1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dwarfgen
import (
"bytes"
"flag"
"fmt"
"internal/buildcfg"
"sort"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types"
"cmd/internal/dwarf"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
)
func Info(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) {
fn := curfn.(*ir.Func)
if fn.Nname != nil {
expect := fn.Linksym()
if fnsym.ABI() == obj.ABI0 {
expect = fn.LinksymABI(obj.ABI0)
}
if fnsym != expect {
base.Fatalf("unexpected fnsym: %v != %v", fnsym, expect)
}
}
// Back when there were two different *Funcs for a function, this code
// was not consistent about whether a particular *Node being processed
// was an ODCLFUNC or ONAME node. Partly this is because inlined function
// bodies have no ODCLFUNC node, which was it's own inconsistency.
// In any event, the handling of the two different nodes for DWARF purposes
// was subtly different, likely in unintended ways. CL 272253 merged the
// two nodes' Func fields, so that code sees the same *Func whether it is
// holding the ODCLFUNC or the ONAME. This resulted in changes in the
// DWARF output. To preserve the existing DWARF output and leave an
// intentional change for a future CL, this code does the following when
// fn.Op == ONAME:
//
// 1. Disallow use of createComplexVars in createDwarfVars.
// It was not possible to reach that code for an ONAME before,
// because the DebugInfo was set only on the ODCLFUNC Func.
// Calling into it in the ONAME case causes an index out of bounds panic.
//
// 2. Do not populate apdecls. fn.Func.Dcl was in the ODCLFUNC Func,
// not the ONAME Func. Populating apdecls for the ONAME case results
// in selected being populated after createSimpleVars is called in
// createDwarfVars, and then that causes the loop to skip all the entries
// in dcl, meaning that the RecordAutoType calls don't happen.
//
// These two adjustments keep toolstash -cmp working for now.
// Deciding the right answer is, as they say, future work.
//
// We can tell the difference between the old ODCLFUNC and ONAME
// cases by looking at the infosym.Name. If it's empty, DebugInfo is
// being called from (*obj.Link).populateDWARF, which used to use
// the ODCLFUNC. If it's non-empty (the name will end in $abstract),
// DebugInfo is being called from (*obj.Link).DwarfAbstractFunc,
// which used to use the ONAME form.
isODCLFUNC := infosym.Name == ""
var apdecls []*ir.Name
// Populate decls for fn.
if isODCLFUNC {
for _, n := range fn.Dcl {
if n.Op() != ir.ONAME { // might be OTYPE or OLITERAL
continue
}
switch n.Class {
case ir.PAUTO:
if !n.Used() {
// Text == nil -> generating abstract function
if fnsym.Func().Text != nil {
base.Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)")
}
continue
}
case ir.PPARAM, ir.PPARAMOUT:
default:
continue
}
apdecls = append(apdecls, n)
if n.Type().Kind() == types.TSSA {
// Can happen for TypeInt128 types. This only happens for
// spill locations, so not a huge deal.
continue
}
fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
}
}
decls, dwarfVars := createDwarfVars(fnsym, isODCLFUNC, fn, apdecls)
// For each type referenced by the functions auto vars but not
// already referenced by a dwarf var, attach an R_USETYPE relocation to
// the function symbol to insure that the type included in DWARF
// processing during linking.
typesyms := []*obj.LSym{}
for t := range fnsym.Func().Autot {
typesyms = append(typesyms, t)
}
sort.Sort(obj.BySymName(typesyms))
for _, sym := range typesyms {
r := obj.Addrel(infosym)
r.Sym = sym
r.Type = objabi.R_USETYPE
}
fnsym.Func().Autot = nil
var varScopes []ir.ScopeID
for _, decl := range decls {
pos := declPos(decl)
varScopes = append(varScopes, findScope(fn.Marks, pos))
}
scopes := assembleScopes(fnsym, fn, dwarfVars, varScopes)
var inlcalls dwarf.InlCalls
if base.Flag.GenDwarfInl > 0 {
inlcalls = assembleInlines(fnsym, dwarfVars)
}
return scopes, inlcalls
}
func declPos(decl *ir.Name) src.XPos {
return decl.Canonical().Pos()
}
// createDwarfVars process fn, returning a list of DWARF variables and the
// Nodes they represent.
func createDwarfVars(fnsym *obj.LSym, complexOK bool, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var) {
// Collect a raw list of DWARF vars.
var vars []*dwarf.Var
var decls []*ir.Name
var selected ir.NameSet
if base.Ctxt.Flag_locationlists && base.Ctxt.Flag_optimize && fn.DebugInfo != nil && complexOK {
decls, vars, selected = createComplexVars(fnsym, fn)
} else if fn.ABI == obj.ABIInternal && base.Flag.N != 0 && complexOK {
decls, vars, selected = createABIVars(fnsym, fn, apDecls)
} else {
decls, vars, selected = createSimpleVars(fnsym, apDecls)
}
if fn.DebugInfo != nil {
// Recover zero sized variables eliminated by the stackframe pass
for _, n := range fn.DebugInfo.(*ssa.FuncDebug).OptDcl {
if n.Class != ir.PAUTO {
continue
}
types.CalcSize(n.Type())
if n.Type().Size() == 0 {
decls = append(decls, n)
vars = append(vars, createSimpleVar(fnsym, n))
vars[len(vars)-1].StackOffset = 0
fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
}
}
}
dcl := apDecls
if fnsym.WasInlined() {
dcl = preInliningDcls(fnsym)
} else {
// The backend's stackframe pass prunes away entries from the
// fn's Dcl list, including PARAMOUT nodes that correspond to
// output params passed in registers. Add back in these
// entries here so that we can process them properly during
// DWARF-gen. See issue 48573 for more details.
debugInfo := fn.DebugInfo.(*ssa.FuncDebug)
for _, n := range debugInfo.RegOutputParams {
if n.Class != ir.PPARAMOUT || !n.IsOutputParamInRegisters() {
panic("invalid ir.Name on debugInfo.RegOutputParams list")
}
dcl = append(dcl, n)
}
}
// If optimization is enabled, the list above will typically be
// missing some of the original pre-optimization variables in the
// function (they may have been promoted to registers, folded into
// constants, dead-coded away, etc). Input arguments not eligible
// for SSA optimization are also missing. Here we add back in entries
// for selected missing vars. Note that the recipe below creates a
// conservative location. The idea here is that we want to
// communicate to the user that "yes, there is a variable named X
// in this function, but no, I don't have enough information to
// reliably report its contents."
// For non-SSA-able arguments, however, the correct information
// is known -- they have a single home on the stack.
for _, n := range dcl {
if selected.Has(n) {
continue
}
c := n.Sym().Name[0]
if c == '.' || n.Type().IsUntyped() {
continue
}
if n.Class == ir.PPARAM && !ssagen.TypeOK(n.Type()) {
// SSA-able args get location lists, and may move in and
// out of registers, so those are handled elsewhere.
// Autos and named output params seem to get handled
// with VARDEF, which creates location lists.
// Args not of SSA-able type are treated here; they
// are homed on the stack in a single place for the
// entire call.
vars = append(vars, createSimpleVar(fnsym, n))
decls = append(decls, n)
continue
}
typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
decls = append(decls, n)
abbrev := dwarf.DW_ABRV_AUTO_LOCLIST
isReturnValue := (n.Class == ir.PPARAMOUT)
if n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
if n.Esc() == ir.EscHeap {
// The variable in question has been promoted to the heap.
// Its address is in n.Heapaddr.
// TODO(thanm): generate a better location expression
}
inlIndex := 0
if base.Flag.GenDwarfInl > 1 {
if n.InlFormal() || n.InlLocal() {
inlIndex = posInlIndex(n.Pos()) + 1
if n.InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
}
}
declpos := base.Ctxt.InnermostPos(n.Pos())
vars = append(vars, &dwarf.Var{
Name: n.Sym().Name,
IsReturnValue: isReturnValue,
Abbrev: abbrev,
StackOffset: int32(n.FrameOffset()),
Type: base.Ctxt.Lookup(typename),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.RelCol(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
DictIndex: n.DictIndex,
})
// Record go type of to insure that it gets emitted by the linker.
fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
}
// Sort decls and vars.
sortDeclsAndVars(fn, decls, vars)
return decls, vars
}
// sortDeclsAndVars sorts the decl and dwarf var lists according to
// parameter declaration order, so as to insure that when a subprogram
// DIE is emitted, its parameter children appear in declaration order.
// Prior to the advent of the register ABI, sorting by frame offset
// would achieve this; with the register we now need to go back to the
// original function signature.
func sortDeclsAndVars(fn *ir.Func, decls []*ir.Name, vars []*dwarf.Var) {
paramOrder := make(map[*ir.Name]int)
idx := 1
for _, selfn := range types.RecvsParamsResults {
fsl := selfn(fn.Type()).FieldSlice()
for _, f := range fsl {
if n, ok := f.Nname.(*ir.Name); ok {
paramOrder[n] = idx
idx++
}
}
}
sort.Stable(varsAndDecls{decls, vars, paramOrder})
}
type varsAndDecls struct {
decls []*ir.Name
vars []*dwarf.Var
paramOrder map[*ir.Name]int
}
func (v varsAndDecls) Len() int {
return len(v.decls)
}
func (v varsAndDecls) Less(i, j int) bool {
nameLT := func(ni, nj *ir.Name) bool {
oi, foundi := v.paramOrder[ni]
oj, foundj := v.paramOrder[nj]
if foundi {
if foundj {
return oi < oj
} else {
return true
}
}
return false
}
return nameLT(v.decls[i], v.decls[j])
}
func (v varsAndDecls) Swap(i, j int) {
v.vars[i], v.vars[j] = v.vars[j], v.vars[i]
v.decls[i], v.decls[j] = v.decls[j], v.decls[i]
}
// Given a function that was inlined at some point during the
// compilation, return a sorted list of nodes corresponding to the
// autos/locals in that function prior to inlining. If this is a
// function that is not local to the package being compiled, then the
// names of the variables may have been "versioned" to avoid conflicts
// with local vars; disregard this versioning when sorting.
func preInliningDcls(fnsym *obj.LSym) []*ir.Name {
fn := base.Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*ir.Func)
var rdcl []*ir.Name
for _, n := range fn.Inl.Dcl {
c := n.Sym().Name[0]
// Avoid reporting "_" parameters, since if there are more than
// one, it can result in a collision later on, as in #23179.
if unversion(n.Sym().Name) == "_" || c == '.' || n.Type().IsUntyped() {
continue
}
rdcl = append(rdcl, n)
}
return rdcl
}
// createSimpleVars creates a DWARF entry for every variable declared in the
// function, claiming that they are permanently on the stack.
func createSimpleVars(fnsym *obj.LSym, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
var vars []*dwarf.Var
var decls []*ir.Name
var selected ir.NameSet
for _, n := range apDecls {
if ir.IsAutoTmp(n) {
continue
}
decls = append(decls, n)
vars = append(vars, createSimpleVar(fnsym, n))
selected.Add(n)
}
return decls, vars, selected
}
func createSimpleVar(fnsym *obj.LSym, n *ir.Name) *dwarf.Var {
var abbrev int
var offs int64
localAutoOffset := func() int64 {
offs = n.FrameOffset()
if base.Ctxt.Arch.FixedFrameSize == 0 {
offs -= int64(types.PtrSize)
}
if buildcfg.FramePointerEnabled {
offs -= int64(types.PtrSize)
}
return offs
}
switch n.Class {
case ir.PAUTO:
offs = localAutoOffset()
abbrev = dwarf.DW_ABRV_AUTO
case ir.PPARAM, ir.PPARAMOUT:
abbrev = dwarf.DW_ABRV_PARAM
if n.IsOutputParamInRegisters() {
offs = localAutoOffset()
} else {
offs = n.FrameOffset() + base.Ctxt.Arch.FixedFrameSize
}
default:
base.Fatalf("createSimpleVar unexpected class %v for node %v", n.Class, n)
}
typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
delete(fnsym.Func().Autot, reflectdata.TypeLinksym(n.Type()))
inlIndex := 0
if base.Flag.GenDwarfInl > 1 {
if n.InlFormal() || n.InlLocal() {
inlIndex = posInlIndex(n.Pos()) + 1
if n.InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM
}
}
}
declpos := base.Ctxt.InnermostPos(declPos(n))
return &dwarf.Var{
Name: n.Sym().Name,
IsReturnValue: n.Class == ir.PPARAMOUT,
IsInlFormal: n.InlFormal(),
Abbrev: abbrev,
StackOffset: int32(offs),
Type: base.Ctxt.Lookup(typename),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.RelCol(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
DictIndex: n.DictIndex,
}
}
// createABIVars creates DWARF variables for functions in which the
// register ABI is enabled but optimization is turned off. It uses a
// hybrid approach in which register-resident input params are
// captured with location lists, and all other vars use the "simple"
// strategy.
func createABIVars(fnsym *obj.LSym, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
// Invoke createComplexVars to generate dwarf vars for input parameters
// that are register-allocated according to the ABI rules.
decls, vars, selected := createComplexVars(fnsym, fn)
// Now fill in the remainder of the variables: input parameters
// that are not register-resident, output parameters, and local
// variables.
for _, n := range apDecls {
if ir.IsAutoTmp(n) {
continue
}
if _, ok := selected[n]; ok {
// already handled
continue
}
decls = append(decls, n)
vars = append(vars, createSimpleVar(fnsym, n))
selected.Add(n)
}
return decls, vars, selected
}
// createComplexVars creates recomposed DWARF vars with location lists,
// suitable for describing optimized code.
func createComplexVars(fnsym *obj.LSym, fn *ir.Func) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
debugInfo := fn.DebugInfo.(*ssa.FuncDebug)
// Produce a DWARF variable entry for each user variable.
var decls []*ir.Name
var vars []*dwarf.Var
var ssaVars ir.NameSet
for varID, dvar := range debugInfo.Vars {
n := dvar
ssaVars.Add(n)
for _, slot := range debugInfo.VarSlots[varID] {
ssaVars.Add(debugInfo.Slots[slot].N)
}
if dvar := createComplexVar(fnsym, fn, ssa.VarID(varID)); dvar != nil {
decls = append(decls, n)
vars = append(vars, dvar)
}
}
return decls, vars, ssaVars
}
// createComplexVar builds a single DWARF variable entry and location list.
func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID) *dwarf.Var {
debug := fn.DebugInfo.(*ssa.FuncDebug)
n := debug.Vars[varID]
var abbrev int
switch n.Class {
case ir.PAUTO:
abbrev = dwarf.DW_ABRV_AUTO_LOCLIST
case ir.PPARAM, ir.PPARAMOUT:
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
default:
return nil
}
gotype := reflectdata.TypeLinksym(n.Type())
delete(fnsym.Func().Autot, gotype)
typename := dwarf.InfoPrefix + gotype.Name[len("type:"):]
inlIndex := 0
if base.Flag.GenDwarfInl > 1 {
if n.InlFormal() || n.InlLocal() {
inlIndex = posInlIndex(n.Pos()) + 1
if n.InlFormal() {
abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
}
}
}
declpos := base.Ctxt.InnermostPos(n.Pos())
dvar := &dwarf.Var{
Name: n.Sym().Name,
IsReturnValue: n.Class == ir.PPARAMOUT,
IsInlFormal: n.InlFormal(),
Abbrev: abbrev,
Type: base.Ctxt.Lookup(typename),
// The stack offset is used as a sorting key, so for decomposed
// variables just give it the first one. It's not used otherwise.
// This won't work well if the first slot hasn't been assigned a stack
// location, but it's not obvious how to do better.
StackOffset: ssagen.StackOffset(debug.Slots[debug.VarSlots[varID][0]]),
DeclFile: declpos.RelFilename(),
DeclLine: declpos.RelLine(),
DeclCol: declpos.RelCol(),
InlIndex: int32(inlIndex),
ChildIndex: -1,
DictIndex: n.DictIndex,
}
list := debug.LocationLists[varID]
if len(list) != 0 {
dvar.PutLocationList = func(listSym, startPC dwarf.Sym) {
debug.PutLocationList(list, base.Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym))
}
}
return dvar
}
// RecordFlags records the specified command-line flags to be placed
// in the DWARF info.
func RecordFlags(flags ...string) {
if base.Ctxt.Pkgpath == "" {
// We can't record the flags if we don't know what the
// package name is.
return
}
type BoolFlag interface {
IsBoolFlag() bool
}
type CountFlag interface {
IsCountFlag() bool
}
var cmd bytes.Buffer
for _, name := range flags {
f := flag.Lookup(name)
if f == nil {
continue
}
getter := f.Value.(flag.Getter)
if getter.String() == f.DefValue {
// Flag has default value, so omit it.
continue
}
if bf, ok := f.Value.(BoolFlag); ok && bf.IsBoolFlag() {
val, ok := getter.Get().(bool)
if ok && val {
fmt.Fprintf(&cmd, " -%s", f.Name)
continue
}
}
if cf, ok := f.Value.(CountFlag); ok && cf.IsCountFlag() {
val, ok := getter.Get().(int)
if ok && val == 1 {
fmt.Fprintf(&cmd, " -%s", f.Name)
continue
}
}
fmt.Fprintf(&cmd, " -%s=%v", f.Name, getter.Get())
}
// Adds flag to producer string signaling whether regabi is turned on or
// off.
// Once regabi is turned on across the board and the relative GOEXPERIMENT
// knobs no longer exist this code should be removed.
if buildcfg.Experiment.RegabiArgs {
cmd.Write([]byte(" regabi"))
}
if cmd.Len() == 0 {
return
}
s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "producer." + base.Ctxt.Pkgpath)
s.Type = objabi.SDWARFCUINFO
// Sometimes (for example when building tests) we can link
// together two package main archives. So allow dups.
s.Set(obj.AttrDuplicateOK, true)
base.Ctxt.Data = append(base.Ctxt.Data, s)
s.P = cmd.Bytes()[1:]
}
// RecordPackageName records the name of the package being
// compiled, so that the linker can save it in the compile unit's DIE.
func RecordPackageName() {
s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "packagename." + base.Ctxt.Pkgpath)
s.Type = objabi.SDWARFCUINFO
// Sometimes (for example when building tests) we can link
// together two package main archives. So allow dups.
s.Set(obj.AttrDuplicateOK, true)
base.Ctxt.Data = append(base.Ctxt.Data, s)
s.P = []byte(types.LocalPkg.Name)
}
|