1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package escape
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// call evaluates a call expressions, including builtin calls. ks
// should contain the holes representing where the function callee's
// results flows.
func (e *escape) call(ks []hole, call ir.Node) {
var init ir.Nodes
e.callCommon(ks, call, &init, nil)
if len(init) != 0 {
call.(ir.InitNode).PtrInit().Append(init...)
}
}
func (e *escape) callCommon(ks []hole, call ir.Node, init *ir.Nodes, wrapper *ir.Func) {
// argumentPragma handles escape analysis of argument *argp to the
// given hole. If the function callee is known, pragma is the
// function's pragma flags; otherwise 0.
argumentFunc := func(fn *ir.Name, k hole, argp *ir.Node) {
e.rewriteArgument(argp, init, call, fn, wrapper)
e.expr(k.note(call, "call parameter"), *argp)
}
argument := func(k hole, argp *ir.Node) {
argumentFunc(nil, k, argp)
}
argumentRType := func(rtypep *ir.Node) {
rtype := *rtypep
if rtype == nil {
return
}
// common case: static rtype/itab argument, which can be evaluated within the wrapper instead.
if addr, ok := rtype.(*ir.AddrExpr); ok && addr.Op() == ir.OADDR && addr.X.Op() == ir.OLINKSYMOFFSET {
return
}
e.wrapExpr(rtype.Pos(), rtypep, init, call, wrapper)
}
switch call.Op() {
default:
ir.Dump("esc", call)
base.Fatalf("unexpected call op: %v", call.Op())
case ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER:
call := call.(*ir.CallExpr)
typecheck.FixVariadicCall(call)
typecheck.FixMethodCall(call)
// Pick out the function callee, if statically known.
//
// TODO(mdempsky): Change fn from *ir.Name to *ir.Func, but some
// functions (e.g., runtime builtins, method wrappers, generated
// eq/hash functions) don't have it set. Investigate whether
// that's a concern.
var fn *ir.Name
switch call.Op() {
case ir.OCALLFUNC:
// If we have a direct call to a closure (not just one we were
// able to statically resolve with ir.StaticValue), mark it as
// such so batch.outlives can optimize the flow results.
if call.X.Op() == ir.OCLOSURE {
call.X.(*ir.ClosureExpr).Func.SetClosureCalled(true)
}
switch v := ir.StaticValue(call.X); v.Op() {
case ir.ONAME:
if v := v.(*ir.Name); v.Class == ir.PFUNC {
fn = v
}
case ir.OCLOSURE:
fn = v.(*ir.ClosureExpr).Func.Nname
case ir.OMETHEXPR:
fn = ir.MethodExprName(v)
}
case ir.OCALLMETH:
base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
}
fntype := call.X.Type()
if fn != nil {
fntype = fn.Type()
}
if ks != nil && fn != nil && e.inMutualBatch(fn) {
for i, result := range fn.Type().Results().FieldSlice() {
e.expr(ks[i], ir.AsNode(result.Nname))
}
}
var recvp *ir.Node
if call.Op() == ir.OCALLFUNC {
// Evaluate callee function expression.
//
// Note: We use argument and not argumentFunc, because while
// call.X here may be an argument to runtime.{new,defer}proc,
// it's not an argument to fn itself.
argument(e.discardHole(), &call.X)
} else {
recvp = &call.X.(*ir.SelectorExpr).X
}
args := call.Args
if recv := fntype.Recv(); recv != nil {
if recvp == nil {
// Function call using method expression. Recevier argument is
// at the front of the regular arguments list.
recvp = &args[0]
args = args[1:]
}
argumentFunc(fn, e.tagHole(ks, fn, recv), recvp)
}
for i, param := range fntype.Params().FieldSlice() {
argumentFunc(fn, e.tagHole(ks, fn, param), &args[i])
}
case ir.OINLCALL:
call := call.(*ir.InlinedCallExpr)
e.stmts(call.Body)
for i, result := range call.ReturnVars {
k := e.discardHole()
if ks != nil {
k = ks[i]
}
e.expr(k, result)
}
case ir.OAPPEND:
call := call.(*ir.CallExpr)
args := call.Args
// Appendee slice may flow directly to the result, if
// it has enough capacity. Alternatively, a new heap
// slice might be allocated, and all slice elements
// might flow to heap.
appendeeK := ks[0]
if args[0].Type().Elem().HasPointers() {
appendeeK = e.teeHole(appendeeK, e.heapHole().deref(call, "appendee slice"))
}
argument(appendeeK, &args[0])
if call.IsDDD {
appendedK := e.discardHole()
if args[1].Type().IsSlice() && args[1].Type().Elem().HasPointers() {
appendedK = e.heapHole().deref(call, "appended slice...")
}
argument(appendedK, &args[1])
} else {
for i := 1; i < len(args); i++ {
argument(e.heapHole(), &args[i])
}
}
argumentRType(&call.RType)
case ir.OCOPY:
call := call.(*ir.BinaryExpr)
argument(e.discardHole(), &call.X)
copiedK := e.discardHole()
if call.Y.Type().IsSlice() && call.Y.Type().Elem().HasPointers() {
copiedK = e.heapHole().deref(call, "copied slice")
}
argument(copiedK, &call.Y)
argumentRType(&call.RType)
case ir.OPANIC:
call := call.(*ir.UnaryExpr)
argument(e.heapHole(), &call.X)
case ir.OCOMPLEX:
call := call.(*ir.BinaryExpr)
argument(e.discardHole(), &call.X)
argument(e.discardHole(), &call.Y)
case ir.ODELETE, ir.OPRINT, ir.OPRINTN, ir.ORECOVER:
call := call.(*ir.CallExpr)
fixRecoverCall(call)
for i := range call.Args {
argument(e.discardHole(), &call.Args[i])
}
argumentRType(&call.RType)
case ir.OLEN, ir.OCAP, ir.OREAL, ir.OIMAG, ir.OCLOSE:
call := call.(*ir.UnaryExpr)
argument(e.discardHole(), &call.X)
case ir.OUNSAFESTRINGDATA, ir.OUNSAFESLICEDATA:
call := call.(*ir.UnaryExpr)
argument(ks[0], &call.X)
case ir.OUNSAFEADD, ir.OUNSAFESLICE, ir.OUNSAFESTRING:
call := call.(*ir.BinaryExpr)
argument(ks[0], &call.X)
argument(e.discardHole(), &call.Y)
argumentRType(&call.RType)
}
}
// goDeferStmt analyzes a "go" or "defer" statement.
//
// In the process, it also normalizes the statement to always use a
// simple function call with no arguments and no results. For example,
// it rewrites:
//
// defer f(x, y)
//
// into:
//
// x1, y1 := x, y
// defer func() { f(x1, y1) }()
func (e *escape) goDeferStmt(n *ir.GoDeferStmt) {
k := e.heapHole()
if n.Op() == ir.ODEFER && e.loopDepth == 1 {
// Top-level defer arguments don't escape to the heap,
// but they do need to last until they're invoked.
k = e.later(e.discardHole())
// force stack allocation of defer record, unless
// open-coded defers are used (see ssa.go)
n.SetEsc(ir.EscNever)
}
call := n.Call
init := n.PtrInit()
init.Append(ir.TakeInit(call)...)
e.stmts(*init)
// If the function is already a zero argument/result function call,
// just escape analyze it normally.
//
// Note that the runtime is aware of this optimization for
// "go" statements that start in reflect.makeFuncStub or
// reflect.methodValueCall.
if call, ok := call.(*ir.CallExpr); ok && call.Op() == ir.OCALLFUNC {
if sig := call.X.Type(); sig.NumParams()+sig.NumResults() == 0 {
if clo, ok := call.X.(*ir.ClosureExpr); ok && n.Op() == ir.OGO {
clo.IsGoWrap = true
}
e.expr(k, call.X)
return
}
}
// Create a new no-argument function that we'll hand off to defer.
fn := ir.NewClosureFunc(n.Pos(), true)
fn.SetWrapper(true)
fn.Nname.SetType(types.NewSignature(types.LocalPkg, nil, nil, nil, nil))
fn.Body = []ir.Node{call}
if call, ok := call.(*ir.CallExpr); ok && call.Op() == ir.OCALLFUNC {
// If the callee is a named function, link to the original callee.
x := call.X
if x.Op() == ir.ONAME && x.(*ir.Name).Class == ir.PFUNC {
fn.WrappedFunc = call.X.(*ir.Name).Func
} else if x.Op() == ir.OMETHEXPR && ir.MethodExprFunc(x).Nname != nil {
fn.WrappedFunc = ir.MethodExprName(x).Func
}
}
clo := fn.OClosure
if n.Op() == ir.OGO {
clo.IsGoWrap = true
}
e.callCommon(nil, call, init, fn)
e.closures = append(e.closures, closure{e.spill(k, clo), clo})
// Create new top level call to closure.
n.Call = ir.NewCallExpr(call.Pos(), ir.OCALL, clo, nil)
ir.WithFunc(e.curfn, func() {
typecheck.Stmt(n.Call)
})
}
// rewriteArgument rewrites the argument *argp of the given call expression.
// fn is the static callee function, if known.
// wrapper is the go/defer wrapper function for call, if any.
func (e *escape) rewriteArgument(argp *ir.Node, init *ir.Nodes, call ir.Node, fn *ir.Name, wrapper *ir.Func) {
var pragma ir.PragmaFlag
if fn != nil && fn.Func != nil {
pragma = fn.Func.Pragma
}
// unsafeUintptr rewrites "uintptr(ptr)" arguments to syscall-like
// functions, so that ptr is kept alive and/or escaped as
// appropriate. unsafeUintptr also reports whether it modified arg0.
unsafeUintptr := func(arg0 ir.Node) bool {
if pragma&(ir.UintptrKeepAlive|ir.UintptrEscapes) == 0 {
return false
}
// If the argument is really a pointer being converted to uintptr,
// arrange for the pointer to be kept alive until the call returns,
// by copying it into a temp and marking that temp
// still alive when we pop the temp stack.
if arg0.Op() != ir.OCONVNOP || !arg0.Type().IsUintptr() {
return false
}
arg := arg0.(*ir.ConvExpr)
if !arg.X.Type().IsUnsafePtr() {
return false
}
// Create and declare a new pointer-typed temp variable.
tmp := e.wrapExpr(arg.Pos(), &arg.X, init, call, wrapper)
if pragma&ir.UintptrEscapes != 0 {
e.flow(e.heapHole().note(arg, "//go:uintptrescapes"), e.oldLoc(tmp))
}
if pragma&ir.UintptrKeepAlive != 0 {
call := call.(*ir.CallExpr)
// SSA implements CallExpr.KeepAlive using OpVarLive, which
// doesn't support PAUTOHEAP variables. I tried changing it to
// use OpKeepAlive, but that ran into issues of its own.
// For now, the easy solution is to explicitly copy to (yet
// another) new temporary variable.
keep := tmp
if keep.Class == ir.PAUTOHEAP {
keep = e.copyExpr(arg.Pos(), tmp, call.PtrInit(), wrapper, false)
}
keep.SetAddrtaken(true) // ensure SSA keeps the tmp variable
call.KeepAlive = append(call.KeepAlive, keep)
}
return true
}
visit := func(pos src.XPos, argp *ir.Node) {
// Optimize a few common constant expressions. By leaving these
// untouched in the call expression, we let the wrapper handle
// evaluating them, rather than taking up closure context space.
switch arg := *argp; arg.Op() {
case ir.OLITERAL, ir.ONIL, ir.OMETHEXPR:
return
case ir.ONAME:
if arg.(*ir.Name).Class == ir.PFUNC {
return
}
}
if unsafeUintptr(*argp) {
return
}
if wrapper != nil {
e.wrapExpr(pos, argp, init, call, wrapper)
}
}
// Peel away any slice literals for better escape analyze
// them. For example:
//
// go F([]int{a, b})
//
// If F doesn't escape its arguments, then the slice can
// be allocated on the new goroutine's stack.
//
// For variadic functions, the compiler has already rewritten:
//
// f(a, b, c)
//
// to:
//
// f([]T{a, b, c}...)
//
// So we need to look into slice elements to handle uintptr(ptr)
// arguments to syscall-like functions correctly.
if arg := *argp; arg.Op() == ir.OSLICELIT {
list := arg.(*ir.CompLitExpr).List
for i := range list {
el := &list[i]
if list[i].Op() == ir.OKEY {
el = &list[i].(*ir.KeyExpr).Value
}
visit(arg.Pos(), el)
}
} else {
visit(call.Pos(), argp)
}
}
// wrapExpr replaces *exprp with a temporary variable copy. If wrapper
// is non-nil, the variable will be captured for use within that
// function.
func (e *escape) wrapExpr(pos src.XPos, exprp *ir.Node, init *ir.Nodes, call ir.Node, wrapper *ir.Func) *ir.Name {
tmp := e.copyExpr(pos, *exprp, init, e.curfn, true)
if wrapper != nil {
// Currently for "defer i.M()" if i is nil it panics at the point
// of defer statement, not when deferred function is called. We
// need to do the nil check outside of the wrapper.
if call.Op() == ir.OCALLINTER && exprp == &call.(*ir.CallExpr).X.(*ir.SelectorExpr).X {
check := ir.NewUnaryExpr(pos, ir.OCHECKNIL, ir.NewUnaryExpr(pos, ir.OITAB, tmp))
init.Append(typecheck.Stmt(check))
}
e.oldLoc(tmp).captured = true
tmp = ir.NewClosureVar(pos, wrapper, tmp)
}
*exprp = tmp
return tmp
}
// copyExpr creates and returns a new temporary variable within fn;
// appends statements to init to declare and initialize it to expr;
// and escape analyzes the data flow if analyze is true.
func (e *escape) copyExpr(pos src.XPos, expr ir.Node, init *ir.Nodes, fn *ir.Func, analyze bool) *ir.Name {
if ir.HasUniquePos(expr) {
pos = expr.Pos()
}
tmp := typecheck.TempAt(pos, fn, expr.Type())
stmts := []ir.Node{
ir.NewDecl(pos, ir.ODCL, tmp),
ir.NewAssignStmt(pos, tmp, expr),
}
typecheck.Stmts(stmts)
init.Append(stmts...)
if analyze {
e.newLoc(tmp, false)
e.stmts(stmts)
}
return tmp
}
// tagHole returns a hole for evaluating an argument passed to param.
// ks should contain the holes representing where the function
// callee's results flows. fn is the statically-known callee function,
// if any.
func (e *escape) tagHole(ks []hole, fn *ir.Name, param *types.Field) hole {
// If this is a dynamic call, we can't rely on param.Note.
if fn == nil {
return e.heapHole()
}
if e.inMutualBatch(fn) {
return e.addr(ir.AsNode(param.Nname))
}
// Call to previously tagged function.
var tagKs []hole
esc := parseLeaks(param.Note)
if x := esc.Heap(); x >= 0 {
tagKs = append(tagKs, e.heapHole().shift(x))
}
if ks != nil {
for i := 0; i < numEscResults; i++ {
if x := esc.Result(i); x >= 0 {
tagKs = append(tagKs, ks[i].shift(x))
}
}
}
return e.teeHole(tagKs...)
}
|