summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/inline/inl.go
blob: 84e61f34a254667bc49a2e4e911b51deaad8badf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// The inlining facility makes 2 passes: first CanInline determines which
// functions are suitable for inlining, and for those that are it
// saves a copy of the body. Then InlineCalls walks each function body to
// expand calls to inlinable functions.
//
// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
// are not supported.
//      0: disabled
//      1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
//      2: (unassigned)
//      3: (unassigned)
//      4: allow non-leaf functions
//
// At some point this may get another default and become switch-offable with -N.
//
// The -d typcheckinl flag enables early typechecking of all imported bodies,
// which is useful to flush out bugs.
//
// The Debug.m flag enables diagnostic output.  a single -m is useful for verifying
// which calls get inlined or not, more is for debugging, and may go away at any point.

package inline

import (
	"fmt"
	"go/constant"
	"sort"
	"strconv"
	"strings"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/logopt"
	"cmd/compile/internal/pgo"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/src"
)

// Inlining budget parameters, gathered in one place
const (
	inlineMaxBudget       = 80
	inlineExtraAppendCost = 0
	// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
	inlineExtraCallCost  = 57              // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
	inlineExtraPanicCost = 1               // do not penalize inlining panics.
	inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.

	inlineBigFunctionNodes   = 5000 // Functions with this many nodes are considered "big".
	inlineBigFunctionMaxCost = 20   // Max cost of inlinee when inlining into a "big" function.
)

var (
	// List of all hot callee nodes.
	// TODO(prattmic): Make this non-global.
	candHotCalleeMap = make(map[*pgo.IRNode]struct{})

	// List of all hot call sites. CallSiteInfo.Callee is always nil.
	// TODO(prattmic): Make this non-global.
	candHotEdgeMap = make(map[pgo.CallSiteInfo]struct{})

	// List of inlined call sites. CallSiteInfo.Callee is always nil.
	// TODO(prattmic): Make this non-global.
	inlinedCallSites = make(map[pgo.CallSiteInfo]struct{})

	// Threshold in percentage for hot callsite inlining.
	inlineHotCallSiteThresholdPercent float64

	// Threshold in CDF percentage for hot callsite inlining,
	// that is, for a threshold of X the hottest callsites that
	// make up the top X% of total edge weight will be
	// considered hot for inlining candidates.
	inlineCDFHotCallSiteThresholdPercent = float64(99)

	// Budget increased due to hotness.
	inlineHotMaxBudget int32 = 2000
)

// pgoInlinePrologue records the hot callsites from ir-graph.
func pgoInlinePrologue(p *pgo.Profile, decls []ir.Node) {
	if base.Debug.PGOInlineCDFThreshold != "" {
		if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 {
			inlineCDFHotCallSiteThresholdPercent = s
		} else {
			base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100")
		}
	}
	var hotCallsites []pgo.NodeMapKey
	inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p)
	if base.Debug.PGOInline > 0 {
		fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent)
	}

	if x := base.Debug.PGOInlineBudget; x != 0 {
		inlineHotMaxBudget = int32(x)
	}

	for _, n := range hotCallsites {
		// mark inlineable callees from hot edges
		if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil {
			candHotCalleeMap[callee] = struct{}{}
		}
		// mark hot call sites
		if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil {
			csi := pgo.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST}
			candHotEdgeMap[csi] = struct{}{}
		}
	}

	if base.Debug.PGOInline >= 2 {
		fmt.Printf("hot-cg before inline in dot format:")
		p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent)
	}
}

// hotNodesFromCDF computes an edge weight threshold and the list of hot
// nodes that make up the given percentage of the CDF. The threshold, as
// a percent, is the lower bound of weight for nodes to be considered hot
// (currently only used in debug prints) (in case of equal weights,
// comparing with the threshold may not accurately reflect which nodes are
// considiered hot).
func hotNodesFromCDF(p *pgo.Profile) (float64, []pgo.NodeMapKey) {
	nodes := make([]pgo.NodeMapKey, len(p.NodeMap))
	i := 0
	for n := range p.NodeMap {
		nodes[i] = n
		i++
	}
	sort.Slice(nodes, func(i, j int) bool {
		ni, nj := nodes[i], nodes[j]
		if wi, wj := p.NodeMap[ni].EWeight, p.NodeMap[nj].EWeight; wi != wj {
			return wi > wj // want larger weight first
		}
		// same weight, order by name/line number
		if ni.CallerName != nj.CallerName {
			return ni.CallerName < nj.CallerName
		}
		if ni.CalleeName != nj.CalleeName {
			return ni.CalleeName < nj.CalleeName
		}
		return ni.CallSiteOffset < nj.CallSiteOffset
	})
	cum := int64(0)
	for i, n := range nodes {
		w := p.NodeMap[n].EWeight
		cum += w
		if pgo.WeightInPercentage(cum, p.TotalEdgeWeight) > inlineCDFHotCallSiteThresholdPercent {
			// nodes[:i+1] to include the very last node that makes it to go over the threshold.
			// (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to
			// include that node instead of excluding it.)
			return pgo.WeightInPercentage(w, p.TotalEdgeWeight), nodes[:i+1]
		}
	}
	return 0, nodes
}

// pgoInlineEpilogue updates IRGraph after inlining.
func pgoInlineEpilogue(p *pgo.Profile, decls []ir.Node) {
	if base.Debug.PGOInline >= 2 {
		ir.VisitFuncsBottomUp(decls, func(list []*ir.Func, recursive bool) {
			for _, f := range list {
				name := ir.PkgFuncName(f)
				if n, ok := p.WeightedCG.IRNodes[name]; ok {
					p.RedirectEdges(n, inlinedCallSites)
				}
			}
		})
		// Print the call-graph after inlining. This is a debugging feature.
		fmt.Printf("hot-cg after inline in dot:")
		p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent)
	}
}

// InlinePackage finds functions that can be inlined and clones them before walk expands them.
func InlinePackage(p *pgo.Profile) {
	InlineDecls(p, typecheck.Target.Decls, true)
}

// InlineDecls applies inlining to the given batch of declarations.
func InlineDecls(p *pgo.Profile, decls []ir.Node, doInline bool) {
	if p != nil {
		pgoInlinePrologue(p, decls)
	}

	ir.VisitFuncsBottomUp(decls, func(list []*ir.Func, recursive bool) {
		numfns := numNonClosures(list)
		for _, n := range list {
			if !recursive || numfns > 1 {
				// We allow inlining if there is no
				// recursion, or the recursion cycle is
				// across more than one function.
				CanInline(n, p)
			} else {
				if base.Flag.LowerM > 1 {
					fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(n), n.Nname)
				}
			}
			if doInline {
				InlineCalls(n, p)
			}
		}
	})

	if p != nil {
		pgoInlineEpilogue(p, decls)
	}
}

// CanInline determines whether fn is inlineable.
// If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl.
// fn and fn.Body will already have been typechecked.
func CanInline(fn *ir.Func, profile *pgo.Profile) {
	if fn.Nname == nil {
		base.Fatalf("CanInline no nname %+v", fn)
	}

	var reason string // reason, if any, that the function was not inlined
	if base.Flag.LowerM > 1 || logopt.Enabled() {
		defer func() {
			if reason != "" {
				if base.Flag.LowerM > 1 {
					fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
				}
				if logopt.Enabled() {
					logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
				}
			}
		}()
	}

	// If marked "go:noinline", don't inline
	if fn.Pragma&ir.Noinline != 0 {
		reason = "marked go:noinline"
		return
	}

	// If marked "go:norace" and -race compilation, don't inline.
	if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
		reason = "marked go:norace with -race compilation"
		return
	}

	// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
	if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
		reason = "marked go:nocheckptr"
		return
	}

	// If marked "go:cgo_unsafe_args", don't inline, since the
	// function makes assumptions about its argument frame layout.
	if fn.Pragma&ir.CgoUnsafeArgs != 0 {
		reason = "marked go:cgo_unsafe_args"
		return
	}

	// If marked as "go:uintptrkeepalive", don't inline, since the
	// keep alive information is lost during inlining.
	//
	// TODO(prattmic): This is handled on calls during escape analysis,
	// which is after inlining. Move prior to inlining so the keep-alive is
	// maintained after inlining.
	if fn.Pragma&ir.UintptrKeepAlive != 0 {
		reason = "marked as having a keep-alive uintptr argument"
		return
	}

	// If marked as "go:uintptrescapes", don't inline, since the
	// escape information is lost during inlining.
	if fn.Pragma&ir.UintptrEscapes != 0 {
		reason = "marked as having an escaping uintptr argument"
		return
	}

	// The nowritebarrierrec checker currently works at function
	// granularity, so inlining yeswritebarrierrec functions can
	// confuse it (#22342). As a workaround, disallow inlining
	// them for now.
	if fn.Pragma&ir.Yeswritebarrierrec != 0 {
		reason = "marked go:yeswritebarrierrec"
		return
	}

	// If fn has no body (is defined outside of Go), cannot inline it.
	if len(fn.Body) == 0 {
		reason = "no function body"
		return
	}

	if fn.Typecheck() == 0 {
		base.Fatalf("CanInline on non-typechecked function %v", fn)
	}

	n := fn.Nname
	if n.Func.InlinabilityChecked() {
		return
	}
	defer n.Func.SetInlinabilityChecked(true)

	cc := int32(inlineExtraCallCost)
	if base.Flag.LowerL == 4 {
		cc = 1 // this appears to yield better performance than 0.
	}

	// Update the budget for profile-guided inlining.
	budget := int32(inlineMaxBudget)
	if profile != nil {
		if n, ok := profile.WeightedCG.IRNodes[ir.PkgFuncName(fn)]; ok {
			if _, ok := candHotCalleeMap[n]; ok {
				budget = int32(inlineHotMaxBudget)
				if base.Debug.PGOInline > 0 {
					fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn))
				}
			}
		}
	}

	// At this point in the game the function we're looking at may
	// have "stale" autos, vars that still appear in the Dcl list, but
	// which no longer have any uses in the function body (due to
	// elimination by deadcode). We'd like to exclude these dead vars
	// when creating the "Inline.Dcl" field below; to accomplish this,
	// the hairyVisitor below builds up a map of used/referenced
	// locals, and we use this map to produce a pruned Inline.Dcl
	// list. See issue 25249 for more context.

	visitor := hairyVisitor{
		curFunc:       fn,
		budget:        budget,
		maxBudget:     budget,
		extraCallCost: cc,
		profile:       profile,
	}
	if visitor.tooHairy(fn) {
		reason = visitor.reason
		return
	}

	n.Func.Inl = &ir.Inline{
		Cost: budget - visitor.budget,
		Dcl:  pruneUnusedAutos(n.Defn.(*ir.Func).Dcl, &visitor),
		Body: inlcopylist(fn.Body),

		CanDelayResults: canDelayResults(fn),
	}

	if base.Flag.LowerM > 1 {
		fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, budget-visitor.budget, fn.Type(), ir.Nodes(n.Func.Inl.Body))
	} else if base.Flag.LowerM != 0 {
		fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
	}
	if logopt.Enabled() {
		logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", budget-visitor.budget))
	}
}

// canDelayResults reports whether inlined calls to fn can delay
// declaring the result parameter until the "return" statement.
func canDelayResults(fn *ir.Func) bool {
	// We can delay declaring+initializing result parameters if:
	// (1) there's exactly one "return" statement in the inlined function;
	// (2) it's not an empty return statement (#44355); and
	// (3) the result parameters aren't named.

	nreturns := 0
	ir.VisitList(fn.Body, func(n ir.Node) {
		if n, ok := n.(*ir.ReturnStmt); ok {
			nreturns++
			if len(n.Results) == 0 {
				nreturns++ // empty return statement (case 2)
			}
		}
	})

	if nreturns != 1 {
		return false // not exactly one return statement (case 1)
	}

	// temporaries for return values.
	for _, param := range fn.Type().Results().FieldSlice() {
		if sym := types.OrigSym(param.Sym); sym != nil && !sym.IsBlank() {
			return false // found a named result parameter (case 3)
		}
	}

	return true
}

// hairyVisitor visits a function body to determine its inlining
// hairiness and whether or not it can be inlined.
type hairyVisitor struct {
	// This is needed to access the current caller in the doNode function.
	curFunc       *ir.Func
	budget        int32
	maxBudget     int32
	reason        string
	extraCallCost int32
	usedLocals    ir.NameSet
	do            func(ir.Node) bool
	profile       *pgo.Profile
}

func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
	v.do = v.doNode // cache closure
	if ir.DoChildren(fn, v.do) {
		return true
	}
	if v.budget < 0 {
		v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget)
		return true
	}
	return false
}

func (v *hairyVisitor) doNode(n ir.Node) bool {
	if n == nil {
		return false
	}
	switch n.Op() {
	// Call is okay if inlinable and we have the budget for the body.
	case ir.OCALLFUNC:
		n := n.(*ir.CallExpr)
		// Functions that call runtime.getcaller{pc,sp} can not be inlined
		// because getcaller{pc,sp} expect a pointer to the caller's first argument.
		//
		// runtime.throw is a "cheap call" like panic in normal code.
		if n.X.Op() == ir.ONAME {
			name := n.X.(*ir.Name)
			if name.Class == ir.PFUNC && types.IsRuntimePkg(name.Sym().Pkg) {
				fn := name.Sym().Name
				if fn == "getcallerpc" || fn == "getcallersp" {
					v.reason = "call to " + fn
					return true
				}
				if fn == "throw" {
					v.budget -= inlineExtraThrowCost
					break
				}
			}
			// Special case for coverage counter updates; although
			// these correspond to real operations, we treat them as
			// zero cost for the moment. This is due to the existence
			// of tests that are sensitive to inlining-- if the
			// insertion of coverage instrumentation happens to tip a
			// given function over the threshold and move it from
			// "inlinable" to "not-inlinable", this can cause changes
			// in allocation behavior, which can then result in test
			// failures (a good example is the TestAllocations in
			// crypto/ed25519).
			if isAtomicCoverageCounterUpdate(n) {
				return false
			}
		}
		if n.X.Op() == ir.OMETHEXPR {
			if meth := ir.MethodExprName(n.X); meth != nil {
				if fn := meth.Func; fn != nil {
					s := fn.Sym()
					var cheap bool
					if types.IsRuntimePkg(s.Pkg) && s.Name == "heapBits.nextArena" {
						// Special case: explicitly allow mid-stack inlining of
						// runtime.heapBits.next even though it calls slow-path
						// runtime.heapBits.nextArena.
						cheap = true
					}
					// Special case: on architectures that can do unaligned loads,
					// explicitly mark encoding/binary methods as cheap,
					// because in practice they are, even though our inlining
					// budgeting system does not see that. See issue 42958.
					if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" {
						switch s.Name {
						case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16",
							"bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16",
							"littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16",
							"bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16",
							"littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16",
							"bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16":
							cheap = true
						}
					}
					if cheap {
						break // treat like any other node, that is, cost of 1
					}
				}
			}
		}

		// Determine if the callee edge is for an inlinable hot callee or not.
		if v.profile != nil && v.curFunc != nil {
			if fn := inlCallee(n.X, v.profile); fn != nil && typecheck.HaveInlineBody(fn) {
				lineOffset := pgo.NodeLineOffset(n, fn)
				csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: v.curFunc}
				if _, o := candHotEdgeMap[csi]; o {
					if base.Debug.PGOInline > 0 {
						fmt.Printf("hot-callsite identified at line=%v for func=%v\n", ir.Line(n), ir.PkgFuncName(v.curFunc))
					}
				}
			}
		}

		if ir.IsIntrinsicCall(n) {
			// Treat like any other node.
			break
		}

		if fn := inlCallee(n.X, v.profile); fn != nil && typecheck.HaveInlineBody(fn) {
			v.budget -= fn.Inl.Cost
			break
		}

		// Call cost for non-leaf inlining.
		v.budget -= v.extraCallCost

	case ir.OCALLMETH:
		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")

	// Things that are too hairy, irrespective of the budget
	case ir.OCALL, ir.OCALLINTER:
		// Call cost for non-leaf inlining.
		v.budget -= v.extraCallCost

	case ir.OPANIC:
		n := n.(*ir.UnaryExpr)
		if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() {
			// Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining.
			// Before CL 284412, these conversions were introduced later in the
			// compiler, so they didn't count against inlining budget.
			v.budget++
		}
		v.budget -= inlineExtraPanicCost

	case ir.ORECOVER:
		// recover matches the argument frame pointer to find
		// the right panic value, so it needs an argument frame.
		v.reason = "call to recover"
		return true

	case ir.OCLOSURE:
		if base.Debug.InlFuncsWithClosures == 0 {
			v.reason = "not inlining functions with closures"
			return true
		}

		// TODO(danscales): Maybe make budget proportional to number of closure
		// variables, e.g.:
		//v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3)
		v.budget -= 15
		// Scan body of closure (which DoChildren doesn't automatically
		// do) to check for disallowed ops in the body and include the
		// body in the budget.
		if doList(n.(*ir.ClosureExpr).Func.Body, v.do) {
			return true
		}

	case ir.OGO,
		ir.ODEFER,
		ir.ODCLTYPE, // can't print yet
		ir.OTAILCALL:
		v.reason = "unhandled op " + n.Op().String()
		return true

	case ir.OAPPEND:
		v.budget -= inlineExtraAppendCost

	case ir.OADDR:
		n := n.(*ir.AddrExpr)
		// Make "&s.f" cost 0 when f's offset is zero.
		if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) {
			if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 {
				v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR
			}
		}

	case ir.ODEREF:
		// *(*X)(unsafe.Pointer(&x)) is low-cost
		n := n.(*ir.StarExpr)

		ptr := n.X
		for ptr.Op() == ir.OCONVNOP {
			ptr = ptr.(*ir.ConvExpr).X
		}
		if ptr.Op() == ir.OADDR {
			v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR
		}

	case ir.OCONVNOP:
		// This doesn't produce code, but the children might.
		v.budget++ // undo default cost

	case ir.ODCLCONST, ir.OFALL:
		// These nodes don't produce code; omit from inlining budget.
		return false

	case ir.OIF:
		n := n.(*ir.IfStmt)
		if ir.IsConst(n.Cond, constant.Bool) {
			// This if and the condition cost nothing.
			if doList(n.Init(), v.do) {
				return true
			}
			if ir.BoolVal(n.Cond) {
				return doList(n.Body, v.do)
			} else {
				return doList(n.Else, v.do)
			}
		}

	case ir.ONAME:
		n := n.(*ir.Name)
		if n.Class == ir.PAUTO {
			v.usedLocals.Add(n)
		}

	case ir.OBLOCK:
		// The only OBLOCK we should see at this point is an empty one.
		// In any event, let the visitList(n.List()) below take care of the statements,
		// and don't charge for the OBLOCK itself. The ++ undoes the -- below.
		v.budget++

	case ir.OMETHVALUE, ir.OSLICELIT:
		v.budget-- // Hack for toolstash -cmp.

	case ir.OMETHEXPR:
		v.budget++ // Hack for toolstash -cmp.

	case ir.OAS2:
		n := n.(*ir.AssignListStmt)

		// Unified IR unconditionally rewrites:
		//
		//	a, b = f()
		//
		// into:
		//
		//	DCL tmp1
		//	DCL tmp2
		//	tmp1, tmp2 = f()
		//	a, b = tmp1, tmp2
		//
		// so that it can insert implicit conversions as necessary. To
		// minimize impact to the existing inlining heuristics (in
		// particular, to avoid breaking the existing inlinability regress
		// tests), we need to compensate for this here.
		if base.Debug.Unified != 0 {
			if init := n.Rhs[0].Init(); len(init) == 1 {
				if _, ok := init[0].(*ir.AssignListStmt); ok {
					// 4 for each value, because each temporary variable now
					// appears 3 times (DCL, LHS, RHS), plus an extra DCL node.
					//
					// 1 for the extra "tmp1, tmp2 = f()" assignment statement.
					v.budget += 4*int32(len(n.Lhs)) + 1
				}
			}
		}

	case ir.OAS:
		// Special case for coverage counter updates and coverage
		// function registrations. Although these correspond to real
		// operations, we treat them as zero cost for the moment. This
		// is primarily due to the existence of tests that are
		// sensitive to inlining-- if the insertion of coverage
		// instrumentation happens to tip a given function over the
		// threshold and move it from "inlinable" to "not-inlinable",
		// this can cause changes in allocation behavior, which can
		// then result in test failures (a good example is the
		// TestAllocations in crypto/ed25519).
		n := n.(*ir.AssignStmt)
		if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) {
			return false
		}
	}

	v.budget--

	// When debugging, don't stop early, to get full cost of inlining this function
	if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
		v.reason = "too expensive"
		return true
	}

	return ir.DoChildren(n, v.do)
}

func isBigFunc(fn *ir.Func) bool {
	budget := inlineBigFunctionNodes
	return ir.Any(fn, func(n ir.Node) bool {
		budget--
		return budget <= 0
	})
}

// inlcopylist (together with inlcopy) recursively copies a list of nodes, except
// that it keeps the same ONAME, OTYPE, and OLITERAL nodes. It is used for copying
// the body and dcls of an inlineable function.
func inlcopylist(ll []ir.Node) []ir.Node {
	s := make([]ir.Node, len(ll))
	for i, n := range ll {
		s[i] = inlcopy(n)
	}
	return s
}

// inlcopy is like DeepCopy(), but does extra work to copy closures.
func inlcopy(n ir.Node) ir.Node {
	var edit func(ir.Node) ir.Node
	edit = func(x ir.Node) ir.Node {
		switch x.Op() {
		case ir.ONAME, ir.OTYPE, ir.OLITERAL, ir.ONIL:
			return x
		}
		m := ir.Copy(x)
		ir.EditChildren(m, edit)
		if x.Op() == ir.OCLOSURE {
			x := x.(*ir.ClosureExpr)
			// Need to save/duplicate x.Func.Nname,
			// x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and
			// x.Func.Body for iexport and local inlining.
			oldfn := x.Func
			newfn := ir.NewFunc(oldfn.Pos())
			m.(*ir.ClosureExpr).Func = newfn
			newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), oldfn.Nname.Sym())
			// XXX OK to share fn.Type() ??
			newfn.Nname.SetType(oldfn.Nname.Type())
			newfn.Body = inlcopylist(oldfn.Body)
			// Make shallow copy of the Dcl and ClosureVar slices
			newfn.Dcl = append([]*ir.Name(nil), oldfn.Dcl...)
			newfn.ClosureVars = append([]*ir.Name(nil), oldfn.ClosureVars...)
		}
		return m
	}
	return edit(n)
}

// InlineCalls/inlnode walks fn's statements and expressions and substitutes any
// calls made to inlineable functions. This is the external entry point.
func InlineCalls(fn *ir.Func, profile *pgo.Profile) {
	savefn := ir.CurFunc
	ir.CurFunc = fn
	maxCost := int32(inlineMaxBudget)
	if isBigFunc(fn) {
		maxCost = inlineBigFunctionMaxCost
	}
	var inlCalls []*ir.InlinedCallExpr
	var edit func(ir.Node) ir.Node
	edit = func(n ir.Node) ir.Node {
		return inlnode(n, maxCost, &inlCalls, edit, profile)
	}
	ir.EditChildren(fn, edit)

	// If we inlined any calls, we want to recursively visit their
	// bodies for further inlining. However, we need to wait until
	// *after* the original function body has been expanded, or else
	// inlCallee can have false positives (e.g., #54632).
	for len(inlCalls) > 0 {
		call := inlCalls[0]
		inlCalls = inlCalls[1:]
		ir.EditChildren(call, edit)
	}

	ir.CurFunc = savefn
}

// inlnode recurses over the tree to find inlineable calls, which will
// be turned into OINLCALLs by mkinlcall. When the recursion comes
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
// nbody and nelse and use one of the 4 inlconv/glue functions above
// to turn the OINLCALL into an expression, a statement, or patch it
// in to this nodes list or rlist as appropriate.
// NOTE it makes no sense to pass the glue functions down the
// recursion to the level where the OINLCALL gets created because they
// have to edit /this/ n, so you'd have to push that one down as well,
// but then you may as well do it here.  so this is cleaner and
// shorter and less complicated.
// The result of inlnode MUST be assigned back to n, e.g.
//
//	n.Left = inlnode(n.Left)
func inlnode(n ir.Node, maxCost int32, inlCalls *[]*ir.InlinedCallExpr, edit func(ir.Node) ir.Node, profile *pgo.Profile) ir.Node {
	if n == nil {
		return n
	}

	switch n.Op() {
	case ir.ODEFER, ir.OGO:
		n := n.(*ir.GoDeferStmt)
		switch call := n.Call; call.Op() {
		case ir.OCALLMETH:
			base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
		case ir.OCALLFUNC:
			call := call.(*ir.CallExpr)
			call.NoInline = true
		}
	case ir.OTAILCALL:
		n := n.(*ir.TailCallStmt)
		n.Call.NoInline = true // Not inline a tail call for now. Maybe we could inline it just like RETURN fn(arg)?

	// TODO do them here (or earlier),
	// so escape analysis can avoid more heapmoves.
	case ir.OCLOSURE:
		return n
	case ir.OCALLMETH:
		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
	case ir.OCALLFUNC:
		n := n.(*ir.CallExpr)
		if n.X.Op() == ir.OMETHEXPR {
			// Prevent inlining some reflect.Value methods when using checkptr,
			// even when package reflect was compiled without it (#35073).
			if meth := ir.MethodExprName(n.X); meth != nil {
				s := meth.Sym()
				if base.Debug.Checkptr != 0 && types.IsReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
					return n
				}
			}
		}
	}

	lno := ir.SetPos(n)

	ir.EditChildren(n, edit)

	// with all the branches out of the way, it is now time to
	// transmogrify this node itself unless inhibited by the
	// switch at the top of this function.
	switch n.Op() {
	case ir.OCALLMETH:
		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")

	case ir.OCALLFUNC:
		call := n.(*ir.CallExpr)
		if call.NoInline {
			break
		}
		if base.Flag.LowerM > 3 {
			fmt.Printf("%v:call to func %+v\n", ir.Line(n), call.X)
		}
		if ir.IsIntrinsicCall(call) {
			break
		}
		if fn := inlCallee(call.X, profile); fn != nil && typecheck.HaveInlineBody(fn) {
			n = mkinlcall(call, fn, maxCost, inlCalls, edit)
		}
	}

	base.Pos = lno

	return n
}

// inlCallee takes a function-typed expression and returns the underlying function ONAME
// that it refers to if statically known. Otherwise, it returns nil.
func inlCallee(fn ir.Node, profile *pgo.Profile) *ir.Func {
	fn = ir.StaticValue(fn)
	switch fn.Op() {
	case ir.OMETHEXPR:
		fn := fn.(*ir.SelectorExpr)
		n := ir.MethodExprName(fn)
		// Check that receiver type matches fn.X.
		// TODO(mdempsky): Handle implicit dereference
		// of pointer receiver argument?
		if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
			return nil
		}
		return n.Func
	case ir.ONAME:
		fn := fn.(*ir.Name)
		if fn.Class == ir.PFUNC {
			return fn.Func
		}
	case ir.OCLOSURE:
		fn := fn.(*ir.ClosureExpr)
		c := fn.Func
		CanInline(c, profile)
		return c
	}
	return nil
}

func inlParam(t *types.Field, as ir.InitNode, inlvars map[*ir.Name]*ir.Name) ir.Node {
	if t.Nname == nil {
		return ir.BlankNode
	}
	n := t.Nname.(*ir.Name)
	if ir.IsBlank(n) {
		return ir.BlankNode
	}
	inlvar := inlvars[n]
	if inlvar == nil {
		base.Fatalf("missing inlvar for %v", n)
	}
	as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, inlvar))
	inlvar.Name().Defn = as
	return inlvar
}

var inlgen int

// SSADumpInline gives the SSA back end a chance to dump the function
// when producing output for debugging the compiler itself.
var SSADumpInline = func(*ir.Func) {}

// InlineCall allows the inliner implementation to be overridden.
// If it returns nil, the function will not be inlined.
var InlineCall = oldInlineCall

// If n is a OCALLFUNC node, and fn is an ONAME node for a
// function with an inlinable body, return an OINLCALL node that can replace n.
// The returned node's Ninit has the parameter assignments, the Nbody is the
// inlined function body, and (List, Rlist) contain the (input, output)
// parameters.
// The result of mkinlcall MUST be assigned back to n, e.g.
//
//	n.Left = mkinlcall(n.Left, fn, isddd)
func mkinlcall(n *ir.CallExpr, fn *ir.Func, maxCost int32, inlCalls *[]*ir.InlinedCallExpr, edit func(ir.Node) ir.Node) ir.Node {
	if fn.Inl == nil {
		if logopt.Enabled() {
			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
				fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn)))
		}
		return n
	}
	if fn.Inl.Cost > maxCost {
		// If the callsite is hot and it is under the inlineHotMaxBudget budget, then try to inline it, or else bail.
		lineOffset := pgo.NodeLineOffset(n, ir.CurFunc)
		csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: ir.CurFunc}
		if _, ok := candHotEdgeMap[csi]; ok {
			if fn.Inl.Cost > inlineHotMaxBudget {
				if logopt.Enabled() {
					logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
						fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), inlineHotMaxBudget))
				}
				return n
			}
			if base.Debug.PGOInline > 0 {
				fmt.Printf("hot-budget check allows inlining for call %s at %v\n", ir.PkgFuncName(fn), ir.Line(n))
			}
		} else {
			// The inlined function body is too big. Typically we use this check to restrict
			// inlining into very big functions.  See issue 26546 and 17566.
			if logopt.Enabled() {
				logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
					fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), maxCost))
			}
			return n
		}
	}

	if fn == ir.CurFunc {
		// Can't recursively inline a function into itself.
		if logopt.Enabled() {
			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(ir.CurFunc)))
		}
		return n
	}

	// The non-unified frontend has issues with inlining and shape parameters.
	if base.Debug.Unified == 0 {
		// Don't inline a function fn that has no shape parameters, but is passed at
		// least one shape arg. This means we must be inlining a non-generic function
		// fn that was passed into a generic function, and can be called with a shape
		// arg because it matches an appropriate type parameters. But fn may include
		// an interface conversion (that may be applied to a shape arg) that was not
		// apparent when we first created the instantiation of the generic function.
		// We can't handle this if we actually do the inlining, since we want to know
		// all interface conversions immediately after stenciling. So, we avoid
		// inlining in this case, see issue #49309. (1)
		//
		// See discussion on go.dev/cl/406475 for more background.
		if !fn.Type().Params().HasShape() {
			for _, arg := range n.Args {
				if arg.Type().HasShape() {
					if logopt.Enabled() {
						logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
							fmt.Sprintf("inlining function %v has no-shape params with shape args", ir.FuncName(fn)))
					}
					return n
				}
			}
		} else {
			// Don't inline a function fn that has shape parameters, but is passed no shape arg.
			// See comments (1) above, and issue #51909.
			inlineable := len(n.Args) == 0 // Function has shape in type, with no arguments can always be inlined.
			for _, arg := range n.Args {
				if arg.Type().HasShape() {
					inlineable = true
					break
				}
			}
			if !inlineable {
				if logopt.Enabled() {
					logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
						fmt.Sprintf("inlining function %v has shape params with no-shape args", ir.FuncName(fn)))
				}
				return n
			}
		}
	}

	if base.Flag.Cfg.Instrumenting && types.IsRuntimePkg(fn.Sym().Pkg) {
		// Runtime package must not be instrumented.
		// Instrument skips runtime package. However, some runtime code can be
		// inlined into other packages and instrumented there. To avoid this,
		// we disable inlining of runtime functions when instrumenting.
		// The example that we observed is inlining of LockOSThread,
		// which lead to false race reports on m contents.
		return n
	}

	parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
	sym := fn.Linksym()

	// Check if we've already inlined this function at this particular
	// call site, in order to stop inlining when we reach the beginning
	// of a recursion cycle again. We don't inline immediately recursive
	// functions, but allow inlining if there is a recursion cycle of
	// many functions. Most likely, the inlining will stop before we
	// even hit the beginning of the cycle again, but this catches the
	// unusual case.
	for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) {
		if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym {
			if base.Flag.LowerM > 1 {
				fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(ir.CurFunc))
			}
			return n
		}
	}

	typecheck.FixVariadicCall(n)

	inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym)

	closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) {
		// The linker needs FuncInfo metadata for all inlined
		// functions. This is typically handled by gc.enqueueFunc
		// calling ir.InitLSym for all function declarations in
		// typecheck.Target.Decls (ir.UseClosure adds all closures to
		// Decls).
		//
		// However, non-trivial closures in Decls are ignored, and are
		// insteaded enqueued when walk of the calling function
		// discovers them.
		//
		// This presents a problem for direct calls to closures.
		// Inlining will replace the entire closure definition with its
		// body, which hides the closure from walk and thus suppresses
		// symbol creation.
		//
		// Explicitly create a symbol early in this edge case to ensure
		// we keep this metadata.
		//
		// TODO: Refactor to keep a reference so this can all be done
		// by enqueueFunc.

		if n.Op() != ir.OCALLFUNC {
			// Not a standard call.
			return
		}
		if n.X.Op() != ir.OCLOSURE {
			// Not a direct closure call.
			return
		}

		clo := n.X.(*ir.ClosureExpr)
		if ir.IsTrivialClosure(clo) {
			// enqueueFunc will handle trivial closures anyways.
			return
		}

		ir.InitLSym(fn, true)
	}

	closureInitLSym(n, fn)

	if base.Flag.GenDwarfInl > 0 {
		if !sym.WasInlined() {
			base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
			sym.Set(obj.AttrWasInlined, true)
		}
	}

	if base.Flag.LowerM != 0 {
		fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
	}
	if base.Flag.LowerM > 2 {
		fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
	}

	if base.Debug.PGOInline > 0 {
		csi := pgo.CallSiteInfo{LineOffset: pgo.NodeLineOffset(n, fn), Caller: ir.CurFunc}
		if _, ok := inlinedCallSites[csi]; !ok {
			inlinedCallSites[csi] = struct{}{}
		}
	}

	res := InlineCall(n, fn, inlIndex)

	if res == nil {
		base.FatalfAt(n.Pos(), "inlining call to %v failed", fn)
	}

	if base.Flag.LowerM > 2 {
		fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res)
	}

	*inlCalls = append(*inlCalls, res)

	return res
}

// CalleeEffects appends any side effects from evaluating callee to init.
func CalleeEffects(init *ir.Nodes, callee ir.Node) {
	for {
		init.Append(ir.TakeInit(callee)...)

		switch callee.Op() {
		case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR:
			return // done

		case ir.OCONVNOP:
			conv := callee.(*ir.ConvExpr)
			callee = conv.X

		case ir.OINLCALL:
			ic := callee.(*ir.InlinedCallExpr)
			init.Append(ic.Body.Take()...)
			callee = ic.SingleResult()

		default:
			base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee)
		}
	}
}

// oldInlineCall creates an InlinedCallExpr to replace the given call
// expression. fn is the callee function to be inlined. inlIndex is
// the inlining tree position index, for use with src.NewInliningBase
// when rewriting positions.
func oldInlineCall(call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr {
	if base.Debug.TypecheckInl == 0 {
		typecheck.ImportedBody(fn)
	}

	SSADumpInline(fn)

	ninit := call.Init()

	// For normal function calls, the function callee expression
	// may contain side effects. Make sure to preserve these,
	// if necessary (#42703).
	if call.Op() == ir.OCALLFUNC {
		CalleeEffects(&ninit, call.X)
	}

	// Make temp names to use instead of the originals.
	inlvars := make(map[*ir.Name]*ir.Name)

	// record formals/locals for later post-processing
	var inlfvars []*ir.Name

	for _, ln := range fn.Inl.Dcl {
		if ln.Op() != ir.ONAME {
			continue
		}
		if ln.Class == ir.PPARAMOUT { // return values handled below.
			continue
		}
		inlf := typecheck.Expr(inlvar(ln)).(*ir.Name)
		inlvars[ln] = inlf
		if base.Flag.GenDwarfInl > 0 {
			if ln.Class == ir.PPARAM {
				inlf.Name().SetInlFormal(true)
			} else {
				inlf.Name().SetInlLocal(true)
			}
			inlf.SetPos(ln.Pos())
			inlfvars = append(inlfvars, inlf)
		}
	}

	// We can delay declaring+initializing result parameters if:
	// temporaries for return values.
	var retvars []ir.Node
	for i, t := range fn.Type().Results().Fields().Slice() {
		var m *ir.Name
		if nn := t.Nname; nn != nil && !ir.IsBlank(nn.(*ir.Name)) && !strings.HasPrefix(nn.Sym().Name, "~r") {
			n := nn.(*ir.Name)
			m = inlvar(n)
			m = typecheck.Expr(m).(*ir.Name)
			inlvars[n] = m
		} else {
			// anonymous return values, synthesize names for use in assignment that replaces return
			m = retvar(t, i)
		}

		if base.Flag.GenDwarfInl > 0 {
			// Don't update the src.Pos on a return variable if it
			// was manufactured by the inliner (e.g. "~R2"); such vars
			// were not part of the original callee.
			if !strings.HasPrefix(m.Sym().Name, "~R") {
				m.Name().SetInlFormal(true)
				m.SetPos(t.Pos)
				inlfvars = append(inlfvars, m)
			}
		}

		retvars = append(retvars, m)
	}

	// Assign arguments to the parameters' temp names.
	as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil)
	as.Def = true
	if call.Op() == ir.OCALLMETH {
		base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
	}
	as.Rhs.Append(call.Args...)

	if recv := fn.Type().Recv(); recv != nil {
		as.Lhs.Append(inlParam(recv, as, inlvars))
	}
	for _, param := range fn.Type().Params().Fields().Slice() {
		as.Lhs.Append(inlParam(param, as, inlvars))
	}

	if len(as.Rhs) != 0 {
		ninit.Append(typecheck.Stmt(as))
	}

	if !fn.Inl.CanDelayResults {
		// Zero the return parameters.
		for _, n := range retvars {
			ninit.Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name)))
			ras := ir.NewAssignStmt(base.Pos, n, nil)
			ninit.Append(typecheck.Stmt(ras))
		}
	}

	retlabel := typecheck.AutoLabel(".i")

	inlgen++

	// Add an inline mark just before the inlined body.
	// This mark is inline in the code so that it's a reasonable spot
	// to put a breakpoint. Not sure if that's really necessary or not
	// (in which case it could go at the end of the function instead).
	// Note issue 28603.
	ninit.Append(ir.NewInlineMarkStmt(call.Pos().WithIsStmt(), int64(inlIndex)))

	subst := inlsubst{
		retlabel:    retlabel,
		retvars:     retvars,
		inlvars:     inlvars,
		defnMarker:  ir.NilExpr{},
		bases:       make(map[*src.PosBase]*src.PosBase),
		newInlIndex: inlIndex,
		fn:          fn,
	}
	subst.edit = subst.node

	body := subst.list(ir.Nodes(fn.Inl.Body))

	lab := ir.NewLabelStmt(base.Pos, retlabel)
	body = append(body, lab)

	if base.Flag.GenDwarfInl > 0 {
		for _, v := range inlfvars {
			v.SetPos(subst.updatedPos(v.Pos()))
		}
	}

	//dumplist("ninit post", ninit);

	res := ir.NewInlinedCallExpr(base.Pos, body, retvars)
	res.SetInit(ninit)
	res.SetType(call.Type())
	res.SetTypecheck(1)
	return res
}

// Every time we expand a function we generate a new set of tmpnames,
// PAUTO's in the calling functions, and link them off of the
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
func inlvar(var_ *ir.Name) *ir.Name {
	if base.Flag.LowerM > 3 {
		fmt.Printf("inlvar %+v\n", var_)
	}

	n := typecheck.NewName(var_.Sym())
	n.SetType(var_.Type())
	n.SetTypecheck(1)
	n.Class = ir.PAUTO
	n.SetUsed(true)
	n.SetAutoTemp(var_.AutoTemp())
	n.Curfn = ir.CurFunc // the calling function, not the called one
	n.SetAddrtaken(var_.Addrtaken())

	ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
	return n
}

// Synthesize a variable to store the inlined function's results in.
func retvar(t *types.Field, i int) *ir.Name {
	n := typecheck.NewName(typecheck.LookupNum("~R", i))
	n.SetType(t.Type)
	n.SetTypecheck(1)
	n.Class = ir.PAUTO
	n.SetUsed(true)
	n.Curfn = ir.CurFunc // the calling function, not the called one
	ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
	return n
}

// The inlsubst type implements the actual inlining of a single
// function call.
type inlsubst struct {
	// Target of the goto substituted in place of a return.
	retlabel *types.Sym

	// Temporary result variables.
	retvars []ir.Node

	inlvars map[*ir.Name]*ir.Name
	// defnMarker is used to mark a Node for reassignment.
	// inlsubst.clovar set this during creating new ONAME.
	// inlsubst.node will set the correct Defn for inlvar.
	defnMarker ir.NilExpr

	// bases maps from original PosBase to PosBase with an extra
	// inlined call frame.
	bases map[*src.PosBase]*src.PosBase

	// newInlIndex is the index of the inlined call frame to
	// insert for inlined nodes.
	newInlIndex int

	edit func(ir.Node) ir.Node // cached copy of subst.node method value closure

	// If non-nil, we are inside a closure inside the inlined function, and
	// newclofn is the Func of the new inlined closure.
	newclofn *ir.Func

	fn *ir.Func // For debug -- the func that is being inlined

	// If true, then don't update source positions during substitution
	// (retain old source positions).
	noPosUpdate bool
}

// list inlines a list of nodes.
func (subst *inlsubst) list(ll ir.Nodes) []ir.Node {
	s := make([]ir.Node, 0, len(ll))
	for _, n := range ll {
		s = append(s, subst.node(n))
	}
	return s
}

// fields returns a list of the fields of a struct type representing receiver,
// params, or results, after duplicating the field nodes and substituting the
// Nname nodes inside the field nodes.
func (subst *inlsubst) fields(oldt *types.Type) []*types.Field {
	oldfields := oldt.FieldSlice()
	newfields := make([]*types.Field, len(oldfields))
	for i := range oldfields {
		newfields[i] = oldfields[i].Copy()
		if oldfields[i].Nname != nil {
			newfields[i].Nname = subst.node(oldfields[i].Nname.(*ir.Name))
		}
	}
	return newfields
}

// clovar creates a new ONAME node for a local variable or param of a closure
// inside a function being inlined.
func (subst *inlsubst) clovar(n *ir.Name) *ir.Name {
	m := ir.NewNameAt(n.Pos(), n.Sym())
	m.Class = n.Class
	m.SetType(n.Type())
	m.SetTypecheck(1)
	if n.IsClosureVar() {
		m.SetIsClosureVar(true)
	}
	if n.Addrtaken() {
		m.SetAddrtaken(true)
	}
	if n.Used() {
		m.SetUsed(true)
	}
	m.Defn = n.Defn

	m.Curfn = subst.newclofn

	switch defn := n.Defn.(type) {
	case nil:
		// ok
	case *ir.Name:
		if !n.IsClosureVar() {
			base.FatalfAt(n.Pos(), "want closure variable, got: %+v", n)
		}
		if n.Sym().Pkg != types.LocalPkg {
			// If the closure came from inlining a function from
			// another package, must change package of captured
			// variable to localpkg, so that the fields of the closure
			// struct are local package and can be accessed even if
			// name is not exported. If you disable this code, you can
			// reproduce the problem by running 'go test
			// go/internal/srcimporter'. TODO(mdempsky) - maybe change
			// how we create closure structs?
			m.SetSym(types.LocalPkg.Lookup(n.Sym().Name))
		}
		// Make sure any inlvar which is the Defn
		// of an ONAME closure var is rewritten
		// during inlining. Don't substitute
		// if Defn node is outside inlined function.
		if subst.inlvars[n.Defn.(*ir.Name)] != nil {
			m.Defn = subst.node(n.Defn)
		}
	case *ir.AssignStmt, *ir.AssignListStmt:
		// Mark node for reassignment at the end of inlsubst.node.
		m.Defn = &subst.defnMarker
	case *ir.TypeSwitchGuard:
		// TODO(mdempsky): Set m.Defn properly. See discussion on #45743.
	case *ir.RangeStmt:
		// TODO: Set m.Defn properly if we support inlining range statement in the future.
	default:
		base.FatalfAt(n.Pos(), "unexpected Defn: %+v", defn)
	}

	if n.Outer != nil {
		// Either the outer variable is defined in function being inlined,
		// and we will replace it with the substituted variable, or it is
		// defined outside the function being inlined, and we should just
		// skip the outer variable (the closure variable of the function
		// being inlined).
		s := subst.node(n.Outer).(*ir.Name)
		if s == n.Outer {
			s = n.Outer.Outer
		}
		m.Outer = s
	}
	return m
}

// closure does the necessary substitions for a ClosureExpr n and returns the new
// closure node.
func (subst *inlsubst) closure(n *ir.ClosureExpr) ir.Node {
	// Prior to the subst edit, set a flag in the inlsubst to indicate
	// that we don't want to update the source positions in the new
	// closure function. If we do this, it will appear that the
	// closure itself has things inlined into it, which is not the
	// case. See issue #46234 for more details. At the same time, we
	// do want to update the position in the new ClosureExpr (which is
	// part of the function we're working on). See #49171 for an
	// example of what happens if we miss that update.
	newClosurePos := subst.updatedPos(n.Pos())
	defer func(prev bool) { subst.noPosUpdate = prev }(subst.noPosUpdate)
	subst.noPosUpdate = true

	//fmt.Printf("Inlining func %v with closure into %v\n", subst.fn, ir.FuncName(ir.CurFunc))

	oldfn := n.Func
	newfn := ir.NewClosureFunc(oldfn.Pos(), true)

	if subst.newclofn != nil {
		//fmt.Printf("Inlining a closure with a nested closure\n")
	}
	prevxfunc := subst.newclofn

	// Mark that we are now substituting within a closure (within the
	// inlined function), and create new nodes for all the local
	// vars/params inside this closure.
	subst.newclofn = newfn
	newfn.Dcl = nil
	newfn.ClosureVars = nil
	for _, oldv := range oldfn.Dcl {
		newv := subst.clovar(oldv)
		subst.inlvars[oldv] = newv
		newfn.Dcl = append(newfn.Dcl, newv)
	}
	for _, oldv := range oldfn.ClosureVars {
		newv := subst.clovar(oldv)
		subst.inlvars[oldv] = newv
		newfn.ClosureVars = append(newfn.ClosureVars, newv)
	}

	// Need to replace ONAME nodes in
	// newfn.Type().FuncType().Receiver/Params/Results.FieldSlice().Nname
	oldt := oldfn.Type()
	newrecvs := subst.fields(oldt.Recvs())
	var newrecv *types.Field
	if len(newrecvs) > 0 {
		newrecv = newrecvs[0]
	}
	newt := types.NewSignature(oldt.Pkg(), newrecv,
		nil, subst.fields(oldt.Params()), subst.fields(oldt.Results()))

	newfn.Nname.SetType(newt)
	newfn.Body = subst.list(oldfn.Body)

	// Remove the nodes for the current closure from subst.inlvars
	for _, oldv := range oldfn.Dcl {
		delete(subst.inlvars, oldv)
	}
	for _, oldv := range oldfn.ClosureVars {
		delete(subst.inlvars, oldv)
	}
	// Go back to previous closure func
	subst.newclofn = prevxfunc

	// Actually create the named function for the closure, now that
	// the closure is inlined in a specific function.
	newclo := newfn.OClosure
	newclo.SetPos(newClosurePos)
	newclo.SetInit(subst.list(n.Init()))
	return typecheck.Expr(newclo)
}

// node recursively copies a node from the saved pristine body of the
// inlined function, substituting references to input/output
// parameters with ones to the tmpnames, and substituting returns with
// assignments to the output.
func (subst *inlsubst) node(n ir.Node) ir.Node {
	if n == nil {
		return nil
	}

	switch n.Op() {
	case ir.ONAME:
		n := n.(*ir.Name)

		// Handle captured variables when inlining closures.
		if n.IsClosureVar() && subst.newclofn == nil {
			o := n.Outer

			// Deal with case where sequence of closures are inlined.
			// TODO(danscales) - write test case to see if we need to
			// go up multiple levels.
			if o.Curfn != ir.CurFunc {
				o = o.Outer
			}

			// make sure the outer param matches the inlining location
			if o == nil || o.Curfn != ir.CurFunc {
				base.Fatalf("%v: unresolvable capture %v\n", ir.Line(n), n)
			}

			if base.Flag.LowerM > 2 {
				fmt.Printf("substituting captured name %+v  ->  %+v\n", n, o)
			}
			return o
		}

		if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
			if base.Flag.LowerM > 2 {
				fmt.Printf("substituting name %+v  ->  %+v\n", n, inlvar)
			}
			return inlvar
		}

		if base.Flag.LowerM > 2 {
			fmt.Printf("not substituting name %+v\n", n)
		}
		return n

	case ir.OMETHEXPR:
		n := n.(*ir.SelectorExpr)
		return n

	case ir.OLITERAL, ir.ONIL, ir.OTYPE:
		// If n is a named constant or type, we can continue
		// using it in the inline copy. Otherwise, make a copy
		// so we can update the line number.
		if n.Sym() != nil {
			return n
		}

	case ir.ORETURN:
		if subst.newclofn != nil {
			// Don't do special substitutions if inside a closure
			break
		}
		// Because of the above test for subst.newclofn,
		// this return is guaranteed to belong to the current inlined function.
		n := n.(*ir.ReturnStmt)
		init := subst.list(n.Init())
		if len(subst.retvars) != 0 && len(n.Results) != 0 {
			as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil)

			// Make a shallow copy of retvars.
			// Otherwise OINLCALL.Rlist will be the same list,
			// and later walk and typecheck may clobber it.
			for _, n := range subst.retvars {
				as.Lhs.Append(n)
			}
			as.Rhs = subst.list(n.Results)

			if subst.fn.Inl.CanDelayResults {
				for _, n := range as.Lhs {
					as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name)))
					n.Name().Defn = as
				}
			}

			init = append(init, typecheck.Stmt(as))
		}
		init = append(init, ir.NewBranchStmt(base.Pos, ir.OGOTO, subst.retlabel))
		typecheck.Stmts(init)
		return ir.NewBlockStmt(base.Pos, init)

	case ir.OGOTO, ir.OBREAK, ir.OCONTINUE:
		if subst.newclofn != nil {
			// Don't do special substitutions if inside a closure
			break
		}
		n := n.(*ir.BranchStmt)
		m := ir.Copy(n).(*ir.BranchStmt)
		m.SetPos(subst.updatedPos(m.Pos()))
		m.SetInit(nil)
		m.Label = translateLabel(n.Label)
		return m

	case ir.OLABEL:
		if subst.newclofn != nil {
			// Don't do special substitutions if inside a closure
			break
		}
		n := n.(*ir.LabelStmt)
		m := ir.Copy(n).(*ir.LabelStmt)
		m.SetPos(subst.updatedPos(m.Pos()))
		m.SetInit(nil)
		m.Label = translateLabel(n.Label)
		return m

	case ir.OCLOSURE:
		return subst.closure(n.(*ir.ClosureExpr))

	}

	m := ir.Copy(n)
	m.SetPos(subst.updatedPos(m.Pos()))
	ir.EditChildren(m, subst.edit)

	if subst.newclofn == nil {
		// Translate any label on FOR, RANGE loops, SWITCH or SELECT
		switch m.Op() {
		case ir.OFOR:
			m := m.(*ir.ForStmt)
			m.Label = translateLabel(m.Label)
			return m

		case ir.ORANGE:
			m := m.(*ir.RangeStmt)
			m.Label = translateLabel(m.Label)
			return m

		case ir.OSWITCH:
			m := m.(*ir.SwitchStmt)
			m.Label = translateLabel(m.Label)
			return m

		case ir.OSELECT:
			m := m.(*ir.SelectStmt)
			m.Label = translateLabel(m.Label)
			return m
		}
	}

	switch m := m.(type) {
	case *ir.AssignStmt:
		if lhs, ok := m.X.(*ir.Name); ok && lhs.Defn == &subst.defnMarker {
			lhs.Defn = m
		}
	case *ir.AssignListStmt:
		for _, lhs := range m.Lhs {
			if lhs, ok := lhs.(*ir.Name); ok && lhs.Defn == &subst.defnMarker {
				lhs.Defn = m
			}
		}
	}

	return m
}

// translateLabel makes a label from an inlined function (if non-nil) be unique by
// adding "·inlgen".
func translateLabel(l *types.Sym) *types.Sym {
	if l == nil {
		return nil
	}
	p := fmt.Sprintf("%s·%d", l.Name, inlgen)
	return typecheck.Lookup(p)
}

func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
	if subst.noPosUpdate {
		return xpos
	}
	pos := base.Ctxt.PosTable.Pos(xpos)
	oldbase := pos.Base() // can be nil
	newbase := subst.bases[oldbase]
	if newbase == nil {
		newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
		subst.bases[oldbase] = newbase
	}
	pos.SetBase(newbase)
	return base.Ctxt.PosTable.XPos(pos)
}

func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
	s := make([]*ir.Name, 0, len(ll))
	for _, n := range ll {
		if n.Class == ir.PAUTO {
			if !vis.usedLocals.Has(n) {
				continue
			}
		}
		s = append(s, n)
	}
	return s
}

// numNonClosures returns the number of functions in list which are not closures.
func numNonClosures(list []*ir.Func) int {
	count := 0
	for _, fn := range list {
		if fn.OClosure == nil {
			count++
		}
	}
	return count
}

func doList(list []ir.Node, do func(ir.Node) bool) bool {
	for _, x := range list {
		if x != nil {
			if do(x) {
				return true
			}
		}
	}
	return false
}

// isIndexingCoverageCounter returns true if the specified node 'n' is indexing
// into a coverage counter array.
func isIndexingCoverageCounter(n ir.Node) bool {
	if n.Op() != ir.OINDEX {
		return false
	}
	ixn := n.(*ir.IndexExpr)
	if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() {
		return false
	}
	nn := ixn.X.(*ir.Name)
	return nn.CoverageCounter()
}

// isAtomicCoverageCounterUpdate examines the specified node to
// determine whether it represents a call to sync/atomic.AddUint32 to
// increment a coverage counter.
func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool {
	if cn.X.Op() != ir.ONAME {
		return false
	}
	name := cn.X.(*ir.Name)
	if name.Class != ir.PFUNC {
		return false
	}
	fn := name.Sym().Name
	if name.Sym().Pkg.Path != "sync/atomic" ||
		(fn != "AddUint32" && fn != "StoreUint32") {
		return false
	}
	if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR {
		return false
	}
	adn := cn.Args[0].(*ir.AddrExpr)
	v := isIndexingCoverageCounter(adn.X)
	return v
}