summaryrefslogtreecommitdiffstats
path: root/src/runtime/mgc.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/mgc.go')
-rw-r--r--src/runtime/mgc.go1801
1 files changed, 1801 insertions, 0 deletions
diff --git a/src/runtime/mgc.go b/src/runtime/mgc.go
new file mode 100644
index 0000000..1b05707
--- /dev/null
+++ b/src/runtime/mgc.go
@@ -0,0 +1,1801 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Garbage collector (GC).
+//
+// The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
+// GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
+// non-generational and non-compacting. Allocation is done using size segregated per P allocation
+// areas to minimize fragmentation while eliminating locks in the common case.
+//
+// The algorithm decomposes into several steps.
+// This is a high level description of the algorithm being used. For an overview of GC a good
+// place to start is Richard Jones' gchandbook.org.
+//
+// The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
+// Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
+// On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
+// 966-975.
+// For journal quality proofs that these steps are complete, correct, and terminate see
+// Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
+// Concurrency and Computation: Practice and Experience 15(3-5), 2003.
+//
+// 1. GC performs sweep termination.
+//
+// a. Stop the world. This causes all Ps to reach a GC safe-point.
+//
+// b. Sweep any unswept spans. There will only be unswept spans if
+// this GC cycle was forced before the expected time.
+//
+// 2. GC performs the mark phase.
+//
+// a. Prepare for the mark phase by setting gcphase to _GCmark
+// (from _GCoff), enabling the write barrier, enabling mutator
+// assists, and enqueueing root mark jobs. No objects may be
+// scanned until all Ps have enabled the write barrier, which is
+// accomplished using STW.
+//
+// b. Start the world. From this point, GC work is done by mark
+// workers started by the scheduler and by assists performed as
+// part of allocation. The write barrier shades both the
+// overwritten pointer and the new pointer value for any pointer
+// writes (see mbarrier.go for details). Newly allocated objects
+// are immediately marked black.
+//
+// c. GC performs root marking jobs. This includes scanning all
+// stacks, shading all globals, and shading any heap pointers in
+// off-heap runtime data structures. Scanning a stack stops a
+// goroutine, shades any pointers found on its stack, and then
+// resumes the goroutine.
+//
+// d. GC drains the work queue of grey objects, scanning each grey
+// object to black and shading all pointers found in the object
+// (which in turn may add those pointers to the work queue).
+//
+// e. Because GC work is spread across local caches, GC uses a
+// distributed termination algorithm to detect when there are no
+// more root marking jobs or grey objects (see gcMarkDone). At this
+// point, GC transitions to mark termination.
+//
+// 3. GC performs mark termination.
+//
+// a. Stop the world.
+//
+// b. Set gcphase to _GCmarktermination, and disable workers and
+// assists.
+//
+// c. Perform housekeeping like flushing mcaches.
+//
+// 4. GC performs the sweep phase.
+//
+// a. Prepare for the sweep phase by setting gcphase to _GCoff,
+// setting up sweep state and disabling the write barrier.
+//
+// b. Start the world. From this point on, newly allocated objects
+// are white, and allocating sweeps spans before use if necessary.
+//
+// c. GC does concurrent sweeping in the background and in response
+// to allocation. See description below.
+//
+// 5. When sufficient allocation has taken place, replay the sequence
+// starting with 1 above. See discussion of GC rate below.
+
+// Concurrent sweep.
+//
+// The sweep phase proceeds concurrently with normal program execution.
+// The heap is swept span-by-span both lazily (when a goroutine needs another span)
+// and concurrently in a background goroutine (this helps programs that are not CPU bound).
+// At the end of STW mark termination all spans are marked as "needs sweeping".
+//
+// The background sweeper goroutine simply sweeps spans one-by-one.
+//
+// To avoid requesting more OS memory while there are unswept spans, when a
+// goroutine needs another span, it first attempts to reclaim that much memory
+// by sweeping. When a goroutine needs to allocate a new small-object span, it
+// sweeps small-object spans for the same object size until it frees at least
+// one object. When a goroutine needs to allocate large-object span from heap,
+// it sweeps spans until it frees at least that many pages into heap. There is
+// one case where this may not suffice: if a goroutine sweeps and frees two
+// nonadjacent one-page spans to the heap, it will allocate a new two-page
+// span, but there can still be other one-page unswept spans which could be
+// combined into a two-page span.
+//
+// It's critical to ensure that no operations proceed on unswept spans (that would corrupt
+// mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
+// so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
+// When a goroutine explicitly frees an object or sets a finalizer, it ensures that
+// the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
+// The finalizer goroutine is kicked off only when all spans are swept.
+// When the next GC starts, it sweeps all not-yet-swept spans (if any).
+
+// GC rate.
+// Next GC is after we've allocated an extra amount of memory proportional to
+// the amount already in use. The proportion is controlled by GOGC environment variable
+// (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
+// (this mark is computed by the gcController.heapGoal method). This keeps the GC cost in
+// linear proportion to the allocation cost. Adjusting GOGC just changes the linear constant
+// (and also the amount of extra memory used).
+
+// Oblets
+//
+// In order to prevent long pauses while scanning large objects and to
+// improve parallelism, the garbage collector breaks up scan jobs for
+// objects larger than maxObletBytes into "oblets" of at most
+// maxObletBytes. When scanning encounters the beginning of a large
+// object, it scans only the first oblet and enqueues the remaining
+// oblets as new scan jobs.
+
+package runtime
+
+import (
+ "internal/cpu"
+ "runtime/internal/atomic"
+ "unsafe"
+)
+
+const (
+ _DebugGC = 0
+ _ConcurrentSweep = true
+ _FinBlockSize = 4 * 1024
+
+ // debugScanConservative enables debug logging for stack
+ // frames that are scanned conservatively.
+ debugScanConservative = false
+
+ // sweepMinHeapDistance is a lower bound on the heap distance
+ // (in bytes) reserved for concurrent sweeping between GC
+ // cycles.
+ sweepMinHeapDistance = 1024 * 1024
+)
+
+func gcinit() {
+ if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
+ throw("size of Workbuf is suboptimal")
+ }
+ // No sweep on the first cycle.
+ sweep.active.state.Store(sweepDrainedMask)
+
+ // Initialize GC pacer state.
+ // Use the environment variable GOGC for the initial gcPercent value.
+ // Use the environment variable GOMEMLIMIT for the initial memoryLimit value.
+ gcController.init(readGOGC(), readGOMEMLIMIT())
+
+ work.startSema = 1
+ work.markDoneSema = 1
+ lockInit(&work.sweepWaiters.lock, lockRankSweepWaiters)
+ lockInit(&work.assistQueue.lock, lockRankAssistQueue)
+ lockInit(&work.wbufSpans.lock, lockRankWbufSpans)
+}
+
+// gcenable is called after the bulk of the runtime initialization,
+// just before we're about to start letting user code run.
+// It kicks off the background sweeper goroutine, the background
+// scavenger goroutine, and enables GC.
+func gcenable() {
+ // Kick off sweeping and scavenging.
+ c := make(chan int, 2)
+ go bgsweep(c)
+ go bgscavenge(c)
+ <-c
+ <-c
+ memstats.enablegc = true // now that runtime is initialized, GC is okay
+}
+
+// Garbage collector phase.
+// Indicates to write barrier and synchronization task to perform.
+var gcphase uint32
+
+// The compiler knows about this variable.
+// If you change it, you must change builtin/runtime.go, too.
+// If you change the first four bytes, you must also change the write
+// barrier insertion code.
+var writeBarrier struct {
+ enabled bool // compiler emits a check of this before calling write barrier
+ pad [3]byte // compiler uses 32-bit load for "enabled" field
+ needed bool // whether we need a write barrier for current GC phase
+ cgo bool // whether we need a write barrier for a cgo check
+ alignme uint64 // guarantee alignment so that compiler can use a 32 or 64-bit load
+}
+
+// gcBlackenEnabled is 1 if mutator assists and background mark
+// workers are allowed to blacken objects. This must only be set when
+// gcphase == _GCmark.
+var gcBlackenEnabled uint32
+
+const (
+ _GCoff = iota // GC not running; sweeping in background, write barrier disabled
+ _GCmark // GC marking roots and workbufs: allocate black, write barrier ENABLED
+ _GCmarktermination // GC mark termination: allocate black, P's help GC, write barrier ENABLED
+)
+
+//go:nosplit
+func setGCPhase(x uint32) {
+ atomic.Store(&gcphase, x)
+ writeBarrier.needed = gcphase == _GCmark || gcphase == _GCmarktermination
+ writeBarrier.enabled = writeBarrier.needed || writeBarrier.cgo
+}
+
+// gcMarkWorkerMode represents the mode that a concurrent mark worker
+// should operate in.
+//
+// Concurrent marking happens through four different mechanisms. One
+// is mutator assists, which happen in response to allocations and are
+// not scheduled. The other three are variations in the per-P mark
+// workers and are distinguished by gcMarkWorkerMode.
+type gcMarkWorkerMode int
+
+const (
+ // gcMarkWorkerNotWorker indicates that the next scheduled G is not
+ // starting work and the mode should be ignored.
+ gcMarkWorkerNotWorker gcMarkWorkerMode = iota
+
+ // gcMarkWorkerDedicatedMode indicates that the P of a mark
+ // worker is dedicated to running that mark worker. The mark
+ // worker should run without preemption.
+ gcMarkWorkerDedicatedMode
+
+ // gcMarkWorkerFractionalMode indicates that a P is currently
+ // running the "fractional" mark worker. The fractional worker
+ // is necessary when GOMAXPROCS*gcBackgroundUtilization is not
+ // an integer and using only dedicated workers would result in
+ // utilization too far from the target of gcBackgroundUtilization.
+ // The fractional worker should run until it is preempted and
+ // will be scheduled to pick up the fractional part of
+ // GOMAXPROCS*gcBackgroundUtilization.
+ gcMarkWorkerFractionalMode
+
+ // gcMarkWorkerIdleMode indicates that a P is running the mark
+ // worker because it has nothing else to do. The idle worker
+ // should run until it is preempted and account its time
+ // against gcController.idleMarkTime.
+ gcMarkWorkerIdleMode
+)
+
+// gcMarkWorkerModeStrings are the strings labels of gcMarkWorkerModes
+// to use in execution traces.
+var gcMarkWorkerModeStrings = [...]string{
+ "Not worker",
+ "GC (dedicated)",
+ "GC (fractional)",
+ "GC (idle)",
+}
+
+// pollFractionalWorkerExit reports whether a fractional mark worker
+// should self-preempt. It assumes it is called from the fractional
+// worker.
+func pollFractionalWorkerExit() bool {
+ // This should be kept in sync with the fractional worker
+ // scheduler logic in findRunnableGCWorker.
+ now := nanotime()
+ delta := now - gcController.markStartTime
+ if delta <= 0 {
+ return true
+ }
+ p := getg().m.p.ptr()
+ selfTime := p.gcFractionalMarkTime + (now - p.gcMarkWorkerStartTime)
+ // Add some slack to the utilization goal so that the
+ // fractional worker isn't behind again the instant it exits.
+ return float64(selfTime)/float64(delta) > 1.2*gcController.fractionalUtilizationGoal
+}
+
+var work workType
+
+type workType struct {
+ full lfstack // lock-free list of full blocks workbuf
+ empty lfstack // lock-free list of empty blocks workbuf
+ pad0 cpu.CacheLinePad // prevents false-sharing between full/empty and nproc/nwait
+
+ wbufSpans struct {
+ lock mutex
+ // free is a list of spans dedicated to workbufs, but
+ // that don't currently contain any workbufs.
+ free mSpanList
+ // busy is a list of all spans containing workbufs on
+ // one of the workbuf lists.
+ busy mSpanList
+ }
+
+ // Restore 64-bit alignment on 32-bit.
+ _ uint32
+
+ // bytesMarked is the number of bytes marked this cycle. This
+ // includes bytes blackened in scanned objects, noscan objects
+ // that go straight to black, and permagrey objects scanned by
+ // markroot during the concurrent scan phase. This is updated
+ // atomically during the cycle. Updates may be batched
+ // arbitrarily, since the value is only read at the end of the
+ // cycle.
+ //
+ // Because of benign races during marking, this number may not
+ // be the exact number of marked bytes, but it should be very
+ // close.
+ //
+ // Put this field here because it needs 64-bit atomic access
+ // (and thus 8-byte alignment even on 32-bit architectures).
+ bytesMarked uint64
+
+ markrootNext uint32 // next markroot job
+ markrootJobs uint32 // number of markroot jobs
+
+ nproc uint32
+ tstart int64
+ nwait uint32
+
+ // Number of roots of various root types. Set by gcMarkRootPrepare.
+ //
+ // nStackRoots == len(stackRoots), but we have nStackRoots for
+ // consistency.
+ nDataRoots, nBSSRoots, nSpanRoots, nStackRoots int
+
+ // Base indexes of each root type. Set by gcMarkRootPrepare.
+ baseData, baseBSS, baseSpans, baseStacks, baseEnd uint32
+
+ // stackRoots is a snapshot of all of the Gs that existed
+ // before the beginning of concurrent marking. The backing
+ // store of this must not be modified because it might be
+ // shared with allgs.
+ stackRoots []*g
+
+ // Each type of GC state transition is protected by a lock.
+ // Since multiple threads can simultaneously detect the state
+ // transition condition, any thread that detects a transition
+ // condition must acquire the appropriate transition lock,
+ // re-check the transition condition and return if it no
+ // longer holds or perform the transition if it does.
+ // Likewise, any transition must invalidate the transition
+ // condition before releasing the lock. This ensures that each
+ // transition is performed by exactly one thread and threads
+ // that need the transition to happen block until it has
+ // happened.
+ //
+ // startSema protects the transition from "off" to mark or
+ // mark termination.
+ startSema uint32
+ // markDoneSema protects transitions from mark to mark termination.
+ markDoneSema uint32
+
+ bgMarkReady note // signal background mark worker has started
+ bgMarkDone uint32 // cas to 1 when at a background mark completion point
+ // Background mark completion signaling
+
+ // mode is the concurrency mode of the current GC cycle.
+ mode gcMode
+
+ // userForced indicates the current GC cycle was forced by an
+ // explicit user call.
+ userForced bool
+
+ // initialHeapLive is the value of gcController.heapLive at the
+ // beginning of this GC cycle.
+ initialHeapLive uint64
+
+ // assistQueue is a queue of assists that are blocked because
+ // there was neither enough credit to steal or enough work to
+ // do.
+ assistQueue struct {
+ lock mutex
+ q gQueue
+ }
+
+ // sweepWaiters is a list of blocked goroutines to wake when
+ // we transition from mark termination to sweep.
+ sweepWaiters struct {
+ lock mutex
+ list gList
+ }
+
+ // cycles is the number of completed GC cycles, where a GC
+ // cycle is sweep termination, mark, mark termination, and
+ // sweep. This differs from memstats.numgc, which is
+ // incremented at mark termination.
+ cycles atomic.Uint32
+
+ // Timing/utilization stats for this cycle.
+ stwprocs, maxprocs int32
+ tSweepTerm, tMark, tMarkTerm, tEnd int64 // nanotime() of phase start
+
+ pauseNS int64 // total STW time this cycle
+ pauseStart int64 // nanotime() of last STW
+
+ // debug.gctrace heap sizes for this cycle.
+ heap0, heap1, heap2 uint64
+
+ // Cumulative estimated CPU usage.
+ cpuStats
+}
+
+// GC runs a garbage collection and blocks the caller until the
+// garbage collection is complete. It may also block the entire
+// program.
+func GC() {
+ // We consider a cycle to be: sweep termination, mark, mark
+ // termination, and sweep. This function shouldn't return
+ // until a full cycle has been completed, from beginning to
+ // end. Hence, we always want to finish up the current cycle
+ // and start a new one. That means:
+ //
+ // 1. In sweep termination, mark, or mark termination of cycle
+ // N, wait until mark termination N completes and transitions
+ // to sweep N.
+ //
+ // 2. In sweep N, help with sweep N.
+ //
+ // At this point we can begin a full cycle N+1.
+ //
+ // 3. Trigger cycle N+1 by starting sweep termination N+1.
+ //
+ // 4. Wait for mark termination N+1 to complete.
+ //
+ // 5. Help with sweep N+1 until it's done.
+ //
+ // This all has to be written to deal with the fact that the
+ // GC may move ahead on its own. For example, when we block
+ // until mark termination N, we may wake up in cycle N+2.
+
+ // Wait until the current sweep termination, mark, and mark
+ // termination complete.
+ n := work.cycles.Load()
+ gcWaitOnMark(n)
+
+ // We're now in sweep N or later. Trigger GC cycle N+1, which
+ // will first finish sweep N if necessary and then enter sweep
+ // termination N+1.
+ gcStart(gcTrigger{kind: gcTriggerCycle, n: n + 1})
+
+ // Wait for mark termination N+1 to complete.
+ gcWaitOnMark(n + 1)
+
+ // Finish sweep N+1 before returning. We do this both to
+ // complete the cycle and because runtime.GC() is often used
+ // as part of tests and benchmarks to get the system into a
+ // relatively stable and isolated state.
+ for work.cycles.Load() == n+1 && sweepone() != ^uintptr(0) {
+ sweep.nbgsweep++
+ Gosched()
+ }
+
+ // Callers may assume that the heap profile reflects the
+ // just-completed cycle when this returns (historically this
+ // happened because this was a STW GC), but right now the
+ // profile still reflects mark termination N, not N+1.
+ //
+ // As soon as all of the sweep frees from cycle N+1 are done,
+ // we can go ahead and publish the heap profile.
+ //
+ // First, wait for sweeping to finish. (We know there are no
+ // more spans on the sweep queue, but we may be concurrently
+ // sweeping spans, so we have to wait.)
+ for work.cycles.Load() == n+1 && !isSweepDone() {
+ Gosched()
+ }
+
+ // Now we're really done with sweeping, so we can publish the
+ // stable heap profile. Only do this if we haven't already hit
+ // another mark termination.
+ mp := acquirem()
+ cycle := work.cycles.Load()
+ if cycle == n+1 || (gcphase == _GCmark && cycle == n+2) {
+ mProf_PostSweep()
+ }
+ releasem(mp)
+}
+
+// gcWaitOnMark blocks until GC finishes the Nth mark phase. If GC has
+// already completed this mark phase, it returns immediately.
+func gcWaitOnMark(n uint32) {
+ for {
+ // Disable phase transitions.
+ lock(&work.sweepWaiters.lock)
+ nMarks := work.cycles.Load()
+ if gcphase != _GCmark {
+ // We've already completed this cycle's mark.
+ nMarks++
+ }
+ if nMarks > n {
+ // We're done.
+ unlock(&work.sweepWaiters.lock)
+ return
+ }
+
+ // Wait until sweep termination, mark, and mark
+ // termination of cycle N complete.
+ work.sweepWaiters.list.push(getg())
+ goparkunlock(&work.sweepWaiters.lock, waitReasonWaitForGCCycle, traceEvGoBlock, 1)
+ }
+}
+
+// gcMode indicates how concurrent a GC cycle should be.
+type gcMode int
+
+const (
+ gcBackgroundMode gcMode = iota // concurrent GC and sweep
+ gcForceMode // stop-the-world GC now, concurrent sweep
+ gcForceBlockMode // stop-the-world GC now and STW sweep (forced by user)
+)
+
+// A gcTrigger is a predicate for starting a GC cycle. Specifically,
+// it is an exit condition for the _GCoff phase.
+type gcTrigger struct {
+ kind gcTriggerKind
+ now int64 // gcTriggerTime: current time
+ n uint32 // gcTriggerCycle: cycle number to start
+}
+
+type gcTriggerKind int
+
+const (
+ // gcTriggerHeap indicates that a cycle should be started when
+ // the heap size reaches the trigger heap size computed by the
+ // controller.
+ gcTriggerHeap gcTriggerKind = iota
+
+ // gcTriggerTime indicates that a cycle should be started when
+ // it's been more than forcegcperiod nanoseconds since the
+ // previous GC cycle.
+ gcTriggerTime
+
+ // gcTriggerCycle indicates that a cycle should be started if
+ // we have not yet started cycle number gcTrigger.n (relative
+ // to work.cycles).
+ gcTriggerCycle
+)
+
+// test reports whether the trigger condition is satisfied, meaning
+// that the exit condition for the _GCoff phase has been met. The exit
+// condition should be tested when allocating.
+func (t gcTrigger) test() bool {
+ if !memstats.enablegc || panicking.Load() != 0 || gcphase != _GCoff {
+ return false
+ }
+ switch t.kind {
+ case gcTriggerHeap:
+ // Non-atomic access to gcController.heapLive for performance. If
+ // we are going to trigger on this, this thread just
+ // atomically wrote gcController.heapLive anyway and we'll see our
+ // own write.
+ trigger, _ := gcController.trigger()
+ return gcController.heapLive.Load() >= trigger
+ case gcTriggerTime:
+ if gcController.gcPercent.Load() < 0 {
+ return false
+ }
+ lastgc := int64(atomic.Load64(&memstats.last_gc_nanotime))
+ return lastgc != 0 && t.now-lastgc > forcegcperiod
+ case gcTriggerCycle:
+ // t.n > work.cycles, but accounting for wraparound.
+ return int32(t.n-work.cycles.Load()) > 0
+ }
+ return true
+}
+
+// gcStart starts the GC. It transitions from _GCoff to _GCmark (if
+// debug.gcstoptheworld == 0) or performs all of GC (if
+// debug.gcstoptheworld != 0).
+//
+// This may return without performing this transition in some cases,
+// such as when called on a system stack or with locks held.
+func gcStart(trigger gcTrigger) {
+ // Since this is called from malloc and malloc is called in
+ // the guts of a number of libraries that might be holding
+ // locks, don't attempt to start GC in non-preemptible or
+ // potentially unstable situations.
+ mp := acquirem()
+ if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" {
+ releasem(mp)
+ return
+ }
+ releasem(mp)
+ mp = nil
+
+ // Pick up the remaining unswept/not being swept spans concurrently
+ //
+ // This shouldn't happen if we're being invoked in background
+ // mode since proportional sweep should have just finished
+ // sweeping everything, but rounding errors, etc, may leave a
+ // few spans unswept. In forced mode, this is necessary since
+ // GC can be forced at any point in the sweeping cycle.
+ //
+ // We check the transition condition continuously here in case
+ // this G gets delayed in to the next GC cycle.
+ for trigger.test() && sweepone() != ^uintptr(0) {
+ sweep.nbgsweep++
+ }
+
+ // Perform GC initialization and the sweep termination
+ // transition.
+ semacquire(&work.startSema)
+ // Re-check transition condition under transition lock.
+ if !trigger.test() {
+ semrelease(&work.startSema)
+ return
+ }
+
+ // In gcstoptheworld debug mode, upgrade the mode accordingly.
+ // We do this after re-checking the transition condition so
+ // that multiple goroutines that detect the heap trigger don't
+ // start multiple STW GCs.
+ mode := gcBackgroundMode
+ if debug.gcstoptheworld == 1 {
+ mode = gcForceMode
+ } else if debug.gcstoptheworld == 2 {
+ mode = gcForceBlockMode
+ }
+
+ // Ok, we're doing it! Stop everybody else
+ semacquire(&gcsema)
+ semacquire(&worldsema)
+
+ // For stats, check if this GC was forced by the user.
+ // Update it under gcsema to avoid gctrace getting wrong values.
+ work.userForced = trigger.kind == gcTriggerCycle
+
+ if trace.enabled {
+ traceGCStart()
+ }
+
+ // Check that all Ps have finished deferred mcache flushes.
+ for _, p := range allp {
+ if fg := p.mcache.flushGen.Load(); fg != mheap_.sweepgen {
+ println("runtime: p", p.id, "flushGen", fg, "!= sweepgen", mheap_.sweepgen)
+ throw("p mcache not flushed")
+ }
+ }
+
+ gcBgMarkStartWorkers()
+
+ systemstack(gcResetMarkState)
+
+ work.stwprocs, work.maxprocs = gomaxprocs, gomaxprocs
+ if work.stwprocs > ncpu {
+ // This is used to compute CPU time of the STW phases,
+ // so it can't be more than ncpu, even if GOMAXPROCS is.
+ work.stwprocs = ncpu
+ }
+ work.heap0 = gcController.heapLive.Load()
+ work.pauseNS = 0
+ work.mode = mode
+
+ now := nanotime()
+ work.tSweepTerm = now
+ work.pauseStart = now
+ if trace.enabled {
+ traceGCSTWStart(1)
+ }
+ systemstack(stopTheWorldWithSema)
+ // Finish sweep before we start concurrent scan.
+ systemstack(func() {
+ finishsweep_m()
+ })
+
+ // clearpools before we start the GC. If we wait they memory will not be
+ // reclaimed until the next GC cycle.
+ clearpools()
+
+ work.cycles.Add(1)
+
+ // Assists and workers can start the moment we start
+ // the world.
+ gcController.startCycle(now, int(gomaxprocs), trigger)
+
+ // Notify the CPU limiter that assists may begin.
+ gcCPULimiter.startGCTransition(true, now)
+
+ // In STW mode, disable scheduling of user Gs. This may also
+ // disable scheduling of this goroutine, so it may block as
+ // soon as we start the world again.
+ if mode != gcBackgroundMode {
+ schedEnableUser(false)
+ }
+
+ // Enter concurrent mark phase and enable
+ // write barriers.
+ //
+ // Because the world is stopped, all Ps will
+ // observe that write barriers are enabled by
+ // the time we start the world and begin
+ // scanning.
+ //
+ // Write barriers must be enabled before assists are
+ // enabled because they must be enabled before
+ // any non-leaf heap objects are marked. Since
+ // allocations are blocked until assists can
+ // happen, we want enable assists as early as
+ // possible.
+ setGCPhase(_GCmark)
+
+ gcBgMarkPrepare() // Must happen before assist enable.
+ gcMarkRootPrepare()
+
+ // Mark all active tinyalloc blocks. Since we're
+ // allocating from these, they need to be black like
+ // other allocations. The alternative is to blacken
+ // the tiny block on every allocation from it, which
+ // would slow down the tiny allocator.
+ gcMarkTinyAllocs()
+
+ // At this point all Ps have enabled the write
+ // barrier, thus maintaining the no white to
+ // black invariant. Enable mutator assists to
+ // put back-pressure on fast allocating
+ // mutators.
+ atomic.Store(&gcBlackenEnabled, 1)
+
+ // In STW mode, we could block the instant systemstack
+ // returns, so make sure we're not preemptible.
+ mp = acquirem()
+
+ // Concurrent mark.
+ systemstack(func() {
+ now = startTheWorldWithSema(trace.enabled)
+ work.pauseNS += now - work.pauseStart
+ work.tMark = now
+ memstats.gcPauseDist.record(now - work.pauseStart)
+
+ // Release the CPU limiter.
+ gcCPULimiter.finishGCTransition(now)
+ })
+
+ // Release the world sema before Gosched() in STW mode
+ // because we will need to reacquire it later but before
+ // this goroutine becomes runnable again, and we could
+ // self-deadlock otherwise.
+ semrelease(&worldsema)
+ releasem(mp)
+
+ // Make sure we block instead of returning to user code
+ // in STW mode.
+ if mode != gcBackgroundMode {
+ Gosched()
+ }
+
+ semrelease(&work.startSema)
+}
+
+// gcMarkDoneFlushed counts the number of P's with flushed work.
+//
+// Ideally this would be a captured local in gcMarkDone, but forEachP
+// escapes its callback closure, so it can't capture anything.
+//
+// This is protected by markDoneSema.
+var gcMarkDoneFlushed uint32
+
+// gcMarkDone transitions the GC from mark to mark termination if all
+// reachable objects have been marked (that is, there are no grey
+// objects and can be no more in the future). Otherwise, it flushes
+// all local work to the global queues where it can be discovered by
+// other workers.
+//
+// This should be called when all local mark work has been drained and
+// there are no remaining workers. Specifically, when
+//
+// work.nwait == work.nproc && !gcMarkWorkAvailable(p)
+//
+// The calling context must be preemptible.
+//
+// Flushing local work is important because idle Ps may have local
+// work queued. This is the only way to make that work visible and
+// drive GC to completion.
+//
+// It is explicitly okay to have write barriers in this function. If
+// it does transition to mark termination, then all reachable objects
+// have been marked, so the write barrier cannot shade any more
+// objects.
+func gcMarkDone() {
+ // Ensure only one thread is running the ragged barrier at a
+ // time.
+ semacquire(&work.markDoneSema)
+
+top:
+ // Re-check transition condition under transition lock.
+ //
+ // It's critical that this checks the global work queues are
+ // empty before performing the ragged barrier. Otherwise,
+ // there could be global work that a P could take after the P
+ // has passed the ragged barrier.
+ if !(gcphase == _GCmark && work.nwait == work.nproc && !gcMarkWorkAvailable(nil)) {
+ semrelease(&work.markDoneSema)
+ return
+ }
+
+ // forEachP needs worldsema to execute, and we'll need it to
+ // stop the world later, so acquire worldsema now.
+ semacquire(&worldsema)
+
+ // Flush all local buffers and collect flushedWork flags.
+ gcMarkDoneFlushed = 0
+ systemstack(func() {
+ gp := getg().m.curg
+ // Mark the user stack as preemptible so that it may be scanned.
+ // Otherwise, our attempt to force all P's to a safepoint could
+ // result in a deadlock as we attempt to preempt a worker that's
+ // trying to preempt us (e.g. for a stack scan).
+ casGToWaiting(gp, _Grunning, waitReasonGCMarkTermination)
+ forEachP(func(pp *p) {
+ // Flush the write barrier buffer, since this may add
+ // work to the gcWork.
+ wbBufFlush1(pp)
+
+ // Flush the gcWork, since this may create global work
+ // and set the flushedWork flag.
+ //
+ // TODO(austin): Break up these workbufs to
+ // better distribute work.
+ pp.gcw.dispose()
+ // Collect the flushedWork flag.
+ if pp.gcw.flushedWork {
+ atomic.Xadd(&gcMarkDoneFlushed, 1)
+ pp.gcw.flushedWork = false
+ }
+ })
+ casgstatus(gp, _Gwaiting, _Grunning)
+ })
+
+ if gcMarkDoneFlushed != 0 {
+ // More grey objects were discovered since the
+ // previous termination check, so there may be more
+ // work to do. Keep going. It's possible the
+ // transition condition became true again during the
+ // ragged barrier, so re-check it.
+ semrelease(&worldsema)
+ goto top
+ }
+
+ // There was no global work, no local work, and no Ps
+ // communicated work since we took markDoneSema. Therefore
+ // there are no grey objects and no more objects can be
+ // shaded. Transition to mark termination.
+ now := nanotime()
+ work.tMarkTerm = now
+ work.pauseStart = now
+ getg().m.preemptoff = "gcing"
+ if trace.enabled {
+ traceGCSTWStart(0)
+ }
+ systemstack(stopTheWorldWithSema)
+ // The gcphase is _GCmark, it will transition to _GCmarktermination
+ // below. The important thing is that the wb remains active until
+ // all marking is complete. This includes writes made by the GC.
+
+ // There is sometimes work left over when we enter mark termination due
+ // to write barriers performed after the completion barrier above.
+ // Detect this and resume concurrent mark. This is obviously
+ // unfortunate.
+ //
+ // See issue #27993 for details.
+ //
+ // Switch to the system stack to call wbBufFlush1, though in this case
+ // it doesn't matter because we're non-preemptible anyway.
+ restart := false
+ systemstack(func() {
+ for _, p := range allp {
+ wbBufFlush1(p)
+ if !p.gcw.empty() {
+ restart = true
+ break
+ }
+ }
+ })
+ if restart {
+ getg().m.preemptoff = ""
+ systemstack(func() {
+ now := startTheWorldWithSema(trace.enabled)
+ work.pauseNS += now - work.pauseStart
+ memstats.gcPauseDist.record(now - work.pauseStart)
+ })
+ semrelease(&worldsema)
+ goto top
+ }
+
+ gcComputeStartingStackSize()
+
+ // Disable assists and background workers. We must do
+ // this before waking blocked assists.
+ atomic.Store(&gcBlackenEnabled, 0)
+
+ // Notify the CPU limiter that GC assists will now cease.
+ gcCPULimiter.startGCTransition(false, now)
+
+ // Wake all blocked assists. These will run when we
+ // start the world again.
+ gcWakeAllAssists()
+
+ // Likewise, release the transition lock. Blocked
+ // workers and assists will run when we start the
+ // world again.
+ semrelease(&work.markDoneSema)
+
+ // In STW mode, re-enable user goroutines. These will be
+ // queued to run after we start the world.
+ schedEnableUser(true)
+
+ // endCycle depends on all gcWork cache stats being flushed.
+ // The termination algorithm above ensured that up to
+ // allocations since the ragged barrier.
+ gcController.endCycle(now, int(gomaxprocs), work.userForced)
+
+ // Perform mark termination. This will restart the world.
+ gcMarkTermination()
+}
+
+// World must be stopped and mark assists and background workers must be
+// disabled.
+func gcMarkTermination() {
+ // Start marktermination (write barrier remains enabled for now).
+ setGCPhase(_GCmarktermination)
+
+ work.heap1 = gcController.heapLive.Load()
+ startTime := nanotime()
+
+ mp := acquirem()
+ mp.preemptoff = "gcing"
+ mp.traceback = 2
+ curgp := mp.curg
+ casGToWaiting(curgp, _Grunning, waitReasonGarbageCollection)
+
+ // Run gc on the g0 stack. We do this so that the g stack
+ // we're currently running on will no longer change. Cuts
+ // the root set down a bit (g0 stacks are not scanned, and
+ // we don't need to scan gc's internal state). We also
+ // need to switch to g0 so we can shrink the stack.
+ systemstack(func() {
+ gcMark(startTime)
+ // Must return immediately.
+ // The outer function's stack may have moved
+ // during gcMark (it shrinks stacks, including the
+ // outer function's stack), so we must not refer
+ // to any of its variables. Return back to the
+ // non-system stack to pick up the new addresses
+ // before continuing.
+ })
+
+ systemstack(func() {
+ work.heap2 = work.bytesMarked
+ if debug.gccheckmark > 0 {
+ // Run a full non-parallel, stop-the-world
+ // mark using checkmark bits, to check that we
+ // didn't forget to mark anything during the
+ // concurrent mark process.
+ startCheckmarks()
+ gcResetMarkState()
+ gcw := &getg().m.p.ptr().gcw
+ gcDrain(gcw, 0)
+ wbBufFlush1(getg().m.p.ptr())
+ gcw.dispose()
+ endCheckmarks()
+ }
+
+ // marking is complete so we can turn the write barrier off
+ setGCPhase(_GCoff)
+ gcSweep(work.mode)
+ })
+
+ mp.traceback = 0
+ casgstatus(curgp, _Gwaiting, _Grunning)
+
+ if trace.enabled {
+ traceGCDone()
+ }
+
+ // all done
+ mp.preemptoff = ""
+
+ if gcphase != _GCoff {
+ throw("gc done but gcphase != _GCoff")
+ }
+
+ // Record heapInUse for scavenger.
+ memstats.lastHeapInUse = gcController.heapInUse.load()
+
+ // Update GC trigger and pacing, as well as downstream consumers
+ // of this pacing information, for the next cycle.
+ systemstack(gcControllerCommit)
+
+ // Update timing memstats
+ now := nanotime()
+ sec, nsec, _ := time_now()
+ unixNow := sec*1e9 + int64(nsec)
+ work.pauseNS += now - work.pauseStart
+ work.tEnd = now
+ memstats.gcPauseDist.record(now - work.pauseStart)
+ atomic.Store64(&memstats.last_gc_unix, uint64(unixNow)) // must be Unix time to make sense to user
+ atomic.Store64(&memstats.last_gc_nanotime, uint64(now)) // monotonic time for us
+ memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(work.pauseNS)
+ memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow)
+ memstats.pause_total_ns += uint64(work.pauseNS)
+
+ sweepTermCpu := int64(work.stwprocs) * (work.tMark - work.tSweepTerm)
+ // We report idle marking time below, but omit it from the
+ // overall utilization here since it's "free".
+ markAssistCpu := gcController.assistTime.Load()
+ markDedicatedCpu := gcController.dedicatedMarkTime.Load()
+ markFractionalCpu := gcController.fractionalMarkTime.Load()
+ markIdleCpu := gcController.idleMarkTime.Load()
+ markTermCpu := int64(work.stwprocs) * (work.tEnd - work.tMarkTerm)
+ scavAssistCpu := scavenge.assistTime.Load()
+ scavBgCpu := scavenge.backgroundTime.Load()
+
+ // Update cumulative GC CPU stats.
+ work.cpuStats.gcAssistTime += markAssistCpu
+ work.cpuStats.gcDedicatedTime += markDedicatedCpu + markFractionalCpu
+ work.cpuStats.gcIdleTime += markIdleCpu
+ work.cpuStats.gcPauseTime += sweepTermCpu + markTermCpu
+ work.cpuStats.gcTotalTime += sweepTermCpu + markAssistCpu + markDedicatedCpu + markFractionalCpu + markIdleCpu + markTermCpu
+
+ // Update cumulative scavenge CPU stats.
+ work.cpuStats.scavengeAssistTime += scavAssistCpu
+ work.cpuStats.scavengeBgTime += scavBgCpu
+ work.cpuStats.scavengeTotalTime += scavAssistCpu + scavBgCpu
+
+ // Update total CPU.
+ work.cpuStats.totalTime = sched.totaltime + (now-sched.procresizetime)*int64(gomaxprocs)
+ work.cpuStats.idleTime += sched.idleTime.Load()
+
+ // Compute userTime. We compute this indirectly as everything that's not the above.
+ //
+ // Since time spent in _Pgcstop is covered by gcPauseTime, and time spent in _Pidle
+ // is covered by idleTime, what we're left with is time spent in _Prunning and _Psyscall,
+ // the latter of which is fine because the P will either go idle or get used for something
+ // else via sysmon. Meanwhile if we subtract GC time from whatever's left, we get non-GC
+ // _Prunning time. Note that this still leaves time spent in sweeping and in the scheduler,
+ // but that's fine. The overwhelming majority of this time will be actual user time.
+ work.cpuStats.userTime = work.cpuStats.totalTime - (work.cpuStats.gcTotalTime +
+ work.cpuStats.scavengeTotalTime + work.cpuStats.idleTime)
+
+ // Compute overall GC CPU utilization.
+ // Omit idle marking time from the overall utilization here since it's "free".
+ memstats.gc_cpu_fraction = float64(work.cpuStats.gcTotalTime-work.cpuStats.gcIdleTime) / float64(work.cpuStats.totalTime)
+
+ // Reset assist time and background time stats.
+ //
+ // Do this now, instead of at the start of the next GC cycle, because
+ // these two may keep accumulating even if the GC is not active.
+ scavenge.assistTime.Store(0)
+ scavenge.backgroundTime.Store(0)
+
+ // Reset idle time stat.
+ sched.idleTime.Store(0)
+
+ // Reset sweep state.
+ sweep.nbgsweep = 0
+ sweep.npausesweep = 0
+
+ if work.userForced {
+ memstats.numforcedgc++
+ }
+
+ // Bump GC cycle count and wake goroutines waiting on sweep.
+ lock(&work.sweepWaiters.lock)
+ memstats.numgc++
+ injectglist(&work.sweepWaiters.list)
+ unlock(&work.sweepWaiters.lock)
+
+ // Release the CPU limiter.
+ gcCPULimiter.finishGCTransition(now)
+
+ // Finish the current heap profiling cycle and start a new
+ // heap profiling cycle. We do this before starting the world
+ // so events don't leak into the wrong cycle.
+ mProf_NextCycle()
+
+ // There may be stale spans in mcaches that need to be swept.
+ // Those aren't tracked in any sweep lists, so we need to
+ // count them against sweep completion until we ensure all
+ // those spans have been forced out.
+ sl := sweep.active.begin()
+ if !sl.valid {
+ throw("failed to set sweep barrier")
+ }
+
+ systemstack(func() { startTheWorldWithSema(trace.enabled) })
+
+ // Flush the heap profile so we can start a new cycle next GC.
+ // This is relatively expensive, so we don't do it with the
+ // world stopped.
+ mProf_Flush()
+
+ // Prepare workbufs for freeing by the sweeper. We do this
+ // asynchronously because it can take non-trivial time.
+ prepareFreeWorkbufs()
+
+ // Free stack spans. This must be done between GC cycles.
+ systemstack(freeStackSpans)
+
+ // Ensure all mcaches are flushed. Each P will flush its own
+ // mcache before allocating, but idle Ps may not. Since this
+ // is necessary to sweep all spans, we need to ensure all
+ // mcaches are flushed before we start the next GC cycle.
+ systemstack(func() {
+ forEachP(func(pp *p) {
+ pp.mcache.prepareForSweep()
+ })
+ })
+ // Now that we've swept stale spans in mcaches, they don't
+ // count against unswept spans.
+ sweep.active.end(sl)
+
+ // Print gctrace before dropping worldsema. As soon as we drop
+ // worldsema another cycle could start and smash the stats
+ // we're trying to print.
+ if debug.gctrace > 0 {
+ util := int(memstats.gc_cpu_fraction * 100)
+
+ var sbuf [24]byte
+ printlock()
+ print("gc ", memstats.numgc,
+ " @", string(itoaDiv(sbuf[:], uint64(work.tSweepTerm-runtimeInitTime)/1e6, 3)), "s ",
+ util, "%: ")
+ prev := work.tSweepTerm
+ for i, ns := range []int64{work.tMark, work.tMarkTerm, work.tEnd} {
+ if i != 0 {
+ print("+")
+ }
+ print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev))))
+ prev = ns
+ }
+ print(" ms clock, ")
+ for i, ns := range []int64{
+ sweepTermCpu,
+ gcController.assistTime.Load(),
+ gcController.dedicatedMarkTime.Load() + gcController.fractionalMarkTime.Load(),
+ gcController.idleMarkTime.Load(),
+ markTermCpu,
+ } {
+ if i == 2 || i == 3 {
+ // Separate mark time components with /.
+ print("/")
+ } else if i != 0 {
+ print("+")
+ }
+ print(string(fmtNSAsMS(sbuf[:], uint64(ns))))
+ }
+ print(" ms cpu, ",
+ work.heap0>>20, "->", work.heap1>>20, "->", work.heap2>>20, " MB, ",
+ gcController.lastHeapGoal>>20, " MB goal, ",
+ gcController.lastStackScan.Load()>>20, " MB stacks, ",
+ gcController.globalsScan.Load()>>20, " MB globals, ",
+ work.maxprocs, " P")
+ if work.userForced {
+ print(" (forced)")
+ }
+ print("\n")
+ printunlock()
+ }
+
+ // Set any arena chunks that were deferred to fault.
+ lock(&userArenaState.lock)
+ faultList := userArenaState.fault
+ userArenaState.fault = nil
+ unlock(&userArenaState.lock)
+ for _, lc := range faultList {
+ lc.mspan.setUserArenaChunkToFault()
+ }
+
+ semrelease(&worldsema)
+ semrelease(&gcsema)
+ // Careful: another GC cycle may start now.
+
+ releasem(mp)
+ mp = nil
+
+ // now that gc is done, kick off finalizer thread if needed
+ if !concurrentSweep {
+ // give the queued finalizers, if any, a chance to run
+ Gosched()
+ }
+}
+
+// gcBgMarkStartWorkers prepares background mark worker goroutines. These
+// goroutines will not run until the mark phase, but they must be started while
+// the work is not stopped and from a regular G stack. The caller must hold
+// worldsema.
+func gcBgMarkStartWorkers() {
+ // Background marking is performed by per-P G's. Ensure that each P has
+ // a background GC G.
+ //
+ // Worker Gs don't exit if gomaxprocs is reduced. If it is raised
+ // again, we can reuse the old workers; no need to create new workers.
+ for gcBgMarkWorkerCount < gomaxprocs {
+ go gcBgMarkWorker()
+
+ notetsleepg(&work.bgMarkReady, -1)
+ noteclear(&work.bgMarkReady)
+ // The worker is now guaranteed to be added to the pool before
+ // its P's next findRunnableGCWorker.
+
+ gcBgMarkWorkerCount++
+ }
+}
+
+// gcBgMarkPrepare sets up state for background marking.
+// Mutator assists must not yet be enabled.
+func gcBgMarkPrepare() {
+ // Background marking will stop when the work queues are empty
+ // and there are no more workers (note that, since this is
+ // concurrent, this may be a transient state, but mark
+ // termination will clean it up). Between background workers
+ // and assists, we don't really know how many workers there
+ // will be, so we pretend to have an arbitrarily large number
+ // of workers, almost all of which are "waiting". While a
+ // worker is working it decrements nwait. If nproc == nwait,
+ // there are no workers.
+ work.nproc = ^uint32(0)
+ work.nwait = ^uint32(0)
+}
+
+// gcBgMarkWorkerNode is an entry in the gcBgMarkWorkerPool. It points to a single
+// gcBgMarkWorker goroutine.
+type gcBgMarkWorkerNode struct {
+ // Unused workers are managed in a lock-free stack. This field must be first.
+ node lfnode
+
+ // The g of this worker.
+ gp guintptr
+
+ // Release this m on park. This is used to communicate with the unlock
+ // function, which cannot access the G's stack. It is unused outside of
+ // gcBgMarkWorker().
+ m muintptr
+}
+
+func gcBgMarkWorker() {
+ gp := getg()
+
+ // We pass node to a gopark unlock function, so it can't be on
+ // the stack (see gopark). Prevent deadlock from recursively
+ // starting GC by disabling preemption.
+ gp.m.preemptoff = "GC worker init"
+ node := new(gcBgMarkWorkerNode)
+ gp.m.preemptoff = ""
+
+ node.gp.set(gp)
+
+ node.m.set(acquirem())
+ notewakeup(&work.bgMarkReady)
+ // After this point, the background mark worker is generally scheduled
+ // cooperatively by gcController.findRunnableGCWorker. While performing
+ // work on the P, preemption is disabled because we are working on
+ // P-local work buffers. When the preempt flag is set, this puts itself
+ // into _Gwaiting to be woken up by gcController.findRunnableGCWorker
+ // at the appropriate time.
+ //
+ // When preemption is enabled (e.g., while in gcMarkDone), this worker
+ // may be preempted and schedule as a _Grunnable G from a runq. That is
+ // fine; it will eventually gopark again for further scheduling via
+ // findRunnableGCWorker.
+ //
+ // Since we disable preemption before notifying bgMarkReady, we
+ // guarantee that this G will be in the worker pool for the next
+ // findRunnableGCWorker. This isn't strictly necessary, but it reduces
+ // latency between _GCmark starting and the workers starting.
+
+ for {
+ // Go to sleep until woken by
+ // gcController.findRunnableGCWorker.
+ gopark(func(g *g, nodep unsafe.Pointer) bool {
+ node := (*gcBgMarkWorkerNode)(nodep)
+
+ if mp := node.m.ptr(); mp != nil {
+ // The worker G is no longer running; release
+ // the M.
+ //
+ // N.B. it is _safe_ to release the M as soon
+ // as we are no longer performing P-local mark
+ // work.
+ //
+ // However, since we cooperatively stop work
+ // when gp.preempt is set, if we releasem in
+ // the loop then the following call to gopark
+ // would immediately preempt the G. This is
+ // also safe, but inefficient: the G must
+ // schedule again only to enter gopark and park
+ // again. Thus, we defer the release until
+ // after parking the G.
+ releasem(mp)
+ }
+
+ // Release this G to the pool.
+ gcBgMarkWorkerPool.push(&node.node)
+ // Note that at this point, the G may immediately be
+ // rescheduled and may be running.
+ return true
+ }, unsafe.Pointer(node), waitReasonGCWorkerIdle, traceEvGoBlock, 0)
+
+ // Preemption must not occur here, or another G might see
+ // p.gcMarkWorkerMode.
+
+ // Disable preemption so we can use the gcw. If the
+ // scheduler wants to preempt us, we'll stop draining,
+ // dispose the gcw, and then preempt.
+ node.m.set(acquirem())
+ pp := gp.m.p.ptr() // P can't change with preemption disabled.
+
+ if gcBlackenEnabled == 0 {
+ println("worker mode", pp.gcMarkWorkerMode)
+ throw("gcBgMarkWorker: blackening not enabled")
+ }
+
+ if pp.gcMarkWorkerMode == gcMarkWorkerNotWorker {
+ throw("gcBgMarkWorker: mode not set")
+ }
+
+ startTime := nanotime()
+ pp.gcMarkWorkerStartTime = startTime
+ var trackLimiterEvent bool
+ if pp.gcMarkWorkerMode == gcMarkWorkerIdleMode {
+ trackLimiterEvent = pp.limiterEvent.start(limiterEventIdleMarkWork, startTime)
+ }
+
+ decnwait := atomic.Xadd(&work.nwait, -1)
+ if decnwait == work.nproc {
+ println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc)
+ throw("work.nwait was > work.nproc")
+ }
+
+ systemstack(func() {
+ // Mark our goroutine preemptible so its stack
+ // can be scanned. This lets two mark workers
+ // scan each other (otherwise, they would
+ // deadlock). We must not modify anything on
+ // the G stack. However, stack shrinking is
+ // disabled for mark workers, so it is safe to
+ // read from the G stack.
+ casGToWaiting(gp, _Grunning, waitReasonGCWorkerActive)
+ switch pp.gcMarkWorkerMode {
+ default:
+ throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
+ case gcMarkWorkerDedicatedMode:
+ gcDrain(&pp.gcw, gcDrainUntilPreempt|gcDrainFlushBgCredit)
+ if gp.preempt {
+ // We were preempted. This is
+ // a useful signal to kick
+ // everything out of the run
+ // queue so it can run
+ // somewhere else.
+ if drainQ, n := runqdrain(pp); n > 0 {
+ lock(&sched.lock)
+ globrunqputbatch(&drainQ, int32(n))
+ unlock(&sched.lock)
+ }
+ }
+ // Go back to draining, this time
+ // without preemption.
+ gcDrain(&pp.gcw, gcDrainFlushBgCredit)
+ case gcMarkWorkerFractionalMode:
+ gcDrain(&pp.gcw, gcDrainFractional|gcDrainUntilPreempt|gcDrainFlushBgCredit)
+ case gcMarkWorkerIdleMode:
+ gcDrain(&pp.gcw, gcDrainIdle|gcDrainUntilPreempt|gcDrainFlushBgCredit)
+ }
+ casgstatus(gp, _Gwaiting, _Grunning)
+ })
+
+ // Account for time and mark us as stopped.
+ now := nanotime()
+ duration := now - startTime
+ gcController.markWorkerStop(pp.gcMarkWorkerMode, duration)
+ if trackLimiterEvent {
+ pp.limiterEvent.stop(limiterEventIdleMarkWork, now)
+ }
+ if pp.gcMarkWorkerMode == gcMarkWorkerFractionalMode {
+ atomic.Xaddint64(&pp.gcFractionalMarkTime, duration)
+ }
+
+ // Was this the last worker and did we run out
+ // of work?
+ incnwait := atomic.Xadd(&work.nwait, +1)
+ if incnwait > work.nproc {
+ println("runtime: p.gcMarkWorkerMode=", pp.gcMarkWorkerMode,
+ "work.nwait=", incnwait, "work.nproc=", work.nproc)
+ throw("work.nwait > work.nproc")
+ }
+
+ // We'll releasem after this point and thus this P may run
+ // something else. We must clear the worker mode to avoid
+ // attributing the mode to a different (non-worker) G in
+ // traceGoStart.
+ pp.gcMarkWorkerMode = gcMarkWorkerNotWorker
+
+ // If this worker reached a background mark completion
+ // point, signal the main GC goroutine.
+ if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
+ // We don't need the P-local buffers here, allow
+ // preemption because we may schedule like a regular
+ // goroutine in gcMarkDone (block on locks, etc).
+ releasem(node.m.ptr())
+ node.m.set(nil)
+
+ gcMarkDone()
+ }
+ }
+}
+
+// gcMarkWorkAvailable reports whether executing a mark worker
+// on p is potentially useful. p may be nil, in which case it only
+// checks the global sources of work.
+func gcMarkWorkAvailable(p *p) bool {
+ if p != nil && !p.gcw.empty() {
+ return true
+ }
+ if !work.full.empty() {
+ return true // global work available
+ }
+ if work.markrootNext < work.markrootJobs {
+ return true // root scan work available
+ }
+ return false
+}
+
+// gcMark runs the mark (or, for concurrent GC, mark termination)
+// All gcWork caches must be empty.
+// STW is in effect at this point.
+func gcMark(startTime int64) {
+ if debug.allocfreetrace > 0 {
+ tracegc()
+ }
+
+ if gcphase != _GCmarktermination {
+ throw("in gcMark expecting to see gcphase as _GCmarktermination")
+ }
+ work.tstart = startTime
+
+ // Check that there's no marking work remaining.
+ if work.full != 0 || work.markrootNext < work.markrootJobs {
+ print("runtime: full=", hex(work.full), " next=", work.markrootNext, " jobs=", work.markrootJobs, " nDataRoots=", work.nDataRoots, " nBSSRoots=", work.nBSSRoots, " nSpanRoots=", work.nSpanRoots, " nStackRoots=", work.nStackRoots, "\n")
+ panic("non-empty mark queue after concurrent mark")
+ }
+
+ if debug.gccheckmark > 0 {
+ // This is expensive when there's a large number of
+ // Gs, so only do it if checkmark is also enabled.
+ gcMarkRootCheck()
+ }
+ if work.full != 0 {
+ throw("work.full != 0")
+ }
+
+ // Drop allg snapshot. allgs may have grown, in which case
+ // this is the only reference to the old backing store and
+ // there's no need to keep it around.
+ work.stackRoots = nil
+
+ // Clear out buffers and double-check that all gcWork caches
+ // are empty. This should be ensured by gcMarkDone before we
+ // enter mark termination.
+ //
+ // TODO: We could clear out buffers just before mark if this
+ // has a non-negligible impact on STW time.
+ for _, p := range allp {
+ // The write barrier may have buffered pointers since
+ // the gcMarkDone barrier. However, since the barrier
+ // ensured all reachable objects were marked, all of
+ // these must be pointers to black objects. Hence we
+ // can just discard the write barrier buffer.
+ if debug.gccheckmark > 0 {
+ // For debugging, flush the buffer and make
+ // sure it really was all marked.
+ wbBufFlush1(p)
+ } else {
+ p.wbBuf.reset()
+ }
+
+ gcw := &p.gcw
+ if !gcw.empty() {
+ printlock()
+ print("runtime: P ", p.id, " flushedWork ", gcw.flushedWork)
+ if gcw.wbuf1 == nil {
+ print(" wbuf1=<nil>")
+ } else {
+ print(" wbuf1.n=", gcw.wbuf1.nobj)
+ }
+ if gcw.wbuf2 == nil {
+ print(" wbuf2=<nil>")
+ } else {
+ print(" wbuf2.n=", gcw.wbuf2.nobj)
+ }
+ print("\n")
+ throw("P has cached GC work at end of mark termination")
+ }
+ // There may still be cached empty buffers, which we
+ // need to flush since we're going to free them. Also,
+ // there may be non-zero stats because we allocated
+ // black after the gcMarkDone barrier.
+ gcw.dispose()
+ }
+
+ // Flush scanAlloc from each mcache since we're about to modify
+ // heapScan directly. If we were to flush this later, then scanAlloc
+ // might have incorrect information.
+ //
+ // Note that it's not important to retain this information; we know
+ // exactly what heapScan is at this point via scanWork.
+ for _, p := range allp {
+ c := p.mcache
+ if c == nil {
+ continue
+ }
+ c.scanAlloc = 0
+ }
+
+ // Reset controller state.
+ gcController.resetLive(work.bytesMarked)
+}
+
+// gcSweep must be called on the system stack because it acquires the heap
+// lock. See mheap for details.
+//
+// The world must be stopped.
+//
+//go:systemstack
+func gcSweep(mode gcMode) {
+ assertWorldStopped()
+
+ if gcphase != _GCoff {
+ throw("gcSweep being done but phase is not GCoff")
+ }
+
+ lock(&mheap_.lock)
+ mheap_.sweepgen += 2
+ sweep.active.reset()
+ mheap_.pagesSwept.Store(0)
+ mheap_.sweepArenas = mheap_.allArenas
+ mheap_.reclaimIndex.Store(0)
+ mheap_.reclaimCredit.Store(0)
+ unlock(&mheap_.lock)
+
+ sweep.centralIndex.clear()
+
+ if !_ConcurrentSweep || mode == gcForceBlockMode {
+ // Special case synchronous sweep.
+ // Record that no proportional sweeping has to happen.
+ lock(&mheap_.lock)
+ mheap_.sweepPagesPerByte = 0
+ unlock(&mheap_.lock)
+ // Sweep all spans eagerly.
+ for sweepone() != ^uintptr(0) {
+ sweep.npausesweep++
+ }
+ // Free workbufs eagerly.
+ prepareFreeWorkbufs()
+ for freeSomeWbufs(false) {
+ }
+ // All "free" events for this mark/sweep cycle have
+ // now happened, so we can make this profile cycle
+ // available immediately.
+ mProf_NextCycle()
+ mProf_Flush()
+ return
+ }
+
+ // Background sweep.
+ lock(&sweep.lock)
+ if sweep.parked {
+ sweep.parked = false
+ ready(sweep.g, 0, true)
+ }
+ unlock(&sweep.lock)
+}
+
+// gcResetMarkState resets global state prior to marking (concurrent
+// or STW) and resets the stack scan state of all Gs.
+//
+// This is safe to do without the world stopped because any Gs created
+// during or after this will start out in the reset state.
+//
+// gcResetMarkState must be called on the system stack because it acquires
+// the heap lock. See mheap for details.
+//
+//go:systemstack
+func gcResetMarkState() {
+ // This may be called during a concurrent phase, so lock to make sure
+ // allgs doesn't change.
+ forEachG(func(gp *g) {
+ gp.gcscandone = false // set to true in gcphasework
+ gp.gcAssistBytes = 0
+ })
+
+ // Clear page marks. This is just 1MB per 64GB of heap, so the
+ // time here is pretty trivial.
+ lock(&mheap_.lock)
+ arenas := mheap_.allArenas
+ unlock(&mheap_.lock)
+ for _, ai := range arenas {
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+ for i := range ha.pageMarks {
+ ha.pageMarks[i] = 0
+ }
+ }
+
+ work.bytesMarked = 0
+ work.initialHeapLive = gcController.heapLive.Load()
+}
+
+// Hooks for other packages
+
+var poolcleanup func()
+var boringCaches []unsafe.Pointer // for crypto/internal/boring
+
+//go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
+func sync_runtime_registerPoolCleanup(f func()) {
+ poolcleanup = f
+}
+
+//go:linkname boring_registerCache crypto/internal/boring/bcache.registerCache
+func boring_registerCache(p unsafe.Pointer) {
+ boringCaches = append(boringCaches, p)
+}
+
+func clearpools() {
+ // clear sync.Pools
+ if poolcleanup != nil {
+ poolcleanup()
+ }
+
+ // clear boringcrypto caches
+ for _, p := range boringCaches {
+ atomicstorep(p, nil)
+ }
+
+ // Clear central sudog cache.
+ // Leave per-P caches alone, they have strictly bounded size.
+ // Disconnect cached list before dropping it on the floor,
+ // so that a dangling ref to one entry does not pin all of them.
+ lock(&sched.sudoglock)
+ var sg, sgnext *sudog
+ for sg = sched.sudogcache; sg != nil; sg = sgnext {
+ sgnext = sg.next
+ sg.next = nil
+ }
+ sched.sudogcache = nil
+ unlock(&sched.sudoglock)
+
+ // Clear central defer pool.
+ // Leave per-P pools alone, they have strictly bounded size.
+ lock(&sched.deferlock)
+ // disconnect cached list before dropping it on the floor,
+ // so that a dangling ref to one entry does not pin all of them.
+ var d, dlink *_defer
+ for d = sched.deferpool; d != nil; d = dlink {
+ dlink = d.link
+ d.link = nil
+ }
+ sched.deferpool = nil
+ unlock(&sched.deferlock)
+}
+
+// Timing
+
+// itoaDiv formats val/(10**dec) into buf.
+func itoaDiv(buf []byte, val uint64, dec int) []byte {
+ i := len(buf) - 1
+ idec := i - dec
+ for val >= 10 || i >= idec {
+ buf[i] = byte(val%10 + '0')
+ i--
+ if i == idec {
+ buf[i] = '.'
+ i--
+ }
+ val /= 10
+ }
+ buf[i] = byte(val + '0')
+ return buf[i:]
+}
+
+// fmtNSAsMS nicely formats ns nanoseconds as milliseconds.
+func fmtNSAsMS(buf []byte, ns uint64) []byte {
+ if ns >= 10e6 {
+ // Format as whole milliseconds.
+ return itoaDiv(buf, ns/1e6, 0)
+ }
+ // Format two digits of precision, with at most three decimal places.
+ x := ns / 1e3
+ if x == 0 {
+ buf[0] = '0'
+ return buf[:1]
+ }
+ dec := 3
+ for x >= 100 {
+ x /= 10
+ dec--
+ }
+ return itoaDiv(buf, x, dec)
+}
+
+// Helpers for testing GC.
+
+// gcTestMoveStackOnNextCall causes the stack to be moved on a call
+// immediately following the call to this. It may not work correctly
+// if any other work appears after this call (such as returning).
+// Typically the following call should be marked go:noinline so it
+// performs a stack check.
+//
+// In rare cases this may not cause the stack to move, specifically if
+// there's a preemption between this call and the next.
+func gcTestMoveStackOnNextCall() {
+ gp := getg()
+ gp.stackguard0 = stackForceMove
+}
+
+// gcTestIsReachable performs a GC and returns a bit set where bit i
+// is set if ptrs[i] is reachable.
+func gcTestIsReachable(ptrs ...unsafe.Pointer) (mask uint64) {
+ // This takes the pointers as unsafe.Pointers in order to keep
+ // them live long enough for us to attach specials. After
+ // that, we drop our references to them.
+
+ if len(ptrs) > 64 {
+ panic("too many pointers for uint64 mask")
+ }
+
+ // Block GC while we attach specials and drop our references
+ // to ptrs. Otherwise, if a GC is in progress, it could mark
+ // them reachable via this function before we have a chance to
+ // drop them.
+ semacquire(&gcsema)
+
+ // Create reachability specials for ptrs.
+ specials := make([]*specialReachable, len(ptrs))
+ for i, p := range ptrs {
+ lock(&mheap_.speciallock)
+ s := (*specialReachable)(mheap_.specialReachableAlloc.alloc())
+ unlock(&mheap_.speciallock)
+ s.special.kind = _KindSpecialReachable
+ if !addspecial(p, &s.special) {
+ throw("already have a reachable special (duplicate pointer?)")
+ }
+ specials[i] = s
+ // Make sure we don't retain ptrs.
+ ptrs[i] = nil
+ }
+
+ semrelease(&gcsema)
+
+ // Force a full GC and sweep.
+ GC()
+
+ // Process specials.
+ for i, s := range specials {
+ if !s.done {
+ printlock()
+ println("runtime: object", i, "was not swept")
+ throw("IsReachable failed")
+ }
+ if s.reachable {
+ mask |= 1 << i
+ }
+ lock(&mheap_.speciallock)
+ mheap_.specialReachableAlloc.free(unsafe.Pointer(s))
+ unlock(&mheap_.speciallock)
+ }
+
+ return mask
+}
+
+// gcTestPointerClass returns the category of what p points to, one of:
+// "heap", "stack", "data", "bss", "other". This is useful for checking
+// that a test is doing what it's intended to do.
+//
+// This is nosplit simply to avoid extra pointer shuffling that may
+// complicate a test.
+//
+//go:nosplit
+func gcTestPointerClass(p unsafe.Pointer) string {
+ p2 := uintptr(noescape(p))
+ gp := getg()
+ if gp.stack.lo <= p2 && p2 < gp.stack.hi {
+ return "stack"
+ }
+ if base, _, _ := findObject(p2, 0, 0); base != 0 {
+ return "heap"
+ }
+ for _, datap := range activeModules() {
+ if datap.data <= p2 && p2 < datap.edata || datap.noptrdata <= p2 && p2 < datap.enoptrdata {
+ return "data"
+ }
+ if datap.bss <= p2 && p2 < datap.ebss || datap.noptrbss <= p2 && p2 <= datap.enoptrbss {
+ return "bss"
+ }
+ }
+ KeepAlive(p)
+ return "other"
+}