diff options
Diffstat (limited to 'src/runtime/mbitmap.go')
-rw-r--r-- | src/runtime/mbitmap.go | 1501 |
1 files changed, 1501 insertions, 0 deletions
diff --git a/src/runtime/mbitmap.go b/src/runtime/mbitmap.go new file mode 100644 index 0000000..088b566 --- /dev/null +++ b/src/runtime/mbitmap.go @@ -0,0 +1,1501 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Garbage collector: type and heap bitmaps. +// +// Stack, data, and bss bitmaps +// +// Stack frames and global variables in the data and bss sections are +// described by bitmaps with 1 bit per pointer-sized word. A "1" bit +// means the word is a live pointer to be visited by the GC (referred to +// as "pointer"). A "0" bit means the word should be ignored by GC +// (referred to as "scalar", though it could be a dead pointer value). +// +// Heap bitmap +// +// The heap bitmap comprises 1 bit for each pointer-sized word in the heap, +// recording whether a pointer is stored in that word or not. This bitmap +// is stored in the heapArena metadata backing each heap arena. +// That is, if ha is the heapArena for the arena starting at "start", +// then ha.bitmap[0] holds the 64 bits for the 64 words "start" +// through start+63*ptrSize, ha.bitmap[1] holds the entries for +// start+64*ptrSize through start+127*ptrSize, and so on. +// Bits correspond to words in little-endian order. ha.bitmap[0]&1 represents +// the word at "start", ha.bitmap[0]>>1&1 represents the word at start+8, etc. +// (For 32-bit platforms, s/64/32/.) +// +// We also keep a noMorePtrs bitmap which allows us to stop scanning +// the heap bitmap early in certain situations. If ha.noMorePtrs[i]>>j&1 +// is 1, then the object containing the last word described by ha.bitmap[8*i+j] +// has no more pointers beyond those described by ha.bitmap[8*i+j]. +// If ha.noMorePtrs[i]>>j&1 is set, the entries in ha.bitmap[8*i+j+1] and +// beyond must all be zero until the start of the next object. +// +// The bitmap for noscan spans is set to all zero at span allocation time. +// +// The bitmap for unallocated objects in scannable spans is not maintained +// (can be junk). + +package runtime + +import ( + "internal/goarch" + "runtime/internal/atomic" + "runtime/internal/sys" + "unsafe" +) + +// addb returns the byte pointer p+n. +// +//go:nowritebarrier +//go:nosplit +func addb(p *byte, n uintptr) *byte { + // Note: wrote out full expression instead of calling add(p, n) + // to reduce the number of temporaries generated by the + // compiler for this trivial expression during inlining. + return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n)) +} + +// subtractb returns the byte pointer p-n. +// +//go:nowritebarrier +//go:nosplit +func subtractb(p *byte, n uintptr) *byte { + // Note: wrote out full expression instead of calling add(p, -n) + // to reduce the number of temporaries generated by the + // compiler for this trivial expression during inlining. + return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n)) +} + +// add1 returns the byte pointer p+1. +// +//go:nowritebarrier +//go:nosplit +func add1(p *byte) *byte { + // Note: wrote out full expression instead of calling addb(p, 1) + // to reduce the number of temporaries generated by the + // compiler for this trivial expression during inlining. + return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1)) +} + +// subtract1 returns the byte pointer p-1. +// +// nosplit because it is used during write barriers and must not be preempted. +// +//go:nowritebarrier +//go:nosplit +func subtract1(p *byte) *byte { + // Note: wrote out full expression instead of calling subtractb(p, 1) + // to reduce the number of temporaries generated by the + // compiler for this trivial expression during inlining. + return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1)) +} + +// markBits provides access to the mark bit for an object in the heap. +// bytep points to the byte holding the mark bit. +// mask is a byte with a single bit set that can be &ed with *bytep +// to see if the bit has been set. +// *m.byte&m.mask != 0 indicates the mark bit is set. +// index can be used along with span information to generate +// the address of the object in the heap. +// We maintain one set of mark bits for allocation and one for +// marking purposes. +type markBits struct { + bytep *uint8 + mask uint8 + index uintptr +} + +//go:nosplit +func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits { + bytep, mask := s.allocBits.bitp(allocBitIndex) + return markBits{bytep, mask, allocBitIndex} +} + +// refillAllocCache takes 8 bytes s.allocBits starting at whichByte +// and negates them so that ctz (count trailing zeros) instructions +// can be used. It then places these 8 bytes into the cached 64 bit +// s.allocCache. +func (s *mspan) refillAllocCache(whichByte uintptr) { + bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte))) + aCache := uint64(0) + aCache |= uint64(bytes[0]) + aCache |= uint64(bytes[1]) << (1 * 8) + aCache |= uint64(bytes[2]) << (2 * 8) + aCache |= uint64(bytes[3]) << (3 * 8) + aCache |= uint64(bytes[4]) << (4 * 8) + aCache |= uint64(bytes[5]) << (5 * 8) + aCache |= uint64(bytes[6]) << (6 * 8) + aCache |= uint64(bytes[7]) << (7 * 8) + s.allocCache = ^aCache +} + +// nextFreeIndex returns the index of the next free object in s at +// or after s.freeindex. +// There are hardware instructions that can be used to make this +// faster if profiling warrants it. +func (s *mspan) nextFreeIndex() uintptr { + sfreeindex := s.freeindex + snelems := s.nelems + if sfreeindex == snelems { + return sfreeindex + } + if sfreeindex > snelems { + throw("s.freeindex > s.nelems") + } + + aCache := s.allocCache + + bitIndex := sys.TrailingZeros64(aCache) + for bitIndex == 64 { + // Move index to start of next cached bits. + sfreeindex = (sfreeindex + 64) &^ (64 - 1) + if sfreeindex >= snelems { + s.freeindex = snelems + return snelems + } + whichByte := sfreeindex / 8 + // Refill s.allocCache with the next 64 alloc bits. + s.refillAllocCache(whichByte) + aCache = s.allocCache + bitIndex = sys.TrailingZeros64(aCache) + // nothing available in cached bits + // grab the next 8 bytes and try again. + } + result := sfreeindex + uintptr(bitIndex) + if result >= snelems { + s.freeindex = snelems + return snelems + } + + s.allocCache >>= uint(bitIndex + 1) + sfreeindex = result + 1 + + if sfreeindex%64 == 0 && sfreeindex != snelems { + // We just incremented s.freeindex so it isn't 0. + // As each 1 in s.allocCache was encountered and used for allocation + // it was shifted away. At this point s.allocCache contains all 0s. + // Refill s.allocCache so that it corresponds + // to the bits at s.allocBits starting at s.freeindex. + whichByte := sfreeindex / 8 + s.refillAllocCache(whichByte) + } + s.freeindex = sfreeindex + return result +} + +// isFree reports whether the index'th object in s is unallocated. +// +// The caller must ensure s.state is mSpanInUse, and there must have +// been no preemption points since ensuring this (which could allow a +// GC transition, which would allow the state to change). +func (s *mspan) isFree(index uintptr) bool { + if index < s.freeIndexForScan { + return false + } + bytep, mask := s.allocBits.bitp(index) + return *bytep&mask == 0 +} + +// divideByElemSize returns n/s.elemsize. +// n must be within [0, s.npages*_PageSize), +// or may be exactly s.npages*_PageSize +// if s.elemsize is from sizeclasses.go. +func (s *mspan) divideByElemSize(n uintptr) uintptr { + const doubleCheck = false + + // See explanation in mksizeclasses.go's computeDivMagic. + q := uintptr((uint64(n) * uint64(s.divMul)) >> 32) + + if doubleCheck && q != n/s.elemsize { + println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q) + throw("bad magic division") + } + return q +} + +func (s *mspan) objIndex(p uintptr) uintptr { + return s.divideByElemSize(p - s.base()) +} + +func markBitsForAddr(p uintptr) markBits { + s := spanOf(p) + objIndex := s.objIndex(p) + return s.markBitsForIndex(objIndex) +} + +func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { + bytep, mask := s.gcmarkBits.bitp(objIndex) + return markBits{bytep, mask, objIndex} +} + +func (s *mspan) markBitsForBase() markBits { + return markBits{&s.gcmarkBits.x, uint8(1), 0} +} + +// isMarked reports whether mark bit m is set. +func (m markBits) isMarked() bool { + return *m.bytep&m.mask != 0 +} + +// setMarked sets the marked bit in the markbits, atomically. +func (m markBits) setMarked() { + // Might be racing with other updates, so use atomic update always. + // We used to be clever here and use a non-atomic update in certain + // cases, but it's not worth the risk. + atomic.Or8(m.bytep, m.mask) +} + +// setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. +func (m markBits) setMarkedNonAtomic() { + *m.bytep |= m.mask +} + +// clearMarked clears the marked bit in the markbits, atomically. +func (m markBits) clearMarked() { + // Might be racing with other updates, so use atomic update always. + // We used to be clever here and use a non-atomic update in certain + // cases, but it's not worth the risk. + atomic.And8(m.bytep, ^m.mask) +} + +// markBitsForSpan returns the markBits for the span base address base. +func markBitsForSpan(base uintptr) (mbits markBits) { + mbits = markBitsForAddr(base) + if mbits.mask != 1 { + throw("markBitsForSpan: unaligned start") + } + return mbits +} + +// advance advances the markBits to the next object in the span. +func (m *markBits) advance() { + if m.mask == 1<<7 { + m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) + m.mask = 1 + } else { + m.mask = m.mask << 1 + } + m.index++ +} + +// clobberdeadPtr is a special value that is used by the compiler to +// clobber dead stack slots, when -clobberdead flag is set. +const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32)) + +// badPointer throws bad pointer in heap panic. +func badPointer(s *mspan, p, refBase, refOff uintptr) { + // Typically this indicates an incorrect use + // of unsafe or cgo to store a bad pointer in + // the Go heap. It may also indicate a runtime + // bug. + // + // TODO(austin): We could be more aggressive + // and detect pointers to unallocated objects + // in allocated spans. + printlock() + print("runtime: pointer ", hex(p)) + if s != nil { + state := s.state.get() + if state != mSpanInUse { + print(" to unallocated span") + } else { + print(" to unused region of span") + } + print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state) + } + print("\n") + if refBase != 0 { + print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") + gcDumpObject("object", refBase, refOff) + } + getg().m.traceback = 2 + throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") +} + +// findObject returns the base address for the heap object containing +// the address p, the object's span, and the index of the object in s. +// If p does not point into a heap object, it returns base == 0. +// +// If p points is an invalid heap pointer and debug.invalidptr != 0, +// findObject panics. +// +// refBase and refOff optionally give the base address of the object +// in which the pointer p was found and the byte offset at which it +// was found. These are used for error reporting. +// +// It is nosplit so it is safe for p to be a pointer to the current goroutine's stack. +// Since p is a uintptr, it would not be adjusted if the stack were to move. +// +//go:nosplit +func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) { + s = spanOf(p) + // If s is nil, the virtual address has never been part of the heap. + // This pointer may be to some mmap'd region, so we allow it. + if s == nil { + if (GOARCH == "amd64" || GOARCH == "arm64") && p == clobberdeadPtr && debug.invalidptr != 0 { + // Crash if clobberdeadPtr is seen. Only on AMD64 and ARM64 for now, + // as they are the only platform where compiler's clobberdead mode is + // implemented. On these platforms clobberdeadPtr cannot be a valid address. + badPointer(s, p, refBase, refOff) + } + return + } + // If p is a bad pointer, it may not be in s's bounds. + // + // Check s.state to synchronize with span initialization + // before checking other fields. See also spanOfHeap. + if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit { + // Pointers into stacks are also ok, the runtime manages these explicitly. + if state == mSpanManual { + return + } + // The following ensures that we are rigorous about what data + // structures hold valid pointers. + if debug.invalidptr != 0 { + badPointer(s, p, refBase, refOff) + } + return + } + + objIndex = s.objIndex(p) + base = s.base() + objIndex*s.elemsize + return +} + +// reflect_verifyNotInHeapPtr reports whether converting the not-in-heap pointer into a unsafe.Pointer is ok. +// +//go:linkname reflect_verifyNotInHeapPtr reflect.verifyNotInHeapPtr +func reflect_verifyNotInHeapPtr(p uintptr) bool { + // Conversion to a pointer is ok as long as findObject above does not call badPointer. + // Since we're already promised that p doesn't point into the heap, just disallow heap + // pointers and the special clobbered pointer. + return spanOf(p) == nil && p != clobberdeadPtr +} + +const ptrBits = 8 * goarch.PtrSize + +// heapBits provides access to the bitmap bits for a single heap word. +// The methods on heapBits take value receivers so that the compiler +// can more easily inline calls to those methods and registerize the +// struct fields independently. +type heapBits struct { + // heapBits will report on pointers in the range [addr,addr+size). + // The low bit of mask contains the pointerness of the word at addr + // (assuming valid>0). + addr, size uintptr + + // The next few pointer bits representing words starting at addr. + // Those bits already returned by next() are zeroed. + mask uintptr + // Number of bits in mask that are valid. mask is always less than 1<<valid. + valid uintptr +} + +// heapBitsForAddr returns the heapBits for the address addr. +// The caller must ensure [addr,addr+size) is in an allocated span. +// In particular, be careful not to point past the end of an object. +// +// nosplit because it is used during write barriers and must not be preempted. +// +//go:nosplit +func heapBitsForAddr(addr, size uintptr) heapBits { + // Find arena + ai := arenaIndex(addr) + ha := mheap_.arenas[ai.l1()][ai.l2()] + + // Word index in arena. + word := addr / goarch.PtrSize % heapArenaWords + + // Word index and bit offset in bitmap array. + idx := word / ptrBits + off := word % ptrBits + + // Grab relevant bits of bitmap. + mask := ha.bitmap[idx] >> off + valid := ptrBits - off + + // Process depending on where the object ends. + nptr := size / goarch.PtrSize + if nptr < valid { + // Bits for this object end before the end of this bitmap word. + // Squash bits for the following objects. + mask &= 1<<(nptr&(ptrBits-1)) - 1 + valid = nptr + } else if nptr == valid { + // Bits for this object end at exactly the end of this bitmap word. + // All good. + } else { + // Bits for this object extend into the next bitmap word. See if there + // may be any pointers recorded there. + if uintptr(ha.noMorePtrs[idx/8])>>(idx%8)&1 != 0 { + // No more pointers in this object after this bitmap word. + // Update size so we know not to look there. + size = valid * goarch.PtrSize + } + } + + return heapBits{addr: addr, size: size, mask: mask, valid: valid} +} + +// Returns the (absolute) address of the next known pointer and +// a heapBits iterator representing any remaining pointers. +// If there are no more pointers, returns address 0. +// Note that next does not modify h. The caller must record the result. +// +// nosplit because it is used during write barriers and must not be preempted. +// +//go:nosplit +func (h heapBits) next() (heapBits, uintptr) { + for { + if h.mask != 0 { + var i int + if goarch.PtrSize == 8 { + i = sys.TrailingZeros64(uint64(h.mask)) + } else { + i = sys.TrailingZeros32(uint32(h.mask)) + } + h.mask ^= uintptr(1) << (i & (ptrBits - 1)) + return h, h.addr + uintptr(i)*goarch.PtrSize + } + + // Skip words that we've already processed. + h.addr += h.valid * goarch.PtrSize + h.size -= h.valid * goarch.PtrSize + if h.size == 0 { + return h, 0 // no more pointers + } + + // Grab more bits and try again. + h = heapBitsForAddr(h.addr, h.size) + } +} + +// nextFast is like next, but can return 0 even when there are more pointers +// to be found. Callers should call next if nextFast returns 0 as its second +// return value. +// +// if addr, h = h.nextFast(); addr == 0 { +// if addr, h = h.next(); addr == 0 { +// ... no more pointers ... +// } +// } +// ... process pointer at addr ... +// +// nextFast is designed to be inlineable. +// +//go:nosplit +func (h heapBits) nextFast() (heapBits, uintptr) { + // TESTQ/JEQ + if h.mask == 0 { + return h, 0 + } + // BSFQ + var i int + if goarch.PtrSize == 8 { + i = sys.TrailingZeros64(uint64(h.mask)) + } else { + i = sys.TrailingZeros32(uint32(h.mask)) + } + // BTCQ + h.mask ^= uintptr(1) << (i & (ptrBits - 1)) + // LEAQ (XX)(XX*8) + return h, h.addr + uintptr(i)*goarch.PtrSize +} + +// bulkBarrierPreWrite executes a write barrier +// for every pointer slot in the memory range [src, src+size), +// using pointer/scalar information from [dst, dst+size). +// This executes the write barriers necessary before a memmove. +// src, dst, and size must be pointer-aligned. +// The range [dst, dst+size) must lie within a single object. +// It does not perform the actual writes. +// +// As a special case, src == 0 indicates that this is being used for a +// memclr. bulkBarrierPreWrite will pass 0 for the src of each write +// barrier. +// +// Callers should call bulkBarrierPreWrite immediately before +// calling memmove(dst, src, size). This function is marked nosplit +// to avoid being preempted; the GC must not stop the goroutine +// between the memmove and the execution of the barriers. +// The caller is also responsible for cgo pointer checks if this +// may be writing Go pointers into non-Go memory. +// +// The pointer bitmap is not maintained for allocations containing +// no pointers at all; any caller of bulkBarrierPreWrite must first +// make sure the underlying allocation contains pointers, usually +// by checking typ.ptrdata. +// +// Callers must perform cgo checks if writeBarrier.cgo. +// +//go:nosplit +func bulkBarrierPreWrite(dst, src, size uintptr) { + if (dst|src|size)&(goarch.PtrSize-1) != 0 { + throw("bulkBarrierPreWrite: unaligned arguments") + } + if !writeBarrier.needed { + return + } + if s := spanOf(dst); s == nil { + // If dst is a global, use the data or BSS bitmaps to + // execute write barriers. + for _, datap := range activeModules() { + if datap.data <= dst && dst < datap.edata { + bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) + return + } + } + for _, datap := range activeModules() { + if datap.bss <= dst && dst < datap.ebss { + bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) + return + } + } + return + } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst { + // dst was heap memory at some point, but isn't now. + // It can't be a global. It must be either our stack, + // or in the case of direct channel sends, it could be + // another stack. Either way, no need for barriers. + // This will also catch if dst is in a freed span, + // though that should never have. + return + } + + buf := &getg().m.p.ptr().wbBuf + h := heapBitsForAddr(dst, size) + if src == 0 { + for { + var addr uintptr + if h, addr = h.next(); addr == 0 { + break + } + dstx := (*uintptr)(unsafe.Pointer(addr)) + if !buf.putFast(*dstx, 0) { + wbBufFlush(nil, 0) + } + } + } else { + for { + var addr uintptr + if h, addr = h.next(); addr == 0 { + break + } + dstx := (*uintptr)(unsafe.Pointer(addr)) + srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst))) + if !buf.putFast(*dstx, *srcx) { + wbBufFlush(nil, 0) + } + } + } +} + +// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but +// does not execute write barriers for [dst, dst+size). +// +// In addition to the requirements of bulkBarrierPreWrite +// callers need to ensure [dst, dst+size) is zeroed. +// +// This is used for special cases where e.g. dst was just +// created and zeroed with malloc. +// +//go:nosplit +func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) { + if (dst|src|size)&(goarch.PtrSize-1) != 0 { + throw("bulkBarrierPreWrite: unaligned arguments") + } + if !writeBarrier.needed { + return + } + buf := &getg().m.p.ptr().wbBuf + h := heapBitsForAddr(dst, size) + for { + var addr uintptr + if h, addr = h.next(); addr == 0 { + break + } + srcx := (*uintptr)(unsafe.Pointer(addr - dst + src)) + if !buf.putFast(0, *srcx) { + wbBufFlush(nil, 0) + } + } +} + +// bulkBarrierBitmap executes write barriers for copying from [src, +// src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is +// assumed to start maskOffset bytes into the data covered by the +// bitmap in bits (which may not be a multiple of 8). +// +// This is used by bulkBarrierPreWrite for writes to data and BSS. +// +//go:nosplit +func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) { + word := maskOffset / goarch.PtrSize + bits = addb(bits, word/8) + mask := uint8(1) << (word % 8) + + buf := &getg().m.p.ptr().wbBuf + for i := uintptr(0); i < size; i += goarch.PtrSize { + if mask == 0 { + bits = addb(bits, 1) + if *bits == 0 { + // Skip 8 words. + i += 7 * goarch.PtrSize + continue + } + mask = 1 + } + if *bits&mask != 0 { + dstx := (*uintptr)(unsafe.Pointer(dst + i)) + if src == 0 { + if !buf.putFast(*dstx, 0) { + wbBufFlush(nil, 0) + } + } else { + srcx := (*uintptr)(unsafe.Pointer(src + i)) + if !buf.putFast(*dstx, *srcx) { + wbBufFlush(nil, 0) + } + } + } + mask <<= 1 + } +} + +// typeBitsBulkBarrier executes a write barrier for every +// pointer that would be copied from [src, src+size) to [dst, +// dst+size) by a memmove using the type bitmap to locate those +// pointer slots. +// +// The type typ must correspond exactly to [src, src+size) and [dst, dst+size). +// dst, src, and size must be pointer-aligned. +// The type typ must have a plain bitmap, not a GC program. +// The only use of this function is in channel sends, and the +// 64 kB channel element limit takes care of this for us. +// +// Must not be preempted because it typically runs right before memmove, +// and the GC must observe them as an atomic action. +// +// Callers must perform cgo checks if writeBarrier.cgo. +// +//go:nosplit +func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) { + if typ == nil { + throw("runtime: typeBitsBulkBarrier without type") + } + if typ.size != size { + println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size) + throw("runtime: invalid typeBitsBulkBarrier") + } + if typ.kind&kindGCProg != 0 { + println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog") + throw("runtime: invalid typeBitsBulkBarrier") + } + if !writeBarrier.needed { + return + } + ptrmask := typ.gcdata + buf := &getg().m.p.ptr().wbBuf + var bits uint32 + for i := uintptr(0); i < typ.ptrdata; i += goarch.PtrSize { + if i&(goarch.PtrSize*8-1) == 0 { + bits = uint32(*ptrmask) + ptrmask = addb(ptrmask, 1) + } else { + bits = bits >> 1 + } + if bits&1 != 0 { + dstx := (*uintptr)(unsafe.Pointer(dst + i)) + srcx := (*uintptr)(unsafe.Pointer(src + i)) + if !buf.putFast(*dstx, *srcx) { + wbBufFlush(nil, 0) + } + } + } +} + +// initHeapBits initializes the heap bitmap for a span. +// If this is a span of single pointer allocations, it initializes all +// words to pointer. If force is true, clears all bits. +func (s *mspan) initHeapBits(forceClear bool) { + if forceClear || s.spanclass.noscan() { + // Set all the pointer bits to zero. We do this once + // when the span is allocated so we don't have to do it + // for each object allocation. + base := s.base() + size := s.npages * pageSize + h := writeHeapBitsForAddr(base) + h.flush(base, size) + return + } + isPtrs := goarch.PtrSize == 8 && s.elemsize == goarch.PtrSize + if !isPtrs { + return // nothing to do + } + h := writeHeapBitsForAddr(s.base()) + size := s.npages * pageSize + nptrs := size / goarch.PtrSize + for i := uintptr(0); i < nptrs; i += ptrBits { + h = h.write(^uintptr(0), ptrBits) + } + h.flush(s.base(), size) +} + +// countAlloc returns the number of objects allocated in span s by +// scanning the allocation bitmap. +func (s *mspan) countAlloc() int { + count := 0 + bytes := divRoundUp(s.nelems, 8) + // Iterate over each 8-byte chunk and count allocations + // with an intrinsic. Note that newMarkBits guarantees that + // gcmarkBits will be 8-byte aligned, so we don't have to + // worry about edge cases, irrelevant bits will simply be zero. + for i := uintptr(0); i < bytes; i += 8 { + // Extract 64 bits from the byte pointer and get a OnesCount. + // Note that the unsafe cast here doesn't preserve endianness, + // but that's OK. We only care about how many bits are 1, not + // about the order we discover them in. + mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i))) + count += sys.OnesCount64(mrkBits) + } + return count +} + +type writeHeapBits struct { + addr uintptr // address that the low bit of mask represents the pointer state of. + mask uintptr // some pointer bits starting at the address addr. + valid uintptr // number of bits in buf that are valid (including low) + low uintptr // number of low-order bits to not overwrite +} + +func writeHeapBitsForAddr(addr uintptr) (h writeHeapBits) { + // We start writing bits maybe in the middle of a heap bitmap word. + // Remember how many bits into the word we started, so we can be sure + // not to overwrite the previous bits. + h.low = addr / goarch.PtrSize % ptrBits + + // round down to heap word that starts the bitmap word. + h.addr = addr - h.low*goarch.PtrSize + + // We don't have any bits yet. + h.mask = 0 + h.valid = h.low + + return +} + +// write appends the pointerness of the next valid pointer slots +// using the low valid bits of bits. 1=pointer, 0=scalar. +func (h writeHeapBits) write(bits, valid uintptr) writeHeapBits { + if h.valid+valid <= ptrBits { + // Fast path - just accumulate the bits. + h.mask |= bits << h.valid + h.valid += valid + return h + } + // Too many bits to fit in this word. Write the current word + // out and move on to the next word. + + data := h.mask | bits<<h.valid // mask for this word + h.mask = bits >> (ptrBits - h.valid) // leftover for next word + h.valid += valid - ptrBits // have h.valid+valid bits, writing ptrBits of them + + // Flush mask to the memory bitmap. + // TODO: figure out how to cache arena lookup. + ai := arenaIndex(h.addr) + ha := mheap_.arenas[ai.l1()][ai.l2()] + idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords + m := uintptr(1)<<h.low - 1 + ha.bitmap[idx] = ha.bitmap[idx]&m | data + // Note: no synchronization required for this write because + // the allocator has exclusive access to the page, and the bitmap + // entries are all for a single page. Also, visibility of these + // writes is guaranteed by the publication barrier in mallocgc. + + // Clear noMorePtrs bit, since we're going to be writing bits + // into the following word. + ha.noMorePtrs[idx/8] &^= uint8(1) << (idx % 8) + // Note: same as above + + // Move to next word of bitmap. + h.addr += ptrBits * goarch.PtrSize + h.low = 0 + return h +} + +// Add padding of size bytes. +func (h writeHeapBits) pad(size uintptr) writeHeapBits { + if size == 0 { + return h + } + words := size / goarch.PtrSize + for words > ptrBits { + h = h.write(0, ptrBits) + words -= ptrBits + } + return h.write(0, words) +} + +// Flush the bits that have been written, and add zeros as needed +// to cover the full object [addr, addr+size). +func (h writeHeapBits) flush(addr, size uintptr) { + // zeros counts the number of bits needed to represent the object minus the + // number of bits we've already written. This is the number of 0 bits + // that need to be added. + zeros := (addr+size-h.addr)/goarch.PtrSize - h.valid + + // Add zero bits up to the bitmap word boundary + if zeros > 0 { + z := ptrBits - h.valid + if z > zeros { + z = zeros + } + h.valid += z + zeros -= z + } + + // Find word in bitmap that we're going to write. + ai := arenaIndex(h.addr) + ha := mheap_.arenas[ai.l1()][ai.l2()] + idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords + + // Write remaining bits. + if h.valid != h.low { + m := uintptr(1)<<h.low - 1 // don't clear existing bits below "low" + m |= ^(uintptr(1)<<h.valid - 1) // don't clear existing bits above "valid" + ha.bitmap[idx] = ha.bitmap[idx]&m | h.mask + } + if zeros == 0 { + return + } + + // Record in the noMorePtrs map that there won't be any more 1 bits, + // so readers can stop early. + ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8) + + // Advance to next bitmap word. + h.addr += ptrBits * goarch.PtrSize + + // Continue on writing zeros for the rest of the object. + // For standard use of the ptr bits this is not required, as + // the bits are read from the beginning of the object. Some uses, + // like noscan spans, oblets, bulk write barriers, and cgocheck, might + // start mid-object, so these writes are still required. + for { + // Write zero bits. + ai := arenaIndex(h.addr) + ha := mheap_.arenas[ai.l1()][ai.l2()] + idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords + if zeros < ptrBits { + ha.bitmap[idx] &^= uintptr(1)<<zeros - 1 + break + } else if zeros == ptrBits { + ha.bitmap[idx] = 0 + break + } else { + ha.bitmap[idx] = 0 + zeros -= ptrBits + } + ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8) + h.addr += ptrBits * goarch.PtrSize + } +} + +// Read the bytes starting at the aligned pointer p into a uintptr. +// Read is little-endian. +func readUintptr(p *byte) uintptr { + x := *(*uintptr)(unsafe.Pointer(p)) + if goarch.BigEndian { + if goarch.PtrSize == 8 { + return uintptr(sys.Bswap64(uint64(x))) + } + return uintptr(sys.Bswap32(uint32(x))) + } + return x +} + +// heapBitsSetType records that the new allocation [x, x+size) +// holds in [x, x+dataSize) one or more values of type typ. +// (The number of values is given by dataSize / typ.size.) +// If dataSize < size, the fragment [x+dataSize, x+size) is +// recorded as non-pointer data. +// It is known that the type has pointers somewhere; +// malloc does not call heapBitsSetType when there are no pointers, +// because all free objects are marked as noscan during +// heapBitsSweepSpan. +// +// There can only be one allocation from a given span active at a time, +// and the bitmap for a span always falls on word boundaries, +// so there are no write-write races for access to the heap bitmap. +// Hence, heapBitsSetType can access the bitmap without atomics. +// +// There can be read-write races between heapBitsSetType and things +// that read the heap bitmap like scanobject. However, since +// heapBitsSetType is only used for objects that have not yet been +// made reachable, readers will ignore bits being modified by this +// function. This does mean this function cannot transiently modify +// bits that belong to neighboring objects. Also, on weakly-ordered +// machines, callers must execute a store/store (publication) barrier +// between calling this function and making the object reachable. +func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { + const doubleCheck = false // slow but helpful; enable to test modifications to this code + + if doubleCheck && dataSize%typ.size != 0 { + throw("heapBitsSetType: dataSize not a multiple of typ.size") + } + + if goarch.PtrSize == 8 && size == goarch.PtrSize { + // It's one word and it has pointers, it must be a pointer. + // Since all allocated one-word objects are pointers + // (non-pointers are aggregated into tinySize allocations), + // (*mspan).initHeapBits sets the pointer bits for us. + // Nothing to do here. + if doubleCheck { + h, addr := heapBitsForAddr(x, size).next() + if addr != x { + throw("heapBitsSetType: pointer bit missing") + } + _, addr = h.next() + if addr != 0 { + throw("heapBitsSetType: second pointer bit found") + } + } + return + } + + h := writeHeapBitsForAddr(x) + + // Handle GC program. + if typ.kind&kindGCProg != 0 { + // Expand the gc program into the storage we're going to use for the actual object. + obj := (*uint8)(unsafe.Pointer(x)) + n := runGCProg(addb(typ.gcdata, 4), obj) + // Use the expanded program to set the heap bits. + for i := uintptr(0); true; i += typ.size { + // Copy expanded program to heap bitmap. + p := obj + j := n + for j > 8 { + h = h.write(uintptr(*p), 8) + p = add1(p) + j -= 8 + } + h = h.write(uintptr(*p), j) + + if i+typ.size == dataSize { + break // no padding after last element + } + + // Pad with zeros to the start of the next element. + h = h.pad(typ.size - n*goarch.PtrSize) + } + + h.flush(x, size) + + // Erase the expanded GC program. + memclrNoHeapPointers(unsafe.Pointer(obj), (n+7)/8) + return + } + + // Note about sizes: + // + // typ.size is the number of words in the object, + // and typ.ptrdata is the number of words in the prefix + // of the object that contains pointers. That is, the final + // typ.size - typ.ptrdata words contain no pointers. + // This allows optimization of a common pattern where + // an object has a small header followed by a large scalar + // buffer. If we know the pointers are over, we don't have + // to scan the buffer's heap bitmap at all. + // The 1-bit ptrmasks are sized to contain only bits for + // the typ.ptrdata prefix, zero padded out to a full byte + // of bitmap. If there is more room in the allocated object, + // that space is pointerless. The noMorePtrs bitmap will prevent + // scanning large pointerless tails of an object. + // + // Replicated copies are not as nice: if there is an array of + // objects with scalar tails, all but the last tail does have to + // be initialized, because there is no way to say "skip forward". + + ptrs := typ.ptrdata / goarch.PtrSize + if typ.size == dataSize { // Single element + if ptrs <= ptrBits { // Single small element + m := readUintptr(typ.gcdata) + h = h.write(m, ptrs) + } else { // Single large element + p := typ.gcdata + for { + h = h.write(readUintptr(p), ptrBits) + p = addb(p, ptrBits/8) + ptrs -= ptrBits + if ptrs <= ptrBits { + break + } + } + m := readUintptr(p) + h = h.write(m, ptrs) + } + } else { // Repeated element + words := typ.size / goarch.PtrSize // total words, including scalar tail + if words <= ptrBits { // Repeated small element + n := dataSize / typ.size + m := readUintptr(typ.gcdata) + // Make larger unit to repeat + for words <= ptrBits/2 { + if n&1 != 0 { + h = h.write(m, words) + } + n /= 2 + m |= m << words + ptrs += words + words *= 2 + if n == 1 { + break + } + } + for n > 1 { + h = h.write(m, words) + n-- + } + h = h.write(m, ptrs) + } else { // Repeated large element + for i := uintptr(0); true; i += typ.size { + p := typ.gcdata + j := ptrs + for j > ptrBits { + h = h.write(readUintptr(p), ptrBits) + p = addb(p, ptrBits/8) + j -= ptrBits + } + m := readUintptr(p) + h = h.write(m, j) + if i+typ.size == dataSize { + break // don't need the trailing nonptr bits on the last element. + } + // Pad with zeros to the start of the next element. + h = h.pad(typ.size - typ.ptrdata) + } + } + } + h.flush(x, size) + + if doubleCheck { + h := heapBitsForAddr(x, size) + for i := uintptr(0); i < size; i += goarch.PtrSize { + // Compute the pointer bit we want at offset i. + want := false + if i < dataSize { + off := i % typ.size + if off < typ.ptrdata { + j := off / goarch.PtrSize + want = *addb(typ.gcdata, j/8)>>(j%8)&1 != 0 + } + } + if want { + var addr uintptr + h, addr = h.next() + if addr != x+i { + throw("heapBitsSetType: pointer entry not correct") + } + } + } + if _, addr := h.next(); addr != 0 { + throw("heapBitsSetType: extra pointer") + } + } +} + +var debugPtrmask struct { + lock mutex + data *byte +} + +// progToPointerMask returns the 1-bit pointer mask output by the GC program prog. +// size the size of the region described by prog, in bytes. +// The resulting bitvector will have no more than size/goarch.PtrSize bits. +func progToPointerMask(prog *byte, size uintptr) bitvector { + n := (size/goarch.PtrSize + 7) / 8 + x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] + x[len(x)-1] = 0xa1 // overflow check sentinel + n = runGCProg(prog, &x[0]) + if x[len(x)-1] != 0xa1 { + throw("progToPointerMask: overflow") + } + return bitvector{int32(n), &x[0]} +} + +// Packed GC pointer bitmaps, aka GC programs. +// +// For large types containing arrays, the type information has a +// natural repetition that can be encoded to save space in the +// binary and in the memory representation of the type information. +// +// The encoding is a simple Lempel-Ziv style bytecode machine +// with the following instructions: +// +// 00000000: stop +// 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes +// 10000000 n c: repeat the previous n bits c times; n, c are varints +// 1nnnnnnn c: repeat the previous n bits c times; c is a varint + +// runGCProg returns the number of 1-bit entries written to memory. +func runGCProg(prog, dst *byte) uintptr { + dstStart := dst + + // Bits waiting to be written to memory. + var bits uintptr + var nbits uintptr + + p := prog +Run: + for { + // Flush accumulated full bytes. + // The rest of the loop assumes that nbits <= 7. + for ; nbits >= 8; nbits -= 8 { + *dst = uint8(bits) + dst = add1(dst) + bits >>= 8 + } + + // Process one instruction. + inst := uintptr(*p) + p = add1(p) + n := inst & 0x7F + if inst&0x80 == 0 { + // Literal bits; n == 0 means end of program. + if n == 0 { + // Program is over. + break Run + } + nbyte := n / 8 + for i := uintptr(0); i < nbyte; i++ { + bits |= uintptr(*p) << nbits + p = add1(p) + *dst = uint8(bits) + dst = add1(dst) + bits >>= 8 + } + if n %= 8; n > 0 { + bits |= uintptr(*p) << nbits + p = add1(p) + nbits += n + } + continue Run + } + + // Repeat. If n == 0, it is encoded in a varint in the next bytes. + if n == 0 { + for off := uint(0); ; off += 7 { + x := uintptr(*p) + p = add1(p) + n |= (x & 0x7F) << off + if x&0x80 == 0 { + break + } + } + } + + // Count is encoded in a varint in the next bytes. + c := uintptr(0) + for off := uint(0); ; off += 7 { + x := uintptr(*p) + p = add1(p) + c |= (x & 0x7F) << off + if x&0x80 == 0 { + break + } + } + c *= n // now total number of bits to copy + + // If the number of bits being repeated is small, load them + // into a register and use that register for the entire loop + // instead of repeatedly reading from memory. + // Handling fewer than 8 bits here makes the general loop simpler. + // The cutoff is goarch.PtrSize*8 - 7 to guarantee that when we add + // the pattern to a bit buffer holding at most 7 bits (a partial byte) + // it will not overflow. + src := dst + const maxBits = goarch.PtrSize*8 - 7 + if n <= maxBits { + // Start with bits in output buffer. + pattern := bits + npattern := nbits + + // If we need more bits, fetch them from memory. + src = subtract1(src) + for npattern < n { + pattern <<= 8 + pattern |= uintptr(*src) + src = subtract1(src) + npattern += 8 + } + + // We started with the whole bit output buffer, + // and then we loaded bits from whole bytes. + // Either way, we might now have too many instead of too few. + // Discard the extra. + if npattern > n { + pattern >>= npattern - n + npattern = n + } + + // Replicate pattern to at most maxBits. + if npattern == 1 { + // One bit being repeated. + // If the bit is 1, make the pattern all 1s. + // If the bit is 0, the pattern is already all 0s, + // but we can claim that the number of bits + // in the word is equal to the number we need (c), + // because right shift of bits will zero fill. + if pattern == 1 { + pattern = 1<<maxBits - 1 + npattern = maxBits + } else { + npattern = c + } + } else { + b := pattern + nb := npattern + if nb+nb <= maxBits { + // Double pattern until the whole uintptr is filled. + for nb <= goarch.PtrSize*8 { + b |= b << nb + nb += nb + } + // Trim away incomplete copy of original pattern in high bits. + // TODO(rsc): Replace with table lookup or loop on systems without divide? + nb = maxBits / npattern * npattern + b &= 1<<nb - 1 + pattern = b + npattern = nb + } + } + + // Add pattern to bit buffer and flush bit buffer, c/npattern times. + // Since pattern contains >8 bits, there will be full bytes to flush + // on each iteration. + for ; c >= npattern; c -= npattern { + bits |= pattern << nbits + nbits += npattern + for nbits >= 8 { + *dst = uint8(bits) + dst = add1(dst) + bits >>= 8 + nbits -= 8 + } + } + + // Add final fragment to bit buffer. + if c > 0 { + pattern &= 1<<c - 1 + bits |= pattern << nbits + nbits += c + } + continue Run + } + + // Repeat; n too large to fit in a register. + // Since nbits <= 7, we know the first few bytes of repeated data + // are already written to memory. + off := n - nbits // n > nbits because n > maxBits and nbits <= 7 + // Leading src fragment. + src = subtractb(src, (off+7)/8) + if frag := off & 7; frag != 0 { + bits |= uintptr(*src) >> (8 - frag) << nbits + src = add1(src) + nbits += frag + c -= frag + } + // Main loop: load one byte, write another. + // The bits are rotating through the bit buffer. + for i := c / 8; i > 0; i-- { + bits |= uintptr(*src) << nbits + src = add1(src) + *dst = uint8(bits) + dst = add1(dst) + bits >>= 8 + } + // Final src fragment. + if c %= 8; c > 0 { + bits |= (uintptr(*src) & (1<<c - 1)) << nbits + nbits += c + } + } + + // Write any final bits out, using full-byte writes, even for the final byte. + totalBits := (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits + nbits += -nbits & 7 + for ; nbits > 0; nbits -= 8 { + *dst = uint8(bits) + dst = add1(dst) + bits >>= 8 + } + return totalBits +} + +// materializeGCProg allocates space for the (1-bit) pointer bitmask +// for an object of size ptrdata. Then it fills that space with the +// pointer bitmask specified by the program prog. +// The bitmask starts at s.startAddr. +// The result must be deallocated with dematerializeGCProg. +func materializeGCProg(ptrdata uintptr, prog *byte) *mspan { + // Each word of ptrdata needs one bit in the bitmap. + bitmapBytes := divRoundUp(ptrdata, 8*goarch.PtrSize) + // Compute the number of pages needed for bitmapBytes. + pages := divRoundUp(bitmapBytes, pageSize) + s := mheap_.allocManual(pages, spanAllocPtrScalarBits) + runGCProg(addb(prog, 4), (*byte)(unsafe.Pointer(s.startAddr))) + return s +} +func dematerializeGCProg(s *mspan) { + mheap_.freeManual(s, spanAllocPtrScalarBits) +} + +func dumpGCProg(p *byte) { + nptr := 0 + for { + x := *p + p = add1(p) + if x == 0 { + print("\t", nptr, " end\n") + break + } + if x&0x80 == 0 { + print("\t", nptr, " lit ", x, ":") + n := int(x+7) / 8 + for i := 0; i < n; i++ { + print(" ", hex(*p)) + p = add1(p) + } + print("\n") + nptr += int(x) + } else { + nbit := int(x &^ 0x80) + if nbit == 0 { + for nb := uint(0); ; nb += 7 { + x := *p + p = add1(p) + nbit |= int(x&0x7f) << nb + if x&0x80 == 0 { + break + } + } + } + count := 0 + for nb := uint(0); ; nb += 7 { + x := *p + p = add1(p) + count |= int(x&0x7f) << nb + if x&0x80 == 0 { + break + } + } + print("\t", nptr, " repeat ", nbit, " × ", count, "\n") + nptr += nbit * count + } + } +} + +// Testing. + +func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool { + target := (*stkframe)(ctxt) + if frame.sp <= target.sp && target.sp < frame.varp { + *target = *frame + return false + } + return true +} + +// reflect_gcbits returns the GC type info for x, for testing. +// The result is the bitmap entries (0 or 1), one entry per byte. +// +//go:linkname reflect_gcbits reflect.gcbits +func reflect_gcbits(x any) []byte { + return getgcmask(x) +} + +// Returns GC type info for the pointer stored in ep for testing. +// If ep points to the stack, only static live information will be returned +// (i.e. not for objects which are only dynamically live stack objects). +func getgcmask(ep any) (mask []byte) { + e := *efaceOf(&ep) + p := e.data + t := e._type + // data or bss + for _, datap := range activeModules() { + // data + if datap.data <= uintptr(p) && uintptr(p) < datap.edata { + bitmap := datap.gcdatamask.bytedata + n := (*ptrtype)(unsafe.Pointer(t)).elem.size + mask = make([]byte, n/goarch.PtrSize) + for i := uintptr(0); i < n; i += goarch.PtrSize { + off := (uintptr(p) + i - datap.data) / goarch.PtrSize + mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 + } + return + } + + // bss + if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { + bitmap := datap.gcbssmask.bytedata + n := (*ptrtype)(unsafe.Pointer(t)).elem.size + mask = make([]byte, n/goarch.PtrSize) + for i := uintptr(0); i < n; i += goarch.PtrSize { + off := (uintptr(p) + i - datap.bss) / goarch.PtrSize + mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 + } + return + } + } + + // heap + if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { + if s.spanclass.noscan() { + return nil + } + n := s.elemsize + hbits := heapBitsForAddr(base, n) + mask = make([]byte, n/goarch.PtrSize) + for { + var addr uintptr + if hbits, addr = hbits.next(); addr == 0 { + break + } + mask[(addr-base)/goarch.PtrSize] = 1 + } + // Callers expect this mask to end at the last pointer. + for len(mask) > 0 && mask[len(mask)-1] == 0 { + mask = mask[:len(mask)-1] + } + return + } + + // stack + if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi { + var frame stkframe + frame.sp = uintptr(p) + gentraceback(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0) + if frame.fn.valid() { + locals, _, _ := frame.getStackMap(nil, false) + if locals.n == 0 { + return + } + size := uintptr(locals.n) * goarch.PtrSize + n := (*ptrtype)(unsafe.Pointer(t)).elem.size + mask = make([]byte, n/goarch.PtrSize) + for i := uintptr(0); i < n; i += goarch.PtrSize { + off := (uintptr(p) + i - frame.varp + size) / goarch.PtrSize + mask[i/goarch.PtrSize] = locals.ptrbit(off) + } + } + return + } + + // otherwise, not something the GC knows about. + // possibly read-only data, like malloc(0). + // must not have pointers + return +} |