we call the Set method. + shouldPanic("", func() { + StructOf(fields) + }) + + // Embed a field that can be stored directly in an interface, + // with a second field. + fields = []StructField{ + { + Name: "SettablePointer", + Anonymous: true, + Type: TypeOf(SettablePointer{}), + }, + { + Name: "EmptyStruct", + Anonymous: true, + Type: StructOf(nil), + }, + } + // With the current implementation this is expected to panic. + // Ideally it should work and we should be able to call the + // Set and Get methods. + shouldPanic("", func() { + StructOf(fields) + }) +} + +func TestStructOfTooManyFields(t *testing.T) { + // Bug Fix: #25402 - this should not panic + tt := StructOf([]StructField{ + {Name: "Time", Type: TypeOf(time.Time{}), Anonymous: true}, + }) + + if _, present := tt.MethodByName("After"); !present { + t.Errorf("Expected method `After` to be found") + } +} + +func TestStructOfDifferentPkgPath(t *testing.T) { + fields := []StructField{ + { + Name: "f1", + PkgPath: "p1", + Type: TypeOf(int(0)), + }, + { + Name: "f2", + PkgPath: "p2", + Type: TypeOf(int(0)), + }, + } + shouldPanic("different PkgPath", func() { + StructOf(fields) + }) +} + +func TestStructOfTooLarge(t *testing.T) { + t1 := TypeOf(byte(0)) + t2 := TypeOf(int16(0)) + t4 := TypeOf(int32(0)) + t0 := ArrayOf(0, t1) + + // 2^64-3 sized type (or 2^32-3 on 32-bit archs) + bigType := StructOf([]StructField{ + {Name: "F1", Type: ArrayOf(int(^uintptr(0)>>1), t1)}, + {Name: "F2", Type: ArrayOf(int(^uintptr(0)>>1-1), t1)}, + }) + + type test struct { + shouldPanic bool + fields []StructField + } + + tests := [...]test{ + { + shouldPanic: false, // 2^64-1, ok + fields: []StructField{ + {Name: "F1", Type: bigType}, + {Name: "F2", Type: ArrayOf(2, t1)}, + }, + }, + { + shouldPanic: true, // overflow in total size + fields: []StructField{ + {Name: "F1", Type: bigType}, + {Name: "F2", Type: ArrayOf(3, t1)}, + }, + }, + { + shouldPanic: true, // overflow while aligning F2 + fields: []StructField{ + {Name: "F1", Type: bigType}, + {Name: "F2", Type: t4}, + }, + }, + { + shouldPanic: true, // overflow while adding trailing byte for zero-sized fields + fields: []StructField{ + {Name: "F1", Type: bigType}, + {Name: "F2", Type: ArrayOf(2, t1)}, + {Name: "F3", Type: t0}, + }, + }, + { + shouldPanic: true, // overflow while aligning total size + fields: []StructField{ + {Name: "F1", Type: t2}, + {Name: "F2", Type: bigType}, + }, + }, + } + + for i, tt := range tests { + func() { + defer func() { + err := recover() + if !tt.shouldPanic { + if err != nil { + t.Errorf("test %d should not panic, got %s", i, err) + } + return + } + if err == nil { + t.Errorf("test %d expected to panic", i) + return + } + s := fmt.Sprintf("%s", err) + if s != "reflect.StructOf: struct size would exceed virtual address space" { + t.Errorf("test %d wrong panic message: %s", i, s) + return + } + }() + _ = StructOf(tt.fields) + }() + } +} + +func TestChanOf(t *testing.T) { + // check construction and use of type not in binary + type T string + ct := ChanOf(BothDir, TypeOf(T(""))) + v := MakeChan(ct, 2) + runtime.GC() + v.Send(ValueOf(T("hello"))) + runtime.GC() + v.Send(ValueOf(T("world"))) + runtime.GC() + + sv1, _ := v.Recv() + sv2, _ := v.Recv() + s1 := sv1.String() + s2 := sv2.String() + if s1 != "hello" || s2 != "world" { + t.Errorf("constructed chan: have %q, %q, want %q, %q", s1, s2, "hello", "world") + } + + // check that type already in binary is found + type T1 int + checkSameType(t, ChanOf(BothDir, TypeOf(T1(1))), (chan T1)(nil)) + + // Check arrow token association in undefined chan types. + var left chan<- chan T + var right chan (<-chan T) + tLeft := ChanOf(SendDir, ChanOf(BothDir, TypeOf(T("")))) + tRight := ChanOf(BothDir, ChanOf(RecvDir, TypeOf(T("")))) + if tLeft != TypeOf(left) { + t.Errorf("chan<-chan: have %s, want %T", tLeft, left) + } + if tRight != TypeOf(right) { + t.Errorf("chan<-chan: have %s, want %T", tRight, right) + } +} + +func TestChanOfDir(t *testing.T) { + // check construction and use of type not in binary + type T string + crt := ChanOf(RecvDir, TypeOf(T(""))) + cst := ChanOf(SendDir, TypeOf(T(""))) + + // check that type already in binary is found + type T1 int + checkSameType(t, ChanOf(RecvDir, TypeOf(T1(1))), (<-chan T1)(nil)) + checkSameType(t, ChanOf(SendDir, TypeOf(T1(1))), (chan<- T1)(nil)) + + // check String form of ChanDir + if crt.ChanDir().String() != "<-chan" { + t.Errorf("chan dir: have %q, want %q", crt.ChanDir().String(), "<-chan") + } + if cst.ChanDir().String() != "chan<-" { + t.Errorf("chan dir: have %q, want %q", cst.ChanDir().String(), "chan<-") + } +} + +func TestChanOfGC(t *testing.T) { + done := make(chan bool, 1) + go func() { + select { + case <-done: + case <-time.After(5 * time.Second): + panic("deadlock in TestChanOfGC") + } + }() + + defer func() { + done <- true + }() + + type T *uintptr + tt := TypeOf(T(nil)) + ct := ChanOf(BothDir, tt) + + // NOTE: The garbage collector handles allocated channels specially, + // so we have to save pointers to channels in x; the pointer code will + // use the gc info in the newly constructed chan type. + const n = 100 + var x []any + for i := 0; i < n; i++ { + v := MakeChan(ct, n) + for j := 0; j < n; j++ { + p := new(uintptr) + *p = uintptr(i*n + j) + v.Send(ValueOf(p).Convert(tt)) + } + pv := New(ct) + pv.Elem().Set(v) + x = append(x, pv.Interface()) + } + runtime.GC() + + for i, xi := range x { + v := ValueOf(xi).Elem() + for j := 0; j < n; j++ { + pv, _ := v.Recv() + k := pv.Elem().Interface() + if k != uintptr(i*n+j) { + t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) + } + } + } +} + +func TestMapOf(t *testing.T) { + // check construction and use of type not in binary + type K string + type V float64 + + v := MakeMap(MapOf(TypeOf(K("")), TypeOf(V(0)))) + runtime.GC() + v.SetMapIndex(ValueOf(K("a")), ValueOf(V(1))) + runtime.GC() + + s := fmt.Sprint(v.Interface()) + want := "map[a:1]" + if s != want { + t.Errorf("constructed map = %s, want %s", s, want) + } + + // check that type already in binary is found + checkSameType(t, MapOf(TypeOf(V(0)), TypeOf(K(""))), map[V]K(nil)) + + // check that invalid key type panics + shouldPanic("invalid key type", func() { MapOf(TypeOf((func())(nil)), TypeOf(false)) }) +} + +func TestMapOfGCKeys(t *testing.T) { + type T *uintptr + tt := TypeOf(T(nil)) + mt := MapOf(tt, TypeOf(false)) + + // NOTE: The garbage collector handles allocated maps specially, + // so we have to save pointers to maps in x; the pointer code will + // use the gc info in the newly constructed map type. + const n = 100 + var x []any + for i := 0; i < n; i++ { + v := MakeMap(mt) + for j := 0; j < n; j++ { + p := new(uintptr) + *p = uintptr(i*n + j) + v.SetMapIndex(ValueOf(p).Convert(tt), ValueOf(true)) + } + pv := New(mt) + pv.Elem().Set(v) + x = append(x, pv.Interface()) + } + runtime.GC() + + for i, xi := range x { + v := ValueOf(xi).Elem() + var out []int + for _, kv := range v.MapKeys() { + out = append(out, int(kv.Elem().Interface().(uintptr))) + } + sort.Ints(out) + for j, k := range out { + if k != i*n+j { + t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) + } + } + } +} + +func TestMapOfGCValues(t *testing.T) { + type T *uintptr + tt := TypeOf(T(nil)) + mt := MapOf(TypeOf(1), tt) + + // NOTE: The garbage collector handles allocated maps specially, + // so we have to save pointers to maps in x; the pointer code will + // use the gc info in the newly constructed map type. + const n = 100 + var x []any + for i := 0; i < n; i++ { + v := MakeMap(mt) + for j := 0; j < n; j++ { + p := new(uintptr) + *p = uintptr(i*n + j) + v.SetMapIndex(ValueOf(j), ValueOf(p).Convert(tt)) + } + pv := New(mt) + pv.Elem().Set(v) + x = append(x, pv.Interface()) + } + runtime.GC() + + for i, xi := range x { + v := ValueOf(xi).Elem() + for j := 0; j < n; j++ { + k := v.MapIndex(ValueOf(j)).Elem().Interface().(uintptr) + if k != uintptr(i*n+j) { + t.Errorf("lost x[%d][%d] = %d, want %d", i, j, k, i*n+j) + } + } + } +} + +func TestTypelinksSorted(t *testing.T) { + var last string + for i, n := range TypeLinks() { + if n < last { + t.Errorf("typelinks not sorted: %q [%d] > %q [%d]", last, i-1, n, i) + } + last = n + } +} + +func TestFuncOf(t *testing.T) { + // check construction and use of type not in binary + type K string + type V float64 + + fn := func(args []Value) []Value { + if len(args) != 1 { + t.Errorf("args == %v, want exactly one arg", args) + } else if args[0].Type() != TypeOf(K("")) { + t.Errorf("args[0] is type %v, want %v", args[0].Type(), TypeOf(K(""))) + } else if args[0].String() != "gopher" { + t.Errorf("args[0] = %q, want %q", args[0].String(), "gopher") + } + return []Value{ValueOf(V(3.14))} + } + v := MakeFunc(FuncOf([]Type{TypeOf(K(""))}, []Type{TypeOf(V(0))}, false), fn) + + outs := v.Call([]Value{ValueOf(K("gopher"))}) + if len(outs) != 1 { + t.Fatalf("v.Call returned %v, want exactly one result", outs) + } else if outs[0].Type() != TypeOf(V(0)) { + t.Fatalf("c.Call[0] is type %v, want %v", outs[0].Type(), TypeOf(V(0))) + } + f := outs[0].Float() + if f != 3.14 { + t.Errorf("constructed func returned %f, want %f", f, 3.14) + } + + // check that types already in binary are found + type T1 int + testCases := []struct { + in, out []Type + variadic bool + want any + }{ + {in: []Type{TypeOf(T1(0))}, want: (func(T1))(nil)}, + {in: []Type{TypeOf(int(0))}, want: (func(int))(nil)}, + {in: []Type{SliceOf(TypeOf(int(0)))}, variadic: true, want: (func(...int))(nil)}, + {in: []Type{TypeOf(int(0))}, out: []Type{TypeOf(false)}, want: (func(int) bool)(nil)}, + {in: []Type{TypeOf(int(0))}, out: []Type{TypeOf(false), TypeOf("")}, want: (func(int) (bool, string))(nil)}, + } + for _, tt := range testCases { + checkSameType(t, FuncOf(tt.in, tt.out, tt.variadic), tt.want) + } + + // check that variadic requires last element be a slice. + FuncOf([]Type{TypeOf(1), TypeOf(""), SliceOf(TypeOf(false))}, nil, true) + shouldPanic("must be slice", func() { FuncOf([]Type{TypeOf(0), TypeOf(""), TypeOf(false)}, nil, true) }) + shouldPanic("must be slice", func() { FuncOf(nil, nil, true) }) + + //testcase for #54669 + var in []Type + for i := 0; i < 51; i++ { + in = append(in, TypeOf(1)) + } + FuncOf(in, nil, false) +} + +type R0 struct { + *R1 + *R2 + *R3 + *R4 +} + +type R1 struct { + *R5 + *R6 + *R7 + *R8 +} + +type R2 R1 +type R3 R1 +type R4 R1 + +type R5 struct { + *R9 + *R10 + *R11 + *R12 +} + +type R6 R5 +type R7 R5 +type R8 R5 + +type R9 struct { + *R13 + *R14 + *R15 + *R16 +} + +type R10 R9 +type R11 R9 +type R12 R9 + +type R13 struct { + *R17 + *R18 + *R19 + *R20 +} + +type R14 R13 +type R15 R13 +type R16 R13 + +type R17 struct { + *R21 + *R22 + *R23 + *R24 +} + +type R18 R17 +type R19 R17 +type R20 R17 + +type R21 struct { + X int +} + +type R22 R21 +type R23 R21 +type R24 R21 + +func TestEmbed(t *testing.T) { + typ := TypeOf(R0{}) + f, ok := typ.FieldByName("X") + if ok { + t.Fatalf(`FieldByName("X") should fail, returned %v`, f.Index) + } +} + +func TestAllocsInterfaceBig(t *testing.T) { + if testing.Short() { + t.Skip("skipping malloc count in short mode") + } + v := ValueOf(S{}) + if allocs := testing.AllocsPerRun(100, func() { v.Interface() }); allocs > 0 { + t.Error("allocs:", allocs) + } +} + +func TestAllocsInterfaceSmall(t *testing.T) { + if testing.Short() { + t.Skip("skipping malloc count in short mode") + } + v := ValueOf(int64(0)) + if allocs := testing.AllocsPerRun(100, func() { v.Interface() }); allocs > 0 { + t.Error("allocs:", allocs) + } +} + +// An exhaustive is a mechanism for writing exhaustive or stochastic tests. +// The basic usage is: +// +// for x.Next() { +// ... code using x.Maybe() or x.Choice(n) to create test cases ... +// } +// +// Each iteration of the loop returns a different set of results, until all +// possible result sets have been explored. It is okay for different code paths +// to make different method call sequences on x, but there must be no +// other source of non-determinism in the call sequences. +// +// When faced with a new decision, x chooses randomly. Future explorations +// of that path will choose successive values for the result. Thus, stopping +// the loop after a fixed number of iterations gives somewhat stochastic +// testing. +// +// Example: +// +// for x.Next() { +// v := make([]bool, x.Choose(4)) +// for i := range v { +// v[i] = x.Maybe() +// } +// fmt.Println(v) +// } +// +// prints (in some order): +// +// [] +// [false] +// [true] +// [false false] +// [false true] +// ... +// [true true] +// [false false false] +// ... +// [true true true] +// [false false false false] +// ... +// [true true true true] +type exhaustive struct { + r *rand.Rand + pos int + last []choice +} + +type choice struct { + off int + n int + max int +} + +func (x *exhaustive) Next() bool { + if x.r == nil { + x.r = rand.New(rand.NewSource(time.Now().UnixNano())) + } + x.pos = 0 + if x.last == nil { + x.last = []choice{} + return true + } + for i := len(x.last) - 1; i >= 0; i-- { + c := &x.last[i] + if c.n+1 < c.max { + c.n++ + x.last = x.last[:i+1] + return true + } + } + return false +} + +func (x *exhaustive) Choose(max int) int { + if x.pos >= len(x.last) { + x.last = append(x.last, choice{x.r.Intn(max), 0, max}) + } + c := &x.last[x.pos] + x.pos++ + if c.max != max { + panic("inconsistent use of exhaustive tester") + } + return (c.n + c.off) % max +} + +func (x *exhaustive) Maybe() bool { + return x.Choose(2) == 1 +} + +func GCFunc(args []Value) []Value { + runtime.GC() + return []Value{} +} + +func TestReflectFuncTraceback(t *testing.T) { + f := MakeFunc(TypeOf(func() {}), GCFunc) + f.Call([]Value{}) +} + +func TestReflectMethodTraceback(t *testing.T) { + p := Point{3, 4} + m := ValueOf(p).MethodByName("GCMethod") + i := ValueOf(m.Interface()).Call([]Value{ValueOf(5)})[0].Int() + if i != 8 { + t.Errorf("Call returned %d; want 8", i) + } +} + +func TestSmallZero(t *testing.T) { + type T [10]byte + typ := TypeOf(T{}) + if allocs := testing.AllocsPerRun(100, func() { Zero(typ) }); allocs > 0 { + t.Errorf("Creating small zero values caused %f allocs, want 0", allocs) + } +} + +func TestBigZero(t *testing.T) { + const size = 1 << 10 + var v [size]byte + z := Zero(ValueOf(v).Type()).Interface().([size]byte) + for i := 0; i < size; i++ { + if z[i] != 0 { + t.Fatalf("Zero object not all zero, index %d", i) + } + } +} + +func TestZeroSet(t *testing.T) { + type T [16]byte + type S struct { + a uint64 + T T + b uint64 + } + v := S{ + a: 0xaaaaaaaaaaaaaaaa, + T: T{9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9}, + b: 0xbbbbbbbbbbbbbbbb, + } + ValueOf(&v).Elem().Field(1).Set(Zero(TypeOf(T{}))) + if v != (S{ + a: 0xaaaaaaaaaaaaaaaa, + b: 0xbbbbbbbbbbbbbbbb, + }) { + t.Fatalf("Setting a field to a Zero value didn't work") + } +} + +func TestFieldByIndexNil(t *testing.T) { + type P struct { + F int + } + type T struct { + *P + } + v := ValueOf(T{}) + + v.FieldByName("P") // should be fine + + defer func() { + if err := recover(); err == nil { + t.Fatalf("no error") + } else if !strings.Contains(fmt.Sprint(err), "nil pointer to embedded struct") { + t.Fatalf(`err=%q, wanted error containing "nil pointer to embedded struct"`, err) + } + }() + v.FieldByName("F") // should panic + + t.Fatalf("did not panic") +} + +// Given +// type Outer struct { +// *Inner +// ... +// } +// the compiler generates the implementation of (*Outer).M dispatching to the embedded Inner. +// The implementation is logically: +// func (p *Outer) M() { +// (p.Inner).M() +// } +// but since the only change here is the replacement of one pointer receiver with another, +// the actual generated code overwrites the original receiver with the p.Inner pointer and +// then jumps to the M method expecting the *Inner receiver. +// +// During reflect.Value.Call, we create an argument frame and the associated data structures +// to describe it to the garbage collector, populate the frame, call reflect.call to +// run a function call using that frame, and then copy the results back out of the frame. +// The reflect.call function does a memmove of the frame structure onto the +// stack (to set up the inputs), runs the call, and the memmoves the stack back to +// the frame structure (to preserve the outputs). +// +// Originally reflect.call did not distinguish inputs from outputs: both memmoves +// were for the full stack frame. However, in the case where the called function was +// one of these wrappers, the rewritten receiver is almost certainly a different type +// than the original receiver. This is not a problem on the stack, where we use the +// program counter to determine the type information and understand that +// during (*Outer).M the receiver is an *Outer while during (*Inner).M the receiver in the same +// memory word is now an *Inner. But in the statically typed argument frame created +// by reflect, the receiver is always an *Outer. Copying the modified receiver pointer +// off the stack into the frame will store an *Inner there, and then if a garbage collection +// happens to scan that argument frame before it is discarded, it will scan the *Inner +// memory as if it were an *Outer. If the two have different memory layouts, the +// collection will interpret the memory incorrectly. +// +// One such possible incorrect interpretation is to treat two arbitrary memory words +// (Inner.P1 and Inner.P2 below) as an interface (Outer.R below). Because interpreting +// an interface requires dereferencing the itab word, the misinterpretation will try to +// deference Inner.P1, causing a crash during garbage collection. +// +// This came up in a real program in issue 7725. + +type Outer struct { + *Inner + R io.Reader +} + +type Inner struct { + X *Outer + P1 uintptr + P2 uintptr +} + +func (pi *Inner) M() { + // Clear references to pi so that the only way the + // garbage collection will find the pointer is in the + // argument frame, typed as a *Outer. + pi.X.Inner = nil + + // Set up an interface value that will cause a crash. + // P1 = 1 is a non-zero, so the interface looks non-nil. + // P2 = pi ensures that the data word points into the + // allocated heap; if not the collection skips the interface + // value as irrelevant, without dereferencing P1. + pi.P1 = 1 + pi.P2 = uintptr(unsafe.Pointer(pi)) +} + +func TestCallMethodJump(t *testing.T) { + // In reflect.Value.Call, trigger a garbage collection after reflect.call + // returns but before the args frame has been discarded. + // This is a little clumsy but makes the failure repeatable. + *CallGC = true + + p := &Outer{Inner: new(Inner)} + p.Inner.X = p + ValueOf(p).Method(0).Call(nil) + + // Stop garbage collecting during reflect.call. + *CallGC = false +} + +func TestCallArgLive(t *testing.T) { + type T struct{ X, Y *string } // pointerful aggregate + + F := func(t T) { *t.X = "ok" } + + // In reflect.Value.Call, trigger a garbage collection in reflect.call + // between marshaling argument and the actual call. + *CallGC = true + + x := new(string) + runtime.SetFinalizer(x, func(p *string) { + if *p != "ok" { + t.Errorf("x dead prematurely") + } + }) + v := T{x, nil} + + ValueOf(F).Call([]Value{ValueOf(v)}) + + // Stop garbage collecting during reflect.call. + *CallGC = false +} + +func TestMakeFuncStackCopy(t *testing.T) { + target := func(in []Value) []Value { + runtime.GC() + useStack(16) + return []Value{ValueOf(9)} + } + + var concrete func(*int, int) int + fn := MakeFunc(ValueOf(concrete).Type(), target) + ValueOf(&concrete).Elem().Set(fn) + x := concrete(nil, 7) + if x != 9 { + t.Errorf("have %#q want 9", x) + } +} + +// use about n KB of stack +func useStack(n int) { + if n == 0 { + return + } + var b [1024]byte // makes frame about 1KB + useStack(n - 1 + int(b[99])) +} + +type Impl struct{} + +func (Impl) F() {} + +func TestValueString(t *testing.T) { + rv := ValueOf(Impl{}) + if rv.String() != "<reflect_test.Impl Value>" { + t.Errorf("ValueOf(Impl{}).String() = %q, want %q", rv.String(), "<reflect_test.Impl Value>") + } + + method := rv.Method(0) + if method.String() != "<func() Value>" { + t.Errorf("ValueOf(Impl{}).Method(0).String() = %q, want %q", method.String(), "<func() Value>") + } +} + +func TestInvalid(t *testing.T) { + // Used to have inconsistency between IsValid() and Kind() != Invalid. + type T struct{ v any } + + v := ValueOf(T{}).Field(0) + if v.IsValid() != true || v.Kind() != Interface { + t.Errorf("field: IsValid=%v, Kind=%v, want true, Interface", v.IsValid(), v.Kind()) + } + v = v.Elem() + if v.IsValid() != false || v.Kind() != Invalid { + t.Errorf("field elem: IsValid=%v, Kind=%v, want false, Invalid", v.IsValid(), v.Kind()) + } +} + +// Issue 8917. +func TestLargeGCProg(t *testing.T) { + fv := ValueOf(func([256]*byte) {}) + fv.Call([]Value{ValueOf([256]*byte{})}) +} + +func fieldIndexRecover(t Type, i int) (recovered any) { + defer func() { + recovered = recover() + }() + + t.Field(i) + return +} + +// Issue 15046. +func TestTypeFieldOutOfRangePanic(t *testing.T) { + typ := TypeOf(struct{ X int }{10}) + testIndices := [...]struct { + i int + mustPanic bool + }{ + 0: {-2, true}, + 1: {0, false}, + 2: {1, true}, + 3: {1 << 10, true}, + } + for i, tt := range testIndices { + recoveredErr := fieldIndexRecover(typ, tt.i) + if tt.mustPanic { + if recoveredErr == nil { + t.Errorf("#%d: fieldIndex %d expected to panic", i, tt.i) + } + } else { + if recoveredErr != nil { + t.Errorf("#%d: got err=%v, expected no panic", i, recoveredErr) + } + } + } +} + +// Issue 9179. +func TestCallGC(t *testing.T) { + f := func(a, b, c, d, e string) { + } + g := func(in []Value) []Value { + runtime.GC() + return nil + } + typ := ValueOf(f).Type() + f2 := MakeFunc(typ, g).Interface().(func(string, string, string, string, string)) + f2("four", "five5", "six666", "seven77", "eight888") +} + +// Issue 18635 (function version). +func TestKeepFuncLive(t *testing.T) { + // Test that we keep makeFuncImpl live as long as it is + // referenced on the stack. + typ := TypeOf(func(i int) {}) + var f, g func(in []Value) []Value + f = func(in []Value) []Value { + clobber() + i := int(in[0].Int()) + if i > 0 { + // We can't use Value.Call here because + // runtime.call* will keep the makeFuncImpl + // alive. However, by converting it to an + // interface value and calling that, + // reflect.callReflect is the only thing that + // can keep the makeFuncImpl live. + // + // Alternate between f and g so that if we do + // reuse the memory prematurely it's more + // likely to get obviously corrupted. + MakeFunc(typ, g).Interface().(func(i int))(i - 1) + } + return nil + } + g = func(in []Value) []Value { + clobber() + i := int(in[0].Int()) + MakeFunc(typ, f).Interface().(func(i int))(i) + return nil + } + MakeFunc(typ, f).Call([]Value{ValueOf(10)}) +} + +type UnExportedFirst int + +func (i UnExportedFirst) ΦExported() {} +func (i UnExportedFirst) unexported() {} + +// Issue 21177 +func TestMethodByNameUnExportedFirst(t *testing.T) { + defer func() { + if recover() != nil { + t.Errorf("should not panic") + } + }() + typ := TypeOf(UnExportedFirst(0)) + m, _ := typ.MethodByName("ΦExported") + if m.Name != "ΦExported" { + t.Errorf("got %s, expected ΦExported", m.Name) + } +} + +// Issue 18635 (method version). +type KeepMethodLive struct{} + +func (k KeepMethodLive) Method1(i int) { + clobber() + if i > 0 { + ValueOf(k).MethodByName("Method2").Interface().(func(i int))(i - 1) + } +} + +func (k KeepMethodLive) Method2(i int) { + clobber() + ValueOf(k).MethodByName("Method1").Interface().(func(i int))(i) +} + +func TestKeepMethodLive(t *testing.T) { + // Test that we keep methodValue live as long as it is + // referenced on the stack. + KeepMethodLive{}.Method1(10) +} + +// clobber tries to clobber unreachable memory. +func clobber() { + runtime.GC() + for i := 1; i < 32; i++ { + for j := 0; j < 10; j++ { + obj := make([]*byte, i) + sink = obj + } + } + runtime.GC() +} + +func TestFuncLayout(t *testing.T) { + align := func(x uintptr) uintptr { + return (x + goarch.PtrSize - 1) &^ (goarch.PtrSize - 1) + } + var r []byte + if goarch.PtrSize == 4 { + r = []byte{0, 0, 0, 1} + } else { + r = []byte{0, 0, 1} + } + + type S struct { + a, b uintptr + c, d *byte + } + + type test struct { + rcvr, typ Type + size, argsize, retOffset uintptr + stack, gc, inRegs, outRegs []byte // pointer bitmap: 1 is pointer, 0 is scalar + intRegs, floatRegs int + floatRegSize uintptr + } + tests := []test{ + { + typ: ValueOf(func(a, b string) string { return "" }).Type(), + size: 6 * goarch.PtrSize, + argsize: 4 * goarch.PtrSize, + retOffset: 4 * goarch.PtrSize, + stack: []byte{1, 0, 1, 0, 1}, + gc: []byte{1, 0, 1, 0, 1}, + }, + { + typ: ValueOf(func(a, b, c uint32, p *byte, d uint16) {}).Type(), + size: align(align(3*4) + goarch.PtrSize + 2), + argsize: align(3*4) + goarch.PtrSize + 2, + retOffset: align(align(3*4) + goarch.PtrSize + 2), + stack: r, + gc: r, + }, + { + typ: ValueOf(func(a map[int]int, b uintptr, c any) {}).Type(), + size: 4 * goarch.PtrSize, + argsize: 4 * goarch.PtrSize, + retOffset: 4 * goarch.PtrSize, + stack: []byte{1, 0, 1, 1}, + gc: []byte{1, 0, 1, 1}, + }, + { + typ: ValueOf(func(a S) {}).Type(), + size: 4 * goarch.PtrSize, + argsize: 4 * goarch.PtrSize, + retOffset: 4 * goarch.PtrSize, + stack: []byte{0, 0, 1, 1}, + gc: []byte{0, 0, 1, 1}, + }, + { + rcvr: ValueOf((*byte)(nil)).Type(), + typ: ValueOf(func(a uintptr, b *int) {}).Type(), + size: 3 * goarch.PtrSize, + argsize: 3 * goarch.PtrSize, + retOffset: 3 * goarch.PtrSize, + stack: []byte{1, 0, 1}, + gc: []byte{1, 0, 1}, + }, + { + typ: ValueOf(func(a uintptr) {}).Type(), + size: goarch.PtrSize, + argsize: goarch.PtrSize, + retOffset: goarch.PtrSize, + stack: []byte{}, + gc: []byte{}, + }, + { + typ: ValueOf(func() uintptr { return 0 }).Type(), + size: goarch.PtrSize, + argsize: 0, + retOffset: 0, + stack: []byte{}, + gc: []byte{}, + }, + { + rcvr: ValueOf(uintptr(0)).Type(), + typ: ValueOf(func(a uintptr) {}).Type(), + size: 2 * goarch.PtrSize, + argsize: 2 * goarch.PtrSize, + retOffset: 2 * goarch.PtrSize, + stack: []byte{1}, + gc: []byte{1}, + // Note: this one is tricky, as the receiver is not a pointer. But we + // pass the receiver by reference to the autogenerated pointer-receiver + // version of the function. + }, + // TODO(mknyszek): Add tests for non-zero register count. + } + for _, lt := range tests { + name := lt.typ.String() + if lt.rcvr != nil { + name = lt.rcvr.String() + "." + name + } + t.Run(name, func(t *testing.T) { + defer SetArgRegs(SetArgRegs(lt.intRegs, lt.floatRegs, lt.floatRegSize)) + + typ, argsize, retOffset, stack, gc, inRegs, outRegs, ptrs := FuncLayout(lt.typ, lt.rcvr) + if typ.Size() != lt.size { + t.Errorf("funcLayout(%v, %v).size=%d, want %d", lt.typ, lt.rcvr, typ.Size(), lt.size) + } + if argsize != lt.argsize { + t.Errorf("funcLayout(%v, %v).argsize=%d, want %d", lt.typ, lt.rcvr, argsize, lt.argsize) + } + if retOffset != lt.retOffset { + t.Errorf("funcLayout(%v, %v).retOffset=%d, want %d", lt.typ, lt.rcvr, retOffset, lt.retOffset) + } + if !bytes.Equal(stack, lt.stack) { + t.Errorf("funcLayout(%v, %v).stack=%v, want %v", lt.typ, lt.rcvr, stack, lt.stack) + } + if !bytes.Equal(gc, lt.gc) { + t.Errorf("funcLayout(%v, %v).gc=%v, want %v", lt.typ, lt.rcvr, gc, lt.gc) + } + if !bytes.Equal(inRegs, lt.inRegs) { + t.Errorf("funcLayout(%v, %v).inRegs=%v, want %v", lt.typ, lt.rcvr, inRegs, lt.inRegs) + } + if !bytes.Equal(outRegs, lt.outRegs) { + t.Errorf("funcLayout(%v, %v).outRegs=%v, want %v", lt.typ, lt.rcvr, outRegs, lt.outRegs) + } + if ptrs && len(stack) == 0 || !ptrs && len(stack) > 0 { + t.Errorf("funcLayout(%v, %v) pointers flag=%v, want %v", lt.typ, lt.rcvr, ptrs, !ptrs) + } + }) + } +} + +// trimBitmap removes trailing 0 elements from b and returns the result. +func trimBitmap(b []byte) []byte { + for len(b) > 0 && b[len(b)-1] == 0 { + b = b[:len(b)-1] + } + return b +} + +func verifyGCBits(t *testing.T, typ Type, bits []byte) { + heapBits := GCBits(New(typ).Interface()) + + // Trim scalars at the end, as bits might end in zero, + // e.g. with rep(2, lit(1, 0)). + bits = trimBitmap(bits) + + if !bytes.Equal(heapBits, bits) { + _, _, line, _ := runtime.Caller(1) + t.Errorf("line %d: heapBits incorrect for %v\nhave %v\nwant %v", line, typ, heapBits, bits) + } +} + +func verifyGCBitsSlice(t *testing.T, typ Type, cap int, bits []byte) { + // Creating a slice causes the runtime to repeat a bitmap, + // which exercises a different path from making the compiler + // repeat a bitmap for a small array or executing a repeat in + // a GC program. + val := MakeSlice(typ, 0, cap) + data := NewAt(ArrayOf(cap, typ), val.UnsafePointer()) + heapBits := GCBits(data.Interface()) + // Repeat the bitmap for the slice size, trimming scalars in + // the last element. + bits = trimBitmap(rep(cap, bits)) + if !bytes.Equal(heapBits, bits) { + _, _, line, _ := runtime.Caller(1) + t.Errorf("line %d: heapBits incorrect for make(%v, 0, %v)\nhave %v\nwant %v", line, typ, cap, heapBits, bits) + } +} + +func TestGCBits(t *testing.T) { + verifyGCBits(t, TypeOf((*byte)(nil)), []byte{1}) + + // Building blocks for types seen by the compiler (like [2]Xscalar). + // The compiler will create the type structures for the derived types, + // including their GC metadata. + type Xscalar struct{ x uintptr } + type Xptr struct{ x *byte } + type Xptrscalar struct { + *byte + uintptr + } + type Xscalarptr struct { + uintptr + *byte + } + type Xbigptrscalar struct { + _ [100]*byte + _ [100]uintptr + } + + var Tscalar, Tint64, Tptr, Tscalarptr, Tptrscalar, Tbigptrscalar Type + { + // Building blocks for types constructed by reflect. + // This code is in a separate block so that code below + // cannot accidentally refer to these. + // The compiler must NOT see types derived from these + // (for example, [2]Scalar must NOT appear in the program), + // or else reflect will use it instead of having to construct one. + // The goal is to test the construction. + type Scalar struct{ x uintptr } + type Ptr struct{ x *byte } + type Ptrscalar struct { + *byte + uintptr + } + type Scalarptr struct { + uintptr + *byte + } + type Bigptrscalar struct { + _ [100]*byte + _ [100]uintptr + } + type Int64 int64 + Tscalar = TypeOf(Scalar{}) + Tint64 = TypeOf(Int64(0)) + Tptr = TypeOf(Ptr{}) + Tscalarptr = TypeOf(Scalarptr{}) + Tptrscalar = TypeOf(Ptrscalar{}) + Tbigptrscalar = TypeOf(Bigptrscalar{}) + } + + empty := []byte{} + + verifyGCBits(t, TypeOf(Xscalar{}), empty) + verifyGCBits(t, Tscalar, empty) + verifyGCBits(t, TypeOf(Xptr{}), lit(1)) + verifyGCBits(t, Tptr, lit(1)) + verifyGCBits(t, TypeOf(Xscalarptr{}), lit(0, 1)) + verifyGCBits(t, Tscalarptr, lit(0, 1)) + verifyGCBits(t, TypeOf(Xptrscalar{}), lit(1)) + verifyGCBits(t, Tptrscalar, lit(1)) + + verifyGCBits(t, TypeOf([0]Xptr{}), empty) + verifyGCBits(t, ArrayOf(0, Tptr), empty) + verifyGCBits(t, TypeOf([1]Xptrscalar{}), lit(1)) + verifyGCBits(t, ArrayOf(1, Tptrscalar), lit(1)) + verifyGCBits(t, TypeOf([2]Xscalar{}), empty) + verifyGCBits(t, ArrayOf(2, Tscalar), empty) + verifyGCBits(t, TypeOf([10000]Xscalar{}), empty) + verifyGCBits(t, ArrayOf(10000, Tscalar), empty) + verifyGCBits(t, TypeOf([2]Xptr{}), lit(1, 1)) + verifyGCBits(t, ArrayOf(2, Tptr), lit(1, 1)) + verifyGCBits(t, TypeOf([10000]Xptr{}), rep(10000, lit(1))) + verifyGCBits(t, ArrayOf(10000, Tptr), rep(10000, lit(1))) + verifyGCBits(t, TypeOf([2]Xscalarptr{}), lit(0, 1, 0, 1)) + verifyGCBits(t, ArrayOf(2, Tscalarptr), lit(0, 1, 0, 1)) + verifyGCBits(t, TypeOf([10000]Xscalarptr{}), rep(10000, lit(0, 1))) + verifyGCBits(t, ArrayOf(10000, Tscalarptr), rep(10000, lit(0, 1))) + verifyGCBits(t, TypeOf([2]Xptrscalar{}), lit(1, 0, 1)) + verifyGCBits(t, ArrayOf(2, Tptrscalar), lit(1, 0, 1)) + verifyGCBits(t, TypeOf([10000]Xptrscalar{}), rep(10000, lit(1, 0))) + verifyGCBits(t, ArrayOf(10000, Tptrscalar), rep(10000, lit(1, 0))) + verifyGCBits(t, TypeOf([1][10000]Xptrscalar{}), rep(10000, lit(1, 0))) + verifyGCBits(t, ArrayOf(1, ArrayOf(10000, Tptrscalar)), rep(10000, lit(1, 0))) + verifyGCBits(t, TypeOf([2][10000]Xptrscalar{}), rep(2*10000, lit(1, 0))) + verifyGCBits(t, ArrayOf(2, ArrayOf(10000, Tptrscalar)), rep(2*10000, lit(1, 0))) + verifyGCBits(t, TypeOf([4]Xbigptrscalar{}), join(rep(3, join(rep(100, lit(1)), rep(100, lit(0)))), rep(100, lit(1)))) + verifyGCBits(t, ArrayOf(4, Tbigptrscalar), join(rep(3, join(rep(100, lit(1)), rep(100, lit(0)))), rep(100, lit(1)))) + + verifyGCBitsSlice(t, TypeOf([]Xptr{}), 0, empty) + verifyGCBitsSlice(t, SliceOf(Tptr), 0, empty) + verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 1, lit(1)) + verifyGCBitsSlice(t, SliceOf(Tptrscalar), 1, lit(1)) + verifyGCBitsSlice(t, TypeOf([]Xscalar{}), 2, lit(0)) + verifyGCBitsSlice(t, SliceOf(Tscalar), 2, lit(0)) + verifyGCBitsSlice(t, TypeOf([]Xscalar{}), 10000, lit(0)) + verifyGCBitsSlice(t, SliceOf(Tscalar), 10000, lit(0)) + verifyGCBitsSlice(t, TypeOf([]Xptr{}), 2, lit(1)) + verifyGCBitsSlice(t, SliceOf(Tptr), 2, lit(1)) + verifyGCBitsSlice(t, TypeOf([]Xptr{}), 10000, lit(1)) + verifyGCBitsSlice(t, SliceOf(Tptr), 10000, lit(1)) + verifyGCBitsSlice(t, TypeOf([]Xscalarptr{}), 2, lit(0, 1)) + verifyGCBitsSlice(t, SliceOf(Tscalarptr), 2, lit(0, 1)) + verifyGCBitsSlice(t, TypeOf([]Xscalarptr{}), 10000, lit(0, 1)) + verifyGCBitsSlice(t, SliceOf(Tscalarptr), 10000, lit(0, 1)) + verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 2, lit(1, 0)) + verifyGCBitsSlice(t, SliceOf(Tptrscalar), 2, lit(1, 0)) + verifyGCBitsSlice(t, TypeOf([]Xptrscalar{}), 10000, lit(1, 0)) + verifyGCBitsSlice(t, SliceOf(Tptrscalar), 10000, lit(1, 0)) + verifyGCBitsSlice(t, TypeOf([][10000]Xptrscalar{}), 1, rep(10000, lit(1, 0))) + verifyGCBitsSlice(t, SliceOf(ArrayOf(10000, Tptrscalar)), 1, rep(10000, lit(1, 0))) + verifyGCBitsSlice(t, TypeOf([][10000]Xptrscalar{}), 2, rep(10000, lit(1, 0))) + verifyGCBitsSlice(t, SliceOf(ArrayOf(10000, Tptrscalar)), 2, rep(10000, lit(1, 0))) + verifyGCBitsSlice(t, TypeOf([]Xbigptrscalar{}), 4, join(rep(100, lit(1)), rep(100, lit(0)))) + verifyGCBitsSlice(t, SliceOf(Tbigptrscalar), 4, join(rep(100, lit(1)), rep(100, lit(0)))) + + verifyGCBits(t, TypeOf((chan [100]Xscalar)(nil)), lit(1)) + verifyGCBits(t, ChanOf(BothDir, ArrayOf(100, Tscalar)), lit(1)) + + verifyGCBits(t, TypeOf((func([10000]Xscalarptr))(nil)), lit(1)) + verifyGCBits(t, FuncOf([]Type{ArrayOf(10000, Tscalarptr)}, nil, false), lit(1)) + + verifyGCBits(t, TypeOf((map[[10000]Xscalarptr]Xscalar)(nil)), lit(1)) + verifyGCBits(t, MapOf(ArrayOf(10000, Tscalarptr), Tscalar), lit(1)) + + verifyGCBits(t, TypeOf((*[10000]Xscalar)(nil)), lit(1)) + verifyGCBits(t, PointerTo(ArrayOf(10000, Tscalar)), lit(1)) + + verifyGCBits(t, TypeOf(([][10000]Xscalar)(nil)), lit(1)) + verifyGCBits(t, SliceOf(ArrayOf(10000, Tscalar)), lit(1)) + + hdr := make([]byte, 8/goarch.PtrSize) + + verifyMapBucket := func(t *testing.T, k, e Type, m any, want []byte) { + verifyGCBits(t, MapBucketOf(k, e), want) + verifyGCBits(t, CachedBucketOf(TypeOf(m)), want) + } + verifyMapBucket(t, + Tscalar, Tptr, + map[Xscalar]Xptr(nil), + join(hdr, rep(8, lit(0)), rep(8, lit(1)), lit(1))) + verifyMapBucket(t, + Tscalarptr, Tptr, + map[Xscalarptr]Xptr(nil), + join(hdr, rep(8, lit(0, 1)), rep(8, lit(1)), lit(1))) + verifyMapBucket(t, Tint64, Tptr, + map[int64]Xptr(nil), + join(hdr, rep(8, rep(8/goarch.PtrSize, lit(0))), rep(8, lit(1)), lit(1))) + verifyMapBucket(t, + Tscalar, Tscalar, + map[Xscalar]Xscalar(nil), + empty) + verifyMapBucket(t, + ArrayOf(2, Tscalarptr), ArrayOf(3, Tptrscalar), + map[[2]Xscalarptr][3]Xptrscalar(nil), + join(hdr, rep(8*2, lit(0, 1)), rep(8*3, lit(1, 0)), lit(1))) + verifyMapBucket(t, + ArrayOf(64/goarch.PtrSize, Tscalarptr), ArrayOf(64/goarch.PtrSize, Tptrscalar), + map[[64 / goarch.PtrSize]Xscalarptr][64 / goarch.PtrSize]Xptrscalar(nil), + join(hdr, rep(8*64/goarch.PtrSize, lit(0, 1)), rep(8*64/goarch.PtrSize, lit(1, 0)), lit(1))) + verifyMapBucket(t, + ArrayOf(64/goarch.PtrSize+1, Tscalarptr), ArrayOf(64/goarch.PtrSize, Tptrscalar), + map[[64/goarch.PtrSize + 1]Xscalarptr][64 / goarch.PtrSize]Xptrscalar(nil), + join(hdr, rep(8, lit(1)), rep(8*64/goarch.PtrSize, lit(1, 0)), lit(1))) + verifyMapBucket(t, + ArrayOf(64/goarch.PtrSize, Tscalarptr), ArrayOf(64/goarch.PtrSize+1, Tptrscalar), + map[[64 / goarch.PtrSize]Xscalarptr][64/goarch.PtrSize + 1]Xptrscalar(nil), + join(hdr, rep(8*64/goarch.PtrSize, lit(0, 1)), rep(8, lit(1)), lit(1))) + verifyMapBucket(t, + ArrayOf(64/goarch.PtrSize+1, Tscalarptr), ArrayOf(64/goarch.PtrSize+1, Tptrscalar), + map[[64/goarch.PtrSize + 1]Xscalarptr][64/goarch.PtrSize + 1]Xptrscalar(nil), + join(hdr, rep(8, lit(1)), rep(8, lit(1)), lit(1))) +} + +func rep(n int, b []byte) []byte { return bytes.Repeat(b, n) } +func join(b ...[]byte) []byte { return bytes.Join(b, nil) } +func lit(x ...byte) []byte { return x } + +func TestTypeOfTypeOf(t *testing.T) { + // Check that all the type constructors return concrete *rtype implementations. + // It's difficult to test directly because the reflect package is only at arm's length. + // The easiest thing to do is just call a function that crashes if it doesn't get an *rtype. + check := func(name string, typ Type) { + if underlying := TypeOf(typ).String(); underlying != "*reflect.rtype" { + t.Errorf("%v returned %v, not *reflect.rtype", name, underlying) + } + } + + type T struct{ int } + check("TypeOf", TypeOf(T{})) + + check("ArrayOf", ArrayOf(10, TypeOf(T{}))) + check("ChanOf", ChanOf(BothDir, TypeOf(T{}))) + check("FuncOf", FuncOf([]Type{TypeOf(T{})}, nil, false)) + check("MapOf", MapOf(TypeOf(T{}), TypeOf(T{}))) + check("PtrTo", PointerTo(TypeOf(T{}))) + check("SliceOf", SliceOf(TypeOf(T{}))) +} + +type XM struct{ _ bool } + +func (*XM) String() string { return "" } + +func TestPtrToMethods(t *testing.T) { + var y struct{ XM } + yp := New(TypeOf(y)).Interface() + _, ok := yp.(fmt.Stringer) + if !ok { + t.Fatal("does not implement Stringer, but should") + } +} + +func TestMapAlloc(t *testing.T) { + m := ValueOf(make(map[int]int, 10)) + k := ValueOf(5) + v := ValueOf(7) + allocs := testing.AllocsPerRun(100, func() { + m.SetMapIndex(k, v) + }) + if allocs > 0.5 { + t.Errorf("allocs per map assignment: want 0 got %f", allocs) + } + + const size = 1000 + tmp := 0 + val := ValueOf(&tmp).Elem() + allocs = testing.AllocsPerRun(100, func() { + mv := MakeMapWithSize(TypeOf(map[int]int{}), size) + // Only adding half of the capacity to not trigger re-allocations due too many overloaded buckets. + for i := 0; i < size/2; i++ { + val.SetInt(int64(i)) + mv.SetMapIndex(val, val) + } + }) + if allocs > 10 { + t.Errorf("allocs per map assignment: want at most 10 got %f", allocs) + } + // Empirical testing shows that with capacity hint single run will trigger 3 allocations and without 91. I set + // the threshold to 10, to not make it overly brittle if something changes in the initial allocation of the + // map, but to still catch a regression where we keep re-allocating in the hashmap as new entries are added. +} + +func TestChanAlloc(t *testing.T) { + // Note: for a chan int, the return Value must be allocated, so we + // use a chan *int instead. + c := ValueOf(make(chan *int, 1)) + v := ValueOf(new(int)) + allocs := testing.AllocsPerRun(100, func() { + c.Send(v) + _, _ = c.Recv() + }) + if allocs < 0.5 || allocs > 1.5 { + t.Errorf("allocs per chan send/recv: want 1 got %f", allocs) + } + // Note: there is one allocation in reflect.recv which seems to be + // a limitation of escape analysis. If that is ever fixed the + // allocs < 0.5 condition will trigger and this test should be fixed. +} + +type TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678 int + +type nameTest struct { + v any + want string +} + +var nameTests = []nameTest{ + {(*int32)(nil), "int32"}, + {(*D1)(nil), "D1"}, + {(*[]D1)(nil), ""}, + {(*chan D1)(nil), ""}, + {(*func() D1)(nil), ""}, + {(*<-chan D1)(nil), ""}, + {(*chan<- D1)(nil), ""}, + {(*any)(nil), ""}, + {(*interface { + F() + })(nil), ""}, + {(*TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678)(nil), "TheNameOfThisTypeIsExactly255BytesLongSoWhenTheCompilerPrependsTheReflectTestPackageNameAndExtraStarTheLinkerRuntimeAndReflectPackagesWillHaveToCorrectlyDecodeTheSecondLengthByte0123456789_0123456789_0123456789_0123456789_0123456789_012345678"}, +} + +func TestNames(t *testing.T) { + for _, test := range nameTests { + typ := TypeOf(test.v).Elem() + if got := typ.Name(); got != test.want { + t.Errorf("%v Name()=%q, want %q", typ, got, test.want) + } + } +} + +func TestExported(t *testing.T) { + type ΦExported struct{} + type φUnexported struct{} + type BigP *big + type P int + type p *P + type P2 p + type p3 p + + type exportTest struct { + v any + want bool + } + exportTests := []exportTest{ + {D1{}, true}, + {(*D1)(nil), true}, + {big{}, false}, + {(*big)(nil), false}, + {(BigP)(nil), true}, + {(*BigP)(nil), true}, + {ΦExported{}, true}, + {φUnexported{}, false}, + {P(0), true}, + {(p)(nil), false}, + {(P2)(nil), true}, + {(p3)(nil), false}, + } + + for i, test := range exportTests { + typ := TypeOf(test.v) + if got := IsExported(typ); got != test.want { + t.Errorf("%d: %s exported=%v, want %v", i, typ.Name(), got, test.want) + } + } +} + +func TestTypeStrings(t *testing.T) { + type stringTest struct { + typ Type + want string + } + stringTests := []stringTest{ + {TypeOf(func(int) {}), "func(int)"}, + {FuncOf([]Type{TypeOf(int(0))}, nil, false), "func(int)"}, + {TypeOf(XM{}), "reflect_test.XM"}, + {TypeOf(new(XM)), "*reflect_test.XM"}, + {TypeOf(new(XM).String), "func() string"}, + {TypeOf(new(XM)).Method(0).Type, "func(*reflect_test.XM) string"}, + {ChanOf(3, TypeOf(XM{})), "chan reflect_test.XM"}, + {MapOf(TypeOf(int(0)), TypeOf(XM{})), "map[int]reflect_test.XM"}, + {ArrayOf(3, TypeOf(XM{})), "[3]reflect_test.XM"}, + {ArrayOf(3, TypeOf(struct{}{})), "[3]struct {}"}, + } + + for i, test := range stringTests { + if got, want := test.typ.String(), test.want; got != want { + t.Errorf("type %d String()=%q, want %q", i, got, want) + } + } +} + +func TestOffsetLock(t *testing.T) { + var wg sync.WaitGroup + for i := 0; i < 4; i++ { + i := i + wg.Add(1) + go func() { + for j := 0; j < 50; j++ { + ResolveReflectName(fmt.Sprintf("OffsetLockName:%d:%d", i, j)) + } + wg.Done() + }() + } + wg.Wait() +} + +func TestSwapper(t *testing.T) { + type I int + var a, b, c I + type pair struct { + x, y int + } + type pairPtr struct { + x, y int + p *I + } + type S string + + tests := []struct { + in any + i, j int + want any + }{ + { + in: []int{1, 20, 300}, + i: 0, + j: 2, + want: []int{300, 20, 1}, + }, + { + in: []uintptr{1, 20, 300}, + i: 0, + j: 2, + want: []uintptr{300, 20, 1}, + }, + { + in: []int16{1, 20, 300}, + i: 0, + j: 2, + want: []int16{300, 20, 1}, + }, + { + in: []int8{1, 20, 100}, + i: 0, + j: 2, + want: []int8{100, 20, 1}, + }, + { + in: []*I{&a, &b, &c}, + i: 0, + j: 2, + want: []*I{&c, &b, &a}, + }, + { + in: []string{"eric", "sergey", "larry"}, + i: 0, + j: 2, + want: []string{"larry", "sergey", "eric"}, + }, + { + in: []S{"eric", "sergey", "larry"}, + i: 0, + j: 2, + want: []S{"larry", "sergey", "eric"}, + }, + { + in: []pair{{1, 2}, {3, 4}, {5, 6}}, + i: 0, + j: 2, + want: []pair{{5, 6}, {3, 4}, {1, 2}}, + }, + { + in: []pairPtr{{1, 2, &a}, {3, 4, &b}, {5, 6, &c}}, + i: 0, + j: 2, + want: []pairPtr{{5, 6, &c}, {3, 4, &b}, {1, 2, &a}}, + }, + } + + for i, tt := range tests { + inStr := fmt.Sprint(tt.in) + Swapper(tt.in)(tt.i, tt.j) + if !DeepEqual(tt.in, tt.want) { + t.Errorf("%d. swapping %v and %v of %v = %v; want %v", i, tt.i, tt.j, inStr, tt.in, tt.want) + } + } +} + +// TestUnaddressableField tests that the reflect package will not allow +// a type from another package to be used as a named type with an +// unexported field. +// +// This ensures that unexported fields cannot be modified by other packages. +func TestUnaddressableField(t *testing.T) { + var b Buffer // type defined in reflect, a different package + var localBuffer struct { + buf []byte + } + lv := ValueOf(&localBuffer).Elem() + rv := ValueOf(b) + shouldPanic("Set", func() { + lv.Set(rv) + }) +} + +type Tint int + +type Tint2 = Tint + +type Talias1 struct { + byte + uint8 + int + int32 + rune +} + +type Talias2 struct { + Tint + Tint2 +} + +func TestAliasNames(t *testing.T) { + t1 := Talias1{byte: 1, uint8: 2, int: 3, int32: 4, rune: 5} + out := fmt.Sprintf("%#v", t1) + want := "reflect_test.Talias1{byte:0x1, uint8:0x2, int:3, int32:4, rune:5}" + if out != want { + t.Errorf("Talias1 print:\nhave: %s\nwant: %s", out, want) + } + + t2 := Talias2{Tint: 1, Tint2: 2} + out = fmt.Sprintf("%#v", t2) + want = "reflect_test.Talias2{Tint:1, Tint2:2}" + if out != want { + t.Errorf("Talias2 print:\nhave: %s\nwant: %s", out, want) + } +} + +func TestIssue22031(t *testing.T) { + type s []struct{ C int } + + type t1 struct{ s } + type t2 struct{ f s } + + tests := []Value{ + ValueOf(t1{s{{}}}).Field(0).Index(0).Field(0), + ValueOf(t2{s{{}}}).Field(0).Index(0).Field(0), + } + + for i, test := range tests { + if test.CanSet() { + t.Errorf("%d: CanSet: got true, want false", i) + } + } +} + +type NonExportedFirst int + +func (i NonExportedFirst) ΦExported() {} +func (i NonExportedFirst) nonexported() int { panic("wrong") } + +func TestIssue22073(t *testing.T) { + m := ValueOf(NonExportedFirst(0)).Method(0) + + if got := m.Type().NumOut(); got != 0 { + t.Errorf("NumOut: got %v, want 0", got) + } + + // Shouldn't panic. + m.Call(nil) +} + +func TestMapIterNonEmptyMap(t *testing.T) { + m := map[string]int{"one": 1, "two": 2, "three": 3} + iter := ValueOf(m).MapRange() + if got, want := iterateToString(iter), `[one: 1, three: 3, two: 2]`; got != want { + t.Errorf("iterator returned %s (after sorting), want %s", got, want) + } +} + +func TestMapIterNilMap(t *testing.T) { + var m map[string]int + iter := ValueOf(m).MapRange() + if got, want := iterateToString(iter), `[]`; got != want { + t.Errorf("non-empty result iteratoring nil map: %s", got) + } +} + +func TestMapIterReset(t *testing.T) { + iter := new(MapIter) + + // Use of zero iterator should panic. + func() { + defer func() { recover() }() + iter.Next() + t.Error("Next did not panic") + }() + + // Reset to new Map should work. + m := map[string]int{"one": 1, "two": 2, "three": 3} + iter.Reset(ValueOf(m)) + if got, want := iterateToString(iter), `[one: 1, three: 3, two: 2]`; got != want { + t.Errorf("iterator returned %s (after sorting), want %s", got, want) + } + + // Reset to Zero value should work, but iterating over it should panic. + iter.Reset(Value{}) + func() { + defer func() { recover() }() + iter.Next() + t.Error("Next did not panic") + }() + + // Reset to a different Map with different types should work. + m2 := map[int]string{1: "one", 2: "two", 3: "three"} + iter.Reset(ValueOf(m2)) + if got, want := iterateToString(iter), `[1: one, 2: two, 3: three]`; got != want { + t.Errorf("iterator returned %s (after sorting), want %s", got, want) + } + + // Check that Reset, Next, and SetKey/SetValue play nicely together. + m3 := map[uint64]uint64{ + 1 << 0: 1 << 1, + 1 << 1: 1 << 2, + 1 << 2: 1 << 3, + } + kv := New(TypeOf(uint64(0))).Elem() + for i := 0; i < 5; i++ { + var seenk, seenv uint64 + iter.Reset(ValueOf(m3)) + for iter.Next() { + kv.SetIterKey(iter) + seenk ^= kv.Uint() + kv.SetIterValue(iter) + seenv ^= kv.Uint() + } + if seenk != 0b111 { + t.Errorf("iteration yielded keys %b, want %b", seenk, 0b111) + } + if seenv != 0b1110 { + t.Errorf("iteration yielded values %b, want %b", seenv, 0b1110) + } + } + + // Reset should not allocate. + n := int(testing.AllocsPerRun(10, func() { + iter.Reset(ValueOf(m2)) + iter.Reset(Value{}) + })) + if n > 0 { + t.Errorf("MapIter.Reset allocated %d times", n) + } +} + +func TestMapIterSafety(t *testing.T) { + // Using a zero MapIter causes a panic, but not a crash. + func() { + defer func() { recover() }() + new(MapIter).Key() + t.Fatal("Key did not panic") + }() + func() { + defer func() { recover() }() + new(MapIter).Value() + t.Fatal("Value did not panic") + }() + func() { + defer func() { recover() }() + new(MapIter).Next() + t.Fatal("Next did not panic") + }() + + // Calling Key/Value on a MapIter before Next + // causes a panic, but not a crash. + var m map[string]int + iter := ValueOf(m).MapRange() + + func() { + defer func() { recover() }() + iter.Key() + t.Fatal("Key did not panic") + }() + func() { + defer func() { recover() }() + iter.Value() + t.Fatal("Value did not panic") + }() + + // Calling Next, Key, or Value on an exhausted iterator + // causes a panic, but not a crash. + iter.Next() // -> false + func() { + defer func() { recover() }() + iter.Key() + t.Fatal("Key did not panic") + }() + func() { + defer func() { recover() }() + iter.Value() + t.Fatal("Value did not panic") + }() + func() { + defer func() { recover() }() + iter.Next() + t.Fatal("Next did not panic") + }() +} + +func TestMapIterNext(t *testing.T) { + // The first call to Next should reflect any + // insertions to the map since the iterator was created. + m := map[string]int{} + iter := ValueOf(m).MapRange() + m["one"] = 1 + if got, want := iterateToString(iter), `[one: 1]`; got != want { + t.Errorf("iterator returned deleted elements: got %s, want %s", got, want) + } +} + +func TestMapIterDelete0(t *testing.T) { + // Delete all elements before first iteration. + m := map[string]int{"one": 1, "two": 2, "three": 3} + iter := ValueOf(m).MapRange() + delete(m, "one") + delete(m, "two") + delete(m, "three") + if got, want := iterateToString(iter), `[]`; got != want { + t.Errorf("iterator returned deleted elements: got %s, want %s", got, want) + } +} + +func TestMapIterDelete1(t *testing.T) { + // Delete all elements after first iteration. + m := map[string]int{"one": 1, "two": 2, "three": 3} + iter := ValueOf(m).MapRange() + var got []string + for iter.Next() { + got = append(got, fmt.Sprint(iter.Key(), iter.Value())) + delete(m, "one") + delete(m, "two") + delete(m, "three") + } + if len(got) != 1 { + t.Errorf("iterator returned wrong number of elements: got %d, want 1", len(got)) + } +} + +// iterateToString returns the set of elements +// returned by an iterator in readable form. +func iterateToString(it *MapIter) string { + var got []string + for it.Next() { + line := fmt.Sprintf("%v: %v", it.Key(), it.Value()) + got = append(got, line) + } + sort.Strings(got) + return "[" + strings.Join(got, ", ") + "]" +} + +func TestConvertibleTo(t *testing.T) { + t1 := ValueOf(example1.MyStruct{}).Type() + t2 := ValueOf(example2.MyStruct{}).Type() + + // Shouldn't raise stack overflow + if t1.ConvertibleTo(t2) { + t.Fatalf("(%s).ConvertibleTo(%s) = true, want false", t1, t2) + } + + t3 := ValueOf([]example1.MyStruct{}).Type() + t4 := ValueOf([]example2.MyStruct{}).Type() + + if t3.ConvertibleTo(t4) { + t.Fatalf("(%s).ConvertibleTo(%s) = true, want false", t3, t4) + } +} + +func TestSetIter(t *testing.T) { + data := map[string]int{ + "foo": 1, + "bar": 2, + "baz": 3, + } + + m := ValueOf(data) + i := m.MapRange() + k := New(TypeOf("")).Elem() + v := New(TypeOf(0)).Elem() + shouldPanic("Value.SetIterKey called before Next", func() { + k.SetIterKey(i) + }) + shouldPanic("Value.SetIterValue called before Next", func() { + v.SetIterValue(i) + }) + data2 := map[string]int{} + for i.Next() { + k.SetIterKey(i) + v.SetIterValue(i) + data2[k.Interface().(string)] = v.Interface().(int) + } + if !DeepEqual(data, data2) { + t.Errorf("maps not equal, got %v want %v", data2, data) + } + shouldPanic("Value.SetIterKey called on exhausted iterator", func() { + k.SetIterKey(i) + }) + shouldPanic("Value.SetIterValue called on exhausted iterator", func() { + v.SetIterValue(i) + }) + + i.Reset(m) + i.Next() + shouldPanic("Value.SetIterKey using unaddressable value", func() { + ValueOf("").SetIterKey(i) + }) + shouldPanic("Value.SetIterValue using unaddressable value", func() { + ValueOf(0).SetIterValue(i) + }) + shouldPanic("value of type string is not assignable to type int", func() { + New(TypeOf(0)).Elem().SetIterKey(i) + }) + shouldPanic("value of type int is not assignable to type string", func() { + New(TypeOf("")).Elem().SetIterValue(i) + }) + + // Make sure assignment conversion works. + var x any + y := ValueOf(&x).Elem() + y.SetIterKey(i) + if _, ok := data[x.(string)]; !ok { + t.Errorf("got key %s which is not in map", x) + } + y.SetIterValue(i) + if x.(int) < 1 || x.(int) > 3 { + t.Errorf("got value %d which is not in map", x) + } + + // Try some key/value types which are direct interfaces. + a := 88 + b := 99 + pp := map[*int]*int{ + &a: &b, + } + i = ValueOf(pp).MapRange() + i.Next() + y.SetIterKey(i) + if got := *y.Interface().(*int); got != a { + t.Errorf("pointer incorrect: got %d want %d", got, a) + } + y.SetIterValue(i) + if got := *y.Interface().(*int); got != b { + t.Errorf("pointer incorrect: got %d want %d", got, b) + } + + // Make sure we panic assigning from an unexported field. + m = ValueOf(struct{ m map[string]int }{data}).Field(0) + for iter := m.MapRange(); iter.Next(); { + shouldPanic("using value obtained using unexported field", func() { + k.SetIterKey(iter) + }) + shouldPanic("using value obtained using unexported field", func() { + v.SetIterValue(iter) + }) + } +} + +func TestMethodCallValueCodePtr(t *testing.T) { + m := ValueOf(Point{}).Method(1) + want := MethodValueCallCodePtr() + if got := uintptr(m.UnsafePointer()); got != want { + t.Errorf("methodValueCall code pointer mismatched, want: %v, got: %v", want, got) + } + if got := m.Pointer(); got != want { + t.Errorf("methodValueCall code pointer mismatched, want: %v, got: %v", want, got) + } +} + +type A struct{} +type B[T any] struct{} + +func TestIssue50208(t *testing.T) { + want1 := "B[reflect_test.A]" + if got := TypeOf(new(B[A])).Elem().Name(); got != want1 { + t.Errorf("name of type parameter mismatched, want:%s, got:%s", want1, got) + } + want2 := "B[reflect_test.B[reflect_test.A]]" + if got := TypeOf(new(B[B[A]])).Elem().Name(); got != want2 { + t.Errorf("name of type parameter mismatched, want:%s, got:%s", want2, got) + } +} + +func TestNegativeKindString(t *testing.T) { + x := -1 + s := Kind(x).String() + want := "kind-1" + if s != want { + t.Fatalf("Kind(-1).String() = %q, want %q", s, want) + } +} + +type ( + namedBool bool + namedBytes []byte +) + +func TestValue_Cap(t *testing.T) { + a := &[3]int{1, 2, 3} + v := ValueOf(a) + if v.Cap() != cap(a) { + t.Errorf("Cap = %d want %d", v.Cap(), cap(a)) + } + + a = nil + v = ValueOf(a) + if v.Cap() != cap(a) { + t.Errorf("Cap = %d want %d", v.Cap(), cap(a)) + } + + getError := func(f func()) (errorStr string) { + defer func() { + e := recover() + if str, ok := e.(string); ok { + errorStr = str + } + }() + f() + return + } + e := getError(func() { + var ptr *int + ValueOf(ptr).Cap() + }) + wantStr := "reflect: call of reflect.Value.Cap on ptr to non-array Value" + if e != wantStr { + t.Errorf("error is %q, want %q", e, wantStr) + } +} + +func TestValue_Len(t *testing.T) { + a := &[3]int{1, 2, 3} + v := ValueOf(a) + if v.Len() != len(a) { + t.Errorf("Len = %d want %d", v.Len(), len(a)) + } + + a = nil + v = ValueOf(a) + if v.Len() != len(a) { + t.Errorf("Len = %d want %d", v.Len(), len(a)) + } + + getError := func(f func()) (errorStr string) { + defer func() { + e := recover() + if str, ok := e.(string); ok { + errorStr = str + } + }() + f() + return + } + e := getError(func() { + var ptr *int + ValueOf(ptr).Len() + }) + wantStr := "reflect: call of reflect.Value.Len on ptr to non-array Value" + if e != wantStr { + t.Errorf("error is %q, want %q", e, wantStr) + } +} + +func TestValue_Comparable(t *testing.T) { + var a int + var s []int + var i interface{} = a + var iSlice interface{} = s + var iArrayFalse interface{} = [2]interface{}{1, map[int]int{}} + var iArrayTrue interface{} = [2]interface{}{1, struct{ I interface{} }{1}} + var testcases = []struct { + value Value + comparable bool + deref bool + }{ + { + ValueOf(32), + true, + false, + }, + { + ValueOf(int8(1)), + true, + false, + }, + { + ValueOf(int16(1)), + true, + false, + }, + { + ValueOf(int32(1)), + true, + false, + }, + { + ValueOf(int64(1)), + true, + false, + }, + { + ValueOf(uint8(1)), + true, + false, + }, + { + ValueOf(uint16(1)), + true, + false, + }, + { + ValueOf(uint32(1)), + true, + false, + }, + { + ValueOf(uint64(1)), + true, + false, + }, + { + ValueOf(float32(1)), + true, + false, + }, + { + ValueOf(float64(1)), + true, + false, + }, + { + ValueOf(complex(float32(1), float32(1))), + true, + false, + }, + { + ValueOf(complex(float64(1), float64(1))), + true, + false, + }, + { + ValueOf("abc"), + true, + false, + }, + { + ValueOf(true), + true, + false, + }, + { + ValueOf(map[int]int{}), + false, + false, + }, + { + ValueOf([]int{}), + false, + false, + }, + { + Value{}, + false, + false, + }, + { + ValueOf(&a), + true, + false, + }, + { + ValueOf(&s), + true, + false, + }, + { + ValueOf(&i), + true, + true, + }, + { + ValueOf(&iSlice), + false, + true, + }, + { + ValueOf([2]int{}), + true, + false, + }, + { + ValueOf([2]map[int]int{}), + false, + false, + }, + { + ValueOf([0]func(){}), + false, + false, + }, + { + ValueOf([2]struct{ I interface{} }{{1}, {1}}), + true, + false, + }, + { + ValueOf([2]struct{ I interface{} }{{[]int{}}, {1}}), + false, + false, + }, + { + ValueOf([2]interface{}{1, struct{ I int }{1}}), + true, + false, + }, + { + ValueOf([2]interface{}{[1]interface{}{map[int]int{}}, struct{ I int }{1}}), + false, + false, + }, + { + ValueOf(&iArrayFalse), + false, + true, + }, + { + ValueOf(&iArrayTrue), + true, + true, + }, + } + + for _, cas := range testcases { + v := cas.value + if cas.deref { + v = v.Elem() + } + got := v.Comparable() + if got != cas.comparable { + t.Errorf("%T.Comparable = %t, want %t", v, got, cas.comparable) + } + } +} + +type ValueEqualTest struct { + v, u any + eq bool + vDeref, uDeref bool +} + +var equalI interface{} = 1 +var equalSlice interface{} = []int{1} +var nilInterface interface{} +var mapInterface interface{} = map[int]int{} + +var valueEqualTests = []ValueEqualTest{ + { + Value{}, Value{}, + true, + false, false, + }, + { + true, true, + true, + false, false, + }, + { + 1, 1, + true, + false, false, + }, + { + int8(1), int8(1), + true, + false, false, + }, + { + int16(1), int16(1), + true, + false, false, + }, + { + int32(1), int32(1), + true, + false, false, + }, + { + int64(1), int64(1), + true, + false, false, + }, + { + uint(1), uint(1), + true, + false, false, + }, + { + uint8(1), uint8(1), + true, + false, false, + }, + { + uint16(1), uint16(1), + true, + false, false, + }, + { + uint32(1), uint32(1), + true, + false, false, + }, + { + uint64(1), uint64(1), + true, + false, false, + }, + { + float32(1), float32(1), + true, + false, false, + }, + { + float64(1), float64(1), + true, + false, false, + }, + { + complex(1, 1), complex(1, 1), + true, + false, false, + }, + { + complex128(1 + 1i), complex128(1 + 1i), + true, + false, false, + }, + { + func() {}, nil, + false, + false, false, + }, + { + &equalI, 1, + true, + true, false, + }, + { + (chan int)(nil), nil, + false, + false, false, + }, + { + (chan int)(nil), (chan int)(nil), + true, + false, false, + }, + { + &equalI, &equalI, + true, + false, false, + }, + { + struct{ i int }{1}, struct{ i int }{1}, + true, + false, false, + }, + { + struct{ i int }{1}, struct{ i int }{2}, + false, + false, false, + }, + { + &nilInterface, &nilInterface, + true, + true, true, + }, + { + 1, ValueOf(struct{ i int }{1}).Field(0), + true, + false, false, + }, +} + +func TestValue_Equal(t *testing.T) { + for _, test := range valueEqualTests { + var v, u Value + if vv, ok := test.v.(Value); ok { + v = vv + } else { + v = ValueOf(test.v) + } + + if uu, ok := test.u.(Value); ok { + u = uu + } else { + u = ValueOf(test.u) + } + if test.vDeref { + v = v.Elem() + } + + if test.uDeref { + u = u.Elem() + } + + if r := v.Equal(u); r != test.eq { + t.Errorf("%s == %s got %t, want %t", v.Type(), u.Type(), r, test.eq) + } + } +} + +func TestValue_EqualNonComparable(t *testing.T) { + var invalid = Value{} // ValueOf(nil) + var values = []Value{ + // Value of slice is non-comparable. + ValueOf([]int(nil)), + ValueOf(([]int{})), + + // Value of map is non-comparable. + ValueOf(map[int]int(nil)), + ValueOf((map[int]int{})), + + // Value of func is non-comparable. + ValueOf(((func())(nil))), + ValueOf(func() {}), + + // Value of struct is non-comparable because of non-comparable elements. + ValueOf((NonComparableStruct{})), + + // Value of array is non-comparable because of non-comparable elements. + ValueOf([0]map[int]int{}), + ValueOf([0]func(){}), + ValueOf(([1]struct{ I interface{} }{{[]int{}}})), + ValueOf(([1]interface{}{[1]interface{}{map[int]int{}}})), + } + for _, value := range values { + // Panic when reflect.Value.Equal using two valid non-comparable values. + shouldPanic("are not comparable", func() { value.Equal(value) }) + + // If one is non-comparable and the other is invalid, the expected result is always false. + if r := value.Equal(invalid); r != false { + t.Errorf("%s == invalid got %t, want false", value.Type(), r) + } + } +} + +func TestInitFuncTypes(t *testing.T) { + n := 100 + var wg sync.WaitGroup + + wg.Add(n) + for i := 0; i < n; i++ { + go func() { + defer wg.Done() + ipT := TypeOf(net.IP{}) + for i := 0; i < ipT.NumMethod(); i++ { + _ = ipT.Method(i) + } + }() + } + wg.Wait() +} |