1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
|
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package abi
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
"sync"
)
//......................................................................
//
// Public/exported bits of the ABI utilities.
//
// ABIParamResultInfo stores the results of processing a given
// function type to compute stack layout and register assignments. For
// each input and output parameter we capture whether the param was
// register-assigned (and to which register(s)) or the stack offset
// for the param if is not going to be passed in registers according
// to the rules in the Go internal ABI specification (1.17).
type ABIParamResultInfo struct {
inparams []ABIParamAssignment // Includes receiver for method calls. Does NOT include hidden closure pointer.
outparams []ABIParamAssignment
offsetToSpillArea int64
spillAreaSize int64
inRegistersUsed int
outRegistersUsed int
config *ABIConfig // to enable String() method
}
func (a *ABIParamResultInfo) Config() *ABIConfig {
return a.config
}
func (a *ABIParamResultInfo) InParams() []ABIParamAssignment {
return a.inparams
}
func (a *ABIParamResultInfo) OutParams() []ABIParamAssignment {
return a.outparams
}
func (a *ABIParamResultInfo) InRegistersUsed() int {
return a.inRegistersUsed
}
func (a *ABIParamResultInfo) OutRegistersUsed() int {
return a.outRegistersUsed
}
func (a *ABIParamResultInfo) InParam(i int) *ABIParamAssignment {
return &a.inparams[i]
}
func (a *ABIParamResultInfo) OutParam(i int) *ABIParamAssignment {
return &a.outparams[i]
}
func (a *ABIParamResultInfo) SpillAreaOffset() int64 {
return a.offsetToSpillArea
}
func (a *ABIParamResultInfo) SpillAreaSize() int64 {
return a.spillAreaSize
}
// ArgWidth returns the amount of stack needed for all the inputs
// and outputs of a function or method, including ABI-defined parameter
// slots and ABI-defined spill slots for register-resident parameters.
// The name is inherited from (*Type).ArgWidth(), which it replaces.
func (a *ABIParamResultInfo) ArgWidth() int64 {
return a.spillAreaSize + a.offsetToSpillArea - a.config.LocalsOffset()
}
// RegIndex stores the index into the set of machine registers used by
// the ABI on a specific architecture for parameter passing. RegIndex
// values 0 through N-1 (where N is the number of integer registers
// used for param passing according to the ABI rules) describe integer
// registers; values N through M (where M is the number of floating
// point registers used). Thus if the ABI says there are 5 integer
// registers and 7 floating point registers, then RegIndex value of 4
// indicates the 5th integer register, and a RegIndex value of 11
// indicates the 7th floating point register.
type RegIndex uint8
// ABIParamAssignment holds information about how a specific param or
// result will be passed: in registers (in which case 'Registers' is
// populated) or on the stack (in which case 'Offset' is set to a
// non-negative stack offset. The values in 'Registers' are indices
// (as described above), not architected registers.
type ABIParamAssignment struct {
Type *types.Type
Name types.Object // should always be *ir.Name, used to match with a particular ssa.OpArg.
Registers []RegIndex
offset int32
}
// Offset returns the stack offset for addressing the parameter that "a" describes.
// This will panic if "a" describes a register-allocated parameter.
func (a *ABIParamAssignment) Offset() int32 {
if len(a.Registers) > 0 {
base.Fatalf("register allocated parameters have no offset")
}
return a.offset
}
// RegisterTypes returns a slice of the types of the registers
// corresponding to a slice of parameters. The returned slice
// has capacity for one more, likely a memory type.
func RegisterTypes(apa []ABIParamAssignment) []*types.Type {
rcount := 0
for _, pa := range apa {
rcount += len(pa.Registers)
}
if rcount == 0 {
// Note that this catches top-level struct{} and [0]Foo, which are stack allocated.
return make([]*types.Type, 0, 1)
}
rts := make([]*types.Type, 0, rcount+1)
for _, pa := range apa {
if len(pa.Registers) == 0 {
continue
}
rts = appendParamTypes(rts, pa.Type)
}
return rts
}
func (pa *ABIParamAssignment) RegisterTypesAndOffsets() ([]*types.Type, []int64) {
l := len(pa.Registers)
if l == 0 {
return nil, nil
}
typs := make([]*types.Type, 0, l)
offs := make([]int64, 0, l)
offs, _ = appendParamOffsets(offs, 0, pa.Type)
return appendParamTypes(typs, pa.Type), offs
}
func appendParamTypes(rts []*types.Type, t *types.Type) []*types.Type {
w := t.Size()
if w == 0 {
return rts
}
if t.IsScalar() || t.IsPtrShaped() {
if t.IsComplex() {
c := types.FloatForComplex(t)
return append(rts, c, c)
} else {
if int(t.Size()) <= types.RegSize {
return append(rts, t)
}
// assume 64bit int on 32-bit machine
// TODO endianness? Should high-order (sign bits) word come first?
if t.IsSigned() {
rts = append(rts, types.Types[types.TINT32])
} else {
rts = append(rts, types.Types[types.TUINT32])
}
return append(rts, types.Types[types.TUINT32])
}
} else {
typ := t.Kind()
switch typ {
case types.TARRAY:
for i := int64(0); i < t.NumElem(); i++ { // 0 gets no registers, plus future-proofing.
rts = appendParamTypes(rts, t.Elem())
}
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
if f.Type.Size() > 0 { // embedded zero-width types receive no registers
rts = appendParamTypes(rts, f.Type)
}
}
case types.TSLICE:
return appendParamTypes(rts, synthSlice)
case types.TSTRING:
return appendParamTypes(rts, synthString)
case types.TINTER:
return appendParamTypes(rts, synthIface)
}
}
return rts
}
// appendParamOffsets appends the offset(s) of type t, starting from "at",
// to input offsets, and returns the longer slice and the next unused offset.
func appendParamOffsets(offsets []int64, at int64, t *types.Type) ([]int64, int64) {
at = align(at, t)
w := t.Size()
if w == 0 {
return offsets, at
}
if t.IsScalar() || t.IsPtrShaped() {
if t.IsComplex() || int(t.Size()) > types.RegSize { // complex and *int64 on 32-bit
s := w / 2
return append(offsets, at, at+s), at + w
} else {
return append(offsets, at), at + w
}
} else {
typ := t.Kind()
switch typ {
case types.TARRAY:
for i := int64(0); i < t.NumElem(); i++ {
offsets, at = appendParamOffsets(offsets, at, t.Elem())
}
case types.TSTRUCT:
for i, f := range t.FieldSlice() {
offsets, at = appendParamOffsets(offsets, at, f.Type)
if f.Type.Size() == 0 && i == t.NumFields()-1 {
at++ // last field has zero width
}
}
at = align(at, t) // type size is rounded up to its alignment
case types.TSLICE:
return appendParamOffsets(offsets, at, synthSlice)
case types.TSTRING:
return appendParamOffsets(offsets, at, synthString)
case types.TINTER:
return appendParamOffsets(offsets, at, synthIface)
}
}
return offsets, at
}
// FrameOffset returns the frame-pointer-relative location that a function
// would spill its input or output parameter to, if such a spill slot exists.
// If there is none defined (e.g., register-allocated outputs) it panics.
// For register-allocated inputs that is their spill offset reserved for morestack;
// for stack-allocated inputs and outputs, that is their location on the stack.
// (In a future version of the ABI, register-resident inputs may lose their defined
// spill area to help reduce stack sizes.)
func (a *ABIParamAssignment) FrameOffset(i *ABIParamResultInfo) int64 {
if a.offset == -1 {
base.Fatalf("function parameter has no ABI-defined frame-pointer offset")
}
if len(a.Registers) == 0 { // passed on stack
return int64(a.offset) - i.config.LocalsOffset()
}
// spill area for registers
return int64(a.offset) + i.SpillAreaOffset() - i.config.LocalsOffset()
}
// RegAmounts holds a specified number of integer/float registers.
type RegAmounts struct {
intRegs int
floatRegs int
}
// ABIConfig captures the number of registers made available
// by the ABI rules for parameter passing and result returning.
type ABIConfig struct {
// Do we need anything more than this?
offsetForLocals int64 // e.g., obj.(*Link).Arch.FixedFrameSize -- extra linkage information on some architectures.
regAmounts RegAmounts
regsForTypeCache map[*types.Type]int
}
// NewABIConfig returns a new ABI configuration for an architecture with
// iRegsCount integer/pointer registers and fRegsCount floating point registers.
func NewABIConfig(iRegsCount, fRegsCount int, offsetForLocals int64) *ABIConfig {
return &ABIConfig{offsetForLocals: offsetForLocals, regAmounts: RegAmounts{iRegsCount, fRegsCount}, regsForTypeCache: make(map[*types.Type]int)}
}
// Copy returns a copy of an ABIConfig for use in a function's compilation so that access to the cache does not need to be protected with a mutex.
func (a *ABIConfig) Copy() *ABIConfig {
b := *a
b.regsForTypeCache = make(map[*types.Type]int)
return &b
}
// LocalsOffset returns the architecture-dependent offset from SP for args and results.
// In theory this is only used for debugging; it ought to already be incorporated into
// results from the ABI-related methods
func (a *ABIConfig) LocalsOffset() int64 {
return a.offsetForLocals
}
// FloatIndexFor translates r into an index in the floating point parameter
// registers. If the result is negative, the input index was actually for the
// integer parameter registers.
func (a *ABIConfig) FloatIndexFor(r RegIndex) int64 {
return int64(r) - int64(a.regAmounts.intRegs)
}
// NumParamRegs returns the number of parameter registers used for a given type,
// without regard for the number available.
func (a *ABIConfig) NumParamRegs(t *types.Type) int {
var n int
if n, ok := a.regsForTypeCache[t]; ok {
return n
}
if t.IsScalar() || t.IsPtrShaped() {
if t.IsComplex() {
n = 2
} else {
n = (int(t.Size()) + types.RegSize - 1) / types.RegSize
}
} else {
typ := t.Kind()
switch typ {
case types.TARRAY:
n = a.NumParamRegs(t.Elem()) * int(t.NumElem())
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
n += a.NumParamRegs(f.Type)
}
case types.TSLICE:
n = a.NumParamRegs(synthSlice)
case types.TSTRING:
n = a.NumParamRegs(synthString)
case types.TINTER:
n = a.NumParamRegs(synthIface)
}
}
a.regsForTypeCache[t] = n
return n
}
// preAllocateParams gets the slice sizes right for inputs and outputs.
func (a *ABIParamResultInfo) preAllocateParams(hasRcvr bool, nIns, nOuts int) {
if hasRcvr {
nIns++
}
a.inparams = make([]ABIParamAssignment, 0, nIns)
a.outparams = make([]ABIParamAssignment, 0, nOuts)
}
// ABIAnalyzeTypes takes an optional receiver type, arrays of ins and outs, and returns an ABIParamResultInfo,
// based on the given configuration. This is the same result computed by config.ABIAnalyze applied to the
// corresponding method/function type, except that all the embedded parameter names are nil.
// This is intended for use by ssagen/ssa.go:(*state).rtcall, for runtime functions that lack a parsed function type.
func (config *ABIConfig) ABIAnalyzeTypes(rcvr *types.Type, ins, outs []*types.Type) *ABIParamResultInfo {
setup()
s := assignState{
stackOffset: config.offsetForLocals,
rTotal: config.regAmounts,
}
result := &ABIParamResultInfo{config: config}
result.preAllocateParams(rcvr != nil, len(ins), len(outs))
// Receiver
if rcvr != nil {
result.inparams = append(result.inparams,
s.assignParamOrReturn(rcvr, nil, false))
}
// Inputs
for _, t := range ins {
result.inparams = append(result.inparams,
s.assignParamOrReturn(t, nil, false))
}
s.stackOffset = types.RoundUp(s.stackOffset, int64(types.RegSize))
result.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
// Outputs
s.rUsed = RegAmounts{}
for _, t := range outs {
result.outparams = append(result.outparams, s.assignParamOrReturn(t, nil, true))
}
// The spill area is at a register-aligned offset and its size is rounded up to a register alignment.
// TODO in theory could align offset only to minimum required by spilled data types.
result.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize)
result.spillAreaSize = alignTo(s.spillOffset, types.RegSize)
result.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
return result
}
// ABIAnalyzeFuncType takes a function type 'ft' and an ABI rules description
// 'config' and analyzes the function to determine how its parameters
// and results will be passed (in registers or on the stack), returning
// an ABIParamResultInfo object that holds the results of the analysis.
func (config *ABIConfig) ABIAnalyzeFuncType(ft *types.Func) *ABIParamResultInfo {
setup()
s := assignState{
stackOffset: config.offsetForLocals,
rTotal: config.regAmounts,
}
result := &ABIParamResultInfo{config: config}
result.preAllocateParams(ft.Receiver != nil, ft.Params.NumFields(), ft.Results.NumFields())
// Receiver
// TODO(register args) ? seems like "struct" and "fields" is not right anymore for describing function parameters
if ft.Receiver != nil && ft.Receiver.NumFields() != 0 {
r := ft.Receiver.FieldSlice()[0]
result.inparams = append(result.inparams,
s.assignParamOrReturn(r.Type, r.Nname, false))
}
// Inputs
ifsl := ft.Params.FieldSlice()
for _, f := range ifsl {
result.inparams = append(result.inparams,
s.assignParamOrReturn(f.Type, f.Nname, false))
}
s.stackOffset = types.RoundUp(s.stackOffset, int64(types.RegSize))
result.inRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
// Outputs
s.rUsed = RegAmounts{}
ofsl := ft.Results.FieldSlice()
for _, f := range ofsl {
result.outparams = append(result.outparams, s.assignParamOrReturn(f.Type, f.Nname, true))
}
// The spill area is at a register-aligned offset and its size is rounded up to a register alignment.
// TODO in theory could align offset only to minimum required by spilled data types.
result.offsetToSpillArea = alignTo(s.stackOffset, types.RegSize)
result.spillAreaSize = alignTo(s.spillOffset, types.RegSize)
result.outRegistersUsed = s.rUsed.intRegs + s.rUsed.floatRegs
return result
}
// ABIAnalyze returns the same result as ABIAnalyzeFuncType, but also
// updates the offsets of all the receiver, input, and output fields.
// If setNname is true, it also sets the FrameOffset of the Nname for
// the field(s); this is for use when compiling a function and figuring out
// spill locations. Doing this for callers can cause races for register
// outputs because their frame location transitions from BOGUS_FUNARG_OFFSET
// to zero to an as-if-AUTO offset that has no use for callers.
func (config *ABIConfig) ABIAnalyze(t *types.Type, setNname bool) *ABIParamResultInfo {
ft := t.FuncType()
result := config.ABIAnalyzeFuncType(ft)
// Fill in the frame offsets for receiver, inputs, results
k := 0
if t.NumRecvs() != 0 {
config.updateOffset(result, ft.Receiver.FieldSlice()[0], result.inparams[0], false, setNname)
k++
}
for i, f := range ft.Params.FieldSlice() {
config.updateOffset(result, f, result.inparams[k+i], false, setNname)
}
for i, f := range ft.Results.FieldSlice() {
config.updateOffset(result, f, result.outparams[i], true, setNname)
}
return result
}
func (config *ABIConfig) updateOffset(result *ABIParamResultInfo, f *types.Field, a ABIParamAssignment, isReturn, setNname bool) {
// Everything except return values in registers has either a frame home (if not in a register) or a frame spill location.
if !isReturn || len(a.Registers) == 0 {
// The type frame offset DOES NOT show effects of minimum frame size.
// Getting this wrong breaks stackmaps, see liveness/plive.go:WriteFuncMap and typebits/typebits.go:Set
off := a.FrameOffset(result)
fOffset := f.Offset
if fOffset == types.BOGUS_FUNARG_OFFSET {
if setNname && f.Nname != nil {
f.Nname.(*ir.Name).SetFrameOffset(off)
f.Nname.(*ir.Name).SetIsOutputParamInRegisters(false)
}
} else {
base.Fatalf("field offset for %s at %s has been set to %d", f.Sym.Name, base.FmtPos(f.Pos), fOffset)
}
} else {
if setNname && f.Nname != nil {
fname := f.Nname.(*ir.Name)
fname.SetIsOutputParamInRegisters(true)
fname.SetFrameOffset(0)
}
}
}
//......................................................................
//
// Non-public portions.
// regString produces a human-readable version of a RegIndex.
func (c *RegAmounts) regString(r RegIndex) string {
if int(r) < c.intRegs {
return fmt.Sprintf("I%d", int(r))
} else if int(r) < c.intRegs+c.floatRegs {
return fmt.Sprintf("F%d", int(r)-c.intRegs)
}
return fmt.Sprintf("<?>%d", r)
}
// ToString method renders an ABIParamAssignment in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamAssignment) ToString(config *ABIConfig, extra bool) string {
regs := "R{"
offname := "spilloffset" // offset is for spill for register(s)
if len(ri.Registers) == 0 {
offname = "offset" // offset is for memory arg
}
for _, r := range ri.Registers {
regs += " " + config.regAmounts.regString(r)
if extra {
regs += fmt.Sprintf("(%d)", r)
}
}
if extra {
regs += fmt.Sprintf(" | #I=%d, #F=%d", config.regAmounts.intRegs, config.regAmounts.floatRegs)
}
return fmt.Sprintf("%s } %s: %d typ: %v", regs, offname, ri.offset, ri.Type)
}
// String method renders an ABIParamResultInfo in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamResultInfo) String() string {
res := ""
for k, p := range ri.inparams {
res += fmt.Sprintf("IN %d: %s\n", k, p.ToString(ri.config, false))
}
for k, r := range ri.outparams {
res += fmt.Sprintf("OUT %d: %s\n", k, r.ToString(ri.config, false))
}
res += fmt.Sprintf("offsetToSpillArea: %d spillAreaSize: %d",
ri.offsetToSpillArea, ri.spillAreaSize)
return res
}
// assignState holds intermediate state during the register assigning process
// for a given function signature.
type assignState struct {
rTotal RegAmounts // total reg amounts from ABI rules
rUsed RegAmounts // regs used by params completely assigned so far
pUsed RegAmounts // regs used by the current param (or pieces therein)
stackOffset int64 // current stack offset
spillOffset int64 // current spill offset
}
// align returns a rounded up to t's alignment.
func align(a int64, t *types.Type) int64 {
return alignTo(a, int(uint8(t.Alignment())))
}
// alignTo returns a rounded up to t, where t must be 0 or a power of 2.
func alignTo(a int64, t int) int64 {
if t == 0 {
return a
}
return types.RoundUp(a, int64(t))
}
// stackSlot returns a stack offset for a param or result of the
// specified type.
func (state *assignState) stackSlot(t *types.Type) int64 {
rv := align(state.stackOffset, t)
state.stackOffset = rv + t.Size()
return rv
}
// allocateRegs returns an ordered list of register indices for a parameter or result
// that we've just determined to be register-assignable. The number of registers
// needed is assumed to be stored in state.pUsed.
func (state *assignState) allocateRegs(regs []RegIndex, t *types.Type) []RegIndex {
if t.Size() == 0 {
return regs
}
ri := state.rUsed.intRegs
rf := state.rUsed.floatRegs
if t.IsScalar() || t.IsPtrShaped() {
if t.IsComplex() {
regs = append(regs, RegIndex(rf+state.rTotal.intRegs), RegIndex(rf+1+state.rTotal.intRegs))
rf += 2
} else if t.IsFloat() {
regs = append(regs, RegIndex(rf+state.rTotal.intRegs))
rf += 1
} else {
n := (int(t.Size()) + types.RegSize - 1) / types.RegSize
for i := 0; i < n; i++ { // looking ahead to really big integers
regs = append(regs, RegIndex(ri))
ri += 1
}
}
state.rUsed.intRegs = ri
state.rUsed.floatRegs = rf
return regs
} else {
typ := t.Kind()
switch typ {
case types.TARRAY:
for i := int64(0); i < t.NumElem(); i++ {
regs = state.allocateRegs(regs, t.Elem())
}
return regs
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
regs = state.allocateRegs(regs, f.Type)
}
return regs
case types.TSLICE:
return state.allocateRegs(regs, synthSlice)
case types.TSTRING:
return state.allocateRegs(regs, synthString)
case types.TINTER:
return state.allocateRegs(regs, synthIface)
}
}
base.Fatalf("was not expecting type %s", t)
panic("unreachable")
}
// regAllocate creates a register ABIParamAssignment object for a param
// or result with the specified type, as a final step (this assumes
// that all of the safety/suitability analysis is complete).
func (state *assignState) regAllocate(t *types.Type, name types.Object, isReturn bool) ABIParamAssignment {
spillLoc := int64(-1)
if !isReturn {
// Spill for register-resident t must be aligned for storage of a t.
spillLoc = align(state.spillOffset, t)
state.spillOffset = spillLoc + t.Size()
}
return ABIParamAssignment{
Type: t,
Name: name,
Registers: state.allocateRegs([]RegIndex{}, t),
offset: int32(spillLoc),
}
}
// stackAllocate creates a stack memory ABIParamAssignment object for
// a param or result with the specified type, as a final step (this
// assumes that all of the safety/suitability analysis is complete).
func (state *assignState) stackAllocate(t *types.Type, name types.Object) ABIParamAssignment {
return ABIParamAssignment{
Type: t,
Name: name,
offset: int32(state.stackSlot(t)),
}
}
// intUsed returns the number of integer registers consumed
// at a given point within an assignment stage.
func (state *assignState) intUsed() int {
return state.rUsed.intRegs + state.pUsed.intRegs
}
// floatUsed returns the number of floating point registers consumed at
// a given point within an assignment stage.
func (state *assignState) floatUsed() int {
return state.rUsed.floatRegs + state.pUsed.floatRegs
}
// regassignIntegral examines a param/result of integral type 't' to
// determines whether it can be register-assigned. Returns TRUE if we
// can register allocate, FALSE otherwise (and updates state
// accordingly).
func (state *assignState) regassignIntegral(t *types.Type) bool {
regsNeeded := int(types.RoundUp(t.Size(), int64(types.PtrSize)) / int64(types.PtrSize))
if t.IsComplex() {
regsNeeded = 2
}
// Floating point and complex.
if t.IsFloat() || t.IsComplex() {
if regsNeeded+state.floatUsed() > state.rTotal.floatRegs {
// not enough regs
return false
}
state.pUsed.floatRegs += regsNeeded
return true
}
// Non-floating point
if regsNeeded+state.intUsed() > state.rTotal.intRegs {
// not enough regs
return false
}
state.pUsed.intRegs += regsNeeded
return true
}
// regassignArray processes an array type (or array component within some
// other enclosing type) to determine if it can be register assigned.
// Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignArray(t *types.Type) bool {
nel := t.NumElem()
if nel == 0 {
return true
}
if nel > 1 {
// Not an array of length 1: stack assign
return false
}
// Visit element
return state.regassign(t.Elem())
}
// regassignStruct processes a struct type (or struct component within
// some other enclosing type) to determine if it can be register
// assigned. Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignStruct(t *types.Type) bool {
for _, field := range t.FieldSlice() {
if !state.regassign(field.Type) {
return false
}
}
return true
}
// synthOnce ensures that we only create the synth* fake types once.
var synthOnce sync.Once
// synthSlice, synthString, and syncIface are synthesized struct types
// meant to capture the underlying implementations of string/slice/interface.
var synthSlice *types.Type
var synthString *types.Type
var synthIface *types.Type
// setup performs setup for the register assignment utilities, manufacturing
// a small set of synthesized types that we'll need along the way.
func setup() {
synthOnce.Do(func() {
fname := types.BuiltinPkg.Lookup
nxp := src.NoXPos
bp := types.NewPtr(types.Types[types.TUINT8])
it := types.Types[types.TINT]
synthSlice = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("ptr"), bp),
types.NewField(nxp, fname("len"), it),
types.NewField(nxp, fname("cap"), it),
})
types.CalcStructSize(synthSlice)
synthString = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("data"), bp),
types.NewField(nxp, fname("len"), it),
})
types.CalcStructSize(synthString)
unsp := types.Types[types.TUNSAFEPTR]
synthIface = types.NewStruct(types.NoPkg, []*types.Field{
types.NewField(nxp, fname("f1"), unsp),
types.NewField(nxp, fname("f2"), unsp),
})
types.CalcStructSize(synthIface)
})
}
// regassign examines a given param type (or component within some
// composite) to determine if it can be register assigned. Returns
// TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassign(pt *types.Type) bool {
typ := pt.Kind()
if pt.IsScalar() || pt.IsPtrShaped() {
return state.regassignIntegral(pt)
}
switch typ {
case types.TARRAY:
return state.regassignArray(pt)
case types.TSTRUCT:
return state.regassignStruct(pt)
case types.TSLICE:
return state.regassignStruct(synthSlice)
case types.TSTRING:
return state.regassignStruct(synthString)
case types.TINTER:
return state.regassignStruct(synthIface)
default:
base.Fatalf("not expected")
panic("unreachable")
}
}
// assignParamOrReturn processes a given receiver, param, or result
// of field f to determine whether it can be register assigned.
// The result of the analysis is recorded in the result
// ABIParamResultInfo held in 'state'.
func (state *assignState) assignParamOrReturn(pt *types.Type, n types.Object, isReturn bool) ABIParamAssignment {
state.pUsed = RegAmounts{}
if pt.Size() == types.BADWIDTH {
base.Fatalf("should never happen")
panic("unreachable")
} else if pt.Size() == 0 {
return state.stackAllocate(pt, n)
} else if state.regassign(pt) {
return state.regAllocate(pt, n, isReturn)
} else {
return state.stackAllocate(pt, n)
}
}
// ComputePadding returns a list of "post element" padding values in
// the case where we have a structure being passed in registers. Given
// a param assignment corresponding to a struct, it returns a list
// containing padding values for each field, e.g. the Kth element in
// the list is the amount of padding between field K and the following
// field. For things that are not structs (or structs without padding)
// it returns a list of zeros. Example:
//
// type small struct {
// x uint16
// y uint8
// z int32
// w int32
// }
//
// For this struct we would return a list [0, 1, 0, 0], meaning that
// we have one byte of padding after the second field, and no bytes of
// padding after any of the other fields. Input parameter "storage" is
// a slice with enough capacity to accommodate padding elements for
// the architected register set in question.
func (pa *ABIParamAssignment) ComputePadding(storage []uint64) []uint64 {
nr := len(pa.Registers)
padding := storage[:nr]
for i := 0; i < nr; i++ {
padding[i] = 0
}
if pa.Type.Kind() != types.TSTRUCT || nr == 0 {
return padding
}
types := make([]*types.Type, 0, nr)
types = appendParamTypes(types, pa.Type)
if len(types) != nr {
panic("internal error")
}
off := int64(0)
for idx, t := range types {
ts := t.Size()
off += int64(ts)
if idx < len(types)-1 {
noff := align(off, types[idx+1])
if noff != off {
padding[idx] = uint64(noff - off)
}
}
}
return padding
}
|