1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
|
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ir
import (
"bytes"
"cmd/compile/internal/base"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/src"
"fmt"
"go/constant"
"go/token"
)
// An Expr is a Node that can appear as an expression.
type Expr interface {
Node
isExpr()
}
// A miniExpr is a miniNode with extra fields common to expressions.
// TODO(rsc): Once we are sure about the contents, compact the bools
// into a bit field and leave extra bits available for implementations
// embedding miniExpr. Right now there are ~60 unused bits sitting here.
type miniExpr struct {
miniNode
typ *types.Type
init Nodes // TODO(rsc): Don't require every Node to have an init
flags bitset8
}
const (
miniExprNonNil = 1 << iota
miniExprTransient
miniExprBounded
miniExprImplicit // for use by implementations; not supported by every Expr
miniExprCheckPtr
)
func (*miniExpr) isExpr() {}
func (n *miniExpr) Type() *types.Type { return n.typ }
func (n *miniExpr) SetType(x *types.Type) { n.typ = x }
func (n *miniExpr) NonNil() bool { return n.flags&miniExprNonNil != 0 }
func (n *miniExpr) MarkNonNil() { n.flags |= miniExprNonNil }
func (n *miniExpr) Transient() bool { return n.flags&miniExprTransient != 0 }
func (n *miniExpr) SetTransient(b bool) { n.flags.set(miniExprTransient, b) }
func (n *miniExpr) Bounded() bool { return n.flags&miniExprBounded != 0 }
func (n *miniExpr) SetBounded(b bool) { n.flags.set(miniExprBounded, b) }
func (n *miniExpr) Init() Nodes { return n.init }
func (n *miniExpr) PtrInit() *Nodes { return &n.init }
func (n *miniExpr) SetInit(x Nodes) { n.init = x }
// An AddStringExpr is a string concatenation Expr[0] + Exprs[1] + ... + Expr[len(Expr)-1].
type AddStringExpr struct {
miniExpr
List Nodes
Prealloc *Name
}
func NewAddStringExpr(pos src.XPos, list []Node) *AddStringExpr {
n := &AddStringExpr{}
n.pos = pos
n.op = OADDSTR
n.List = list
return n
}
// An AddrExpr is an address-of expression &X.
// It may end up being a normal address-of or an allocation of a composite literal.
type AddrExpr struct {
miniExpr
X Node
Prealloc *Name // preallocated storage if any
}
func NewAddrExpr(pos src.XPos, x Node) *AddrExpr {
n := &AddrExpr{X: x}
n.op = OADDR
n.pos = pos
return n
}
func (n *AddrExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *AddrExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
func (n *AddrExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OADDR, OPTRLIT:
n.op = op
}
}
// A BasicLit is a literal of basic type.
type BasicLit struct {
miniExpr
val constant.Value
}
func NewBasicLit(pos src.XPos, val constant.Value) Node {
n := &BasicLit{val: val}
n.op = OLITERAL
n.pos = pos
if k := val.Kind(); k != constant.Unknown {
n.SetType(idealType(k))
}
return n
}
func (n *BasicLit) Val() constant.Value { return n.val }
func (n *BasicLit) SetVal(val constant.Value) { n.val = val }
// A BinaryExpr is a binary expression X Op Y,
// or Op(X, Y) for builtin functions that do not become calls.
type BinaryExpr struct {
miniExpr
X Node
Y Node
RType Node `mknode:"-"` // see reflectdata/helpers.go
}
func NewBinaryExpr(pos src.XPos, op Op, x, y Node) *BinaryExpr {
n := &BinaryExpr{X: x, Y: y}
n.pos = pos
n.SetOp(op)
return n
}
func (n *BinaryExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OADD, OADDSTR, OAND, OANDNOT, ODIV, OEQ, OGE, OGT, OLE,
OLSH, OLT, OMOD, OMUL, ONE, OOR, ORSH, OSUB, OXOR,
OCOPY, OCOMPLEX, OUNSAFEADD, OUNSAFESLICE, OUNSAFESTRING,
OEFACE:
n.op = op
}
}
// A CallExpr is a function call X(Args).
type CallExpr struct {
miniExpr
origNode
X Node
Args Nodes
RType Node `mknode:"-"` // see reflectdata/helpers.go
KeepAlive []*Name // vars to be kept alive until call returns
IsDDD bool
NoInline bool
}
func NewCallExpr(pos src.XPos, op Op, fun Node, args []Node) *CallExpr {
n := &CallExpr{X: fun}
n.pos = pos
n.orig = n
n.SetOp(op)
n.Args = args
return n
}
func (*CallExpr) isStmt() {}
func (n *CallExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OAPPEND,
OCALL, OCALLFUNC, OCALLINTER, OCALLMETH,
ODELETE,
OGETG, OGETCALLERPC, OGETCALLERSP,
OMAKE, OPRINT, OPRINTN,
ORECOVER, ORECOVERFP:
n.op = op
}
}
// A ClosureExpr is a function literal expression.
type ClosureExpr struct {
miniExpr
Func *Func `mknode:"-"`
Prealloc *Name
IsGoWrap bool // whether this is wrapper closure of a go statement
}
// A CompLitExpr is a composite literal Type{Vals}.
// Before type-checking, the type is Ntype.
type CompLitExpr struct {
miniExpr
origNode
List Nodes // initialized values
RType Node `mknode:"-"` // *runtime._type for OMAPLIT map types
Prealloc *Name
// For OSLICELIT, Len is the backing array length.
// For OMAPLIT, Len is the number of entries that we've removed from List and
// generated explicit mapassign calls for. This is used to inform the map alloc hint.
Len int64
}
func NewCompLitExpr(pos src.XPos, op Op, typ *types.Type, list []Node) *CompLitExpr {
n := &CompLitExpr{List: list}
n.pos = pos
n.SetOp(op)
if typ != nil {
n.SetType(typ)
}
n.orig = n
return n
}
func (n *CompLitExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *CompLitExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
func (n *CompLitExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OARRAYLIT, OCOMPLIT, OMAPLIT, OSTRUCTLIT, OSLICELIT:
n.op = op
}
}
type ConstExpr struct {
miniExpr
origNode
val constant.Value
}
func NewConstExpr(val constant.Value, orig Node) Node {
n := &ConstExpr{val: val}
n.op = OLITERAL
n.pos = orig.Pos()
n.orig = orig
n.SetType(orig.Type())
n.SetTypecheck(orig.Typecheck())
return n
}
func (n *ConstExpr) Sym() *types.Sym { return n.orig.Sym() }
func (n *ConstExpr) Val() constant.Value { return n.val }
// A ConvExpr is a conversion Type(X).
// It may end up being a value or a type.
type ConvExpr struct {
miniExpr
X Node
// For implementing OCONVIFACE expressions.
//
// TypeWord is an expression yielding a *runtime._type or
// *runtime.itab value to go in the type word of the iface/eface
// result. See reflectdata.ConvIfaceTypeWord for further details.
//
// SrcRType is an expression yielding a *runtime._type value for X,
// if it's not pointer-shaped and needs to be heap allocated.
TypeWord Node `mknode:"-"`
SrcRType Node `mknode:"-"`
// For -d=checkptr instrumentation of conversions from
// unsafe.Pointer to *Elem or *[Len]Elem.
//
// TODO(mdempsky): We only ever need one of these, but currently we
// don't decide which one until walk. Longer term, it probably makes
// sense to have a dedicated IR op for `(*[Len]Elem)(ptr)[:n:m]`
// expressions.
ElemRType Node `mknode:"-"`
ElemElemRType Node `mknode:"-"`
}
func NewConvExpr(pos src.XPos, op Op, typ *types.Type, x Node) *ConvExpr {
n := &ConvExpr{X: x}
n.pos = pos
n.typ = typ
n.SetOp(op)
return n
}
func (n *ConvExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *ConvExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
func (n *ConvExpr) CheckPtr() bool { return n.flags&miniExprCheckPtr != 0 }
func (n *ConvExpr) SetCheckPtr(b bool) { n.flags.set(miniExprCheckPtr, b) }
func (n *ConvExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OCONV, OCONVIFACE, OCONVIDATA, OCONVNOP, OBYTES2STR, OBYTES2STRTMP, ORUNES2STR, OSTR2BYTES, OSTR2BYTESTMP, OSTR2RUNES, ORUNESTR, OSLICE2ARR, OSLICE2ARRPTR:
n.op = op
}
}
// An IndexExpr is an index expression X[Index].
type IndexExpr struct {
miniExpr
X Node
Index Node
RType Node `mknode:"-"` // see reflectdata/helpers.go
Assigned bool
}
func NewIndexExpr(pos src.XPos, x, index Node) *IndexExpr {
n := &IndexExpr{X: x, Index: index}
n.pos = pos
n.op = OINDEX
return n
}
func (n *IndexExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OINDEX, OINDEXMAP:
n.op = op
}
}
// A KeyExpr is a Key: Value composite literal key.
type KeyExpr struct {
miniExpr
Key Node
Value Node
}
func NewKeyExpr(pos src.XPos, key, value Node) *KeyExpr {
n := &KeyExpr{Key: key, Value: value}
n.pos = pos
n.op = OKEY
return n
}
// A StructKeyExpr is an Field: Value composite literal key.
type StructKeyExpr struct {
miniExpr
Field *types.Field
Value Node
}
func NewStructKeyExpr(pos src.XPos, field *types.Field, value Node) *StructKeyExpr {
n := &StructKeyExpr{Field: field, Value: value}
n.pos = pos
n.op = OSTRUCTKEY
return n
}
func (n *StructKeyExpr) Sym() *types.Sym { return n.Field.Sym }
// An InlinedCallExpr is an inlined function call.
type InlinedCallExpr struct {
miniExpr
Body Nodes
ReturnVars Nodes // must be side-effect free
}
func NewInlinedCallExpr(pos src.XPos, body, retvars []Node) *InlinedCallExpr {
n := &InlinedCallExpr{}
n.pos = pos
n.op = OINLCALL
n.Body = body
n.ReturnVars = retvars
return n
}
func (n *InlinedCallExpr) SingleResult() Node {
if have := len(n.ReturnVars); have != 1 {
base.FatalfAt(n.Pos(), "inlined call has %v results, expected 1", have)
}
if !n.Type().HasShape() && n.ReturnVars[0].Type().HasShape() {
// If the type of the call is not a shape, but the type of the return value
// is a shape, we need to do an implicit conversion, so the real type
// of n is maintained.
r := NewConvExpr(n.Pos(), OCONVNOP, n.Type(), n.ReturnVars[0])
r.SetTypecheck(1)
return r
}
return n.ReturnVars[0]
}
// A LogicalExpr is a expression X Op Y where Op is && or ||.
// It is separate from BinaryExpr to make room for statements
// that must be executed before Y but after X.
type LogicalExpr struct {
miniExpr
X Node
Y Node
}
func NewLogicalExpr(pos src.XPos, op Op, x, y Node) *LogicalExpr {
n := &LogicalExpr{X: x, Y: y}
n.pos = pos
n.SetOp(op)
return n
}
func (n *LogicalExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OANDAND, OOROR:
n.op = op
}
}
// A MakeExpr is a make expression: make(Type[, Len[, Cap]]).
// Op is OMAKECHAN, OMAKEMAP, OMAKESLICE, or OMAKESLICECOPY,
// but *not* OMAKE (that's a pre-typechecking CallExpr).
type MakeExpr struct {
miniExpr
RType Node `mknode:"-"` // see reflectdata/helpers.go
Len Node
Cap Node
}
func NewMakeExpr(pos src.XPos, op Op, len, cap Node) *MakeExpr {
n := &MakeExpr{Len: len, Cap: cap}
n.pos = pos
n.SetOp(op)
return n
}
func (n *MakeExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OMAKECHAN, OMAKEMAP, OMAKESLICE, OMAKESLICECOPY:
n.op = op
}
}
// A NilExpr represents the predefined untyped constant nil.
// (It may be copied and assigned a type, though.)
type NilExpr struct {
miniExpr
}
func NewNilExpr(pos src.XPos) *NilExpr {
n := &NilExpr{}
n.pos = pos
n.op = ONIL
return n
}
// A ParenExpr is a parenthesized expression (X).
// It may end up being a value or a type.
type ParenExpr struct {
miniExpr
X Node
}
func NewParenExpr(pos src.XPos, x Node) *ParenExpr {
n := &ParenExpr{X: x}
n.op = OPAREN
n.pos = pos
return n
}
func (n *ParenExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *ParenExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
// A RawOrigExpr represents an arbitrary Go expression as a string value.
// When printed in diagnostics, the string value is written out exactly as-is.
type RawOrigExpr struct {
miniExpr
Raw string
}
func NewRawOrigExpr(pos src.XPos, op Op, raw string) *RawOrigExpr {
n := &RawOrigExpr{Raw: raw}
n.pos = pos
n.op = op
return n
}
// A ResultExpr represents a direct access to a result.
type ResultExpr struct {
miniExpr
Index int64 // index of the result expr.
}
func NewResultExpr(pos src.XPos, typ *types.Type, index int64) *ResultExpr {
n := &ResultExpr{Index: index}
n.pos = pos
n.op = ORESULT
n.typ = typ
return n
}
// A LinksymOffsetExpr refers to an offset within a global variable.
// It is like a SelectorExpr but without the field name.
type LinksymOffsetExpr struct {
miniExpr
Linksym *obj.LSym
Offset_ int64
}
func NewLinksymOffsetExpr(pos src.XPos, lsym *obj.LSym, offset int64, typ *types.Type) *LinksymOffsetExpr {
n := &LinksymOffsetExpr{Linksym: lsym, Offset_: offset}
n.typ = typ
n.op = OLINKSYMOFFSET
return n
}
// NewLinksymExpr is NewLinksymOffsetExpr, but with offset fixed at 0.
func NewLinksymExpr(pos src.XPos, lsym *obj.LSym, typ *types.Type) *LinksymOffsetExpr {
return NewLinksymOffsetExpr(pos, lsym, 0, typ)
}
// NewNameOffsetExpr is NewLinksymOffsetExpr, but taking a *Name
// representing a global variable instead of an *obj.LSym directly.
func NewNameOffsetExpr(pos src.XPos, name *Name, offset int64, typ *types.Type) *LinksymOffsetExpr {
if name == nil || IsBlank(name) || !(name.Op() == ONAME && name.Class == PEXTERN) {
base.FatalfAt(pos, "cannot take offset of nil, blank name or non-global variable: %v", name)
}
return NewLinksymOffsetExpr(pos, name.Linksym(), offset, typ)
}
// A SelectorExpr is a selector expression X.Sel.
type SelectorExpr struct {
miniExpr
X Node
// Sel is the name of the field or method being selected, without (in the
// case of methods) any preceding type specifier. If the field/method is
// exported, than the Sym uses the local package regardless of the package
// of the containing type.
Sel *types.Sym
// The actual selected field - may not be filled in until typechecking.
Selection *types.Field
Prealloc *Name // preallocated storage for OMETHVALUE, if any
}
func NewSelectorExpr(pos src.XPos, op Op, x Node, sel *types.Sym) *SelectorExpr {
n := &SelectorExpr{X: x, Sel: sel}
n.pos = pos
n.SetOp(op)
return n
}
func (n *SelectorExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OXDOT, ODOT, ODOTPTR, ODOTMETH, ODOTINTER, OMETHVALUE, OMETHEXPR:
n.op = op
}
}
func (n *SelectorExpr) Sym() *types.Sym { return n.Sel }
func (n *SelectorExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *SelectorExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
func (n *SelectorExpr) Offset() int64 { return n.Selection.Offset }
func (n *SelectorExpr) FuncName() *Name {
if n.Op() != OMETHEXPR {
panic(n.no("FuncName"))
}
fn := NewNameAt(n.Selection.Pos, MethodSym(n.X.Type(), n.Sel))
fn.Class = PFUNC
fn.SetType(n.Type())
if n.Selection.Nname != nil {
// TODO(austin): Nname is nil for interface method
// expressions (I.M), so we can't attach a Func to
// those here. reflectdata.methodWrapper generates the
// Func.
fn.Func = n.Selection.Nname.(*Name).Func
}
return fn
}
// A SliceExpr is a slice expression X[Low:High] or X[Low:High:Max].
type SliceExpr struct {
miniExpr
X Node
Low Node
High Node
Max Node
}
func NewSliceExpr(pos src.XPos, op Op, x, low, high, max Node) *SliceExpr {
n := &SliceExpr{X: x, Low: low, High: high, Max: max}
n.pos = pos
n.op = op
return n
}
func (n *SliceExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR:
n.op = op
}
}
// IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
// o must be a slicing op.
func (o Op) IsSlice3() bool {
switch o {
case OSLICE, OSLICEARR, OSLICESTR:
return false
case OSLICE3, OSLICE3ARR:
return true
}
base.Fatalf("IsSlice3 op %v", o)
return false
}
// A SliceHeader expression constructs a slice header from its parts.
type SliceHeaderExpr struct {
miniExpr
Ptr Node
Len Node
Cap Node
}
func NewSliceHeaderExpr(pos src.XPos, typ *types.Type, ptr, len, cap Node) *SliceHeaderExpr {
n := &SliceHeaderExpr{Ptr: ptr, Len: len, Cap: cap}
n.pos = pos
n.op = OSLICEHEADER
n.typ = typ
return n
}
// A StringHeaderExpr expression constructs a string header from its parts.
type StringHeaderExpr struct {
miniExpr
Ptr Node
Len Node
}
func NewStringHeaderExpr(pos src.XPos, ptr, len Node) *StringHeaderExpr {
n := &StringHeaderExpr{Ptr: ptr, Len: len}
n.pos = pos
n.op = OSTRINGHEADER
n.typ = types.Types[types.TSTRING]
return n
}
// A StarExpr is a dereference expression *X.
// It may end up being a value or a type.
type StarExpr struct {
miniExpr
X Node
}
func NewStarExpr(pos src.XPos, x Node) *StarExpr {
n := &StarExpr{X: x}
n.op = ODEREF
n.pos = pos
return n
}
func (n *StarExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *StarExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
// A TypeAssertionExpr is a selector expression X.(Type).
// Before type-checking, the type is Ntype.
type TypeAssertExpr struct {
miniExpr
X Node
// Runtime type information provided by walkDotType for
// assertions from non-empty interface to concrete type.
ITab Node `mknode:"-"` // *runtime.itab for Type implementing X's type
}
func NewTypeAssertExpr(pos src.XPos, x Node, typ *types.Type) *TypeAssertExpr {
n := &TypeAssertExpr{X: x}
n.pos = pos
n.op = ODOTTYPE
if typ != nil {
n.SetType(typ)
}
return n
}
func (n *TypeAssertExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case ODOTTYPE, ODOTTYPE2:
n.op = op
}
}
// A DynamicTypeAssertExpr asserts that X is of dynamic type RType.
type DynamicTypeAssertExpr struct {
miniExpr
X Node
// SrcRType is an expression that yields a *runtime._type value
// representing X's type. It's used in failed assertion panic
// messages.
SrcRType Node
// RType is an expression that yields a *runtime._type value
// representing the asserted type.
//
// BUG(mdempsky): If ITab is non-nil, RType may be nil.
RType Node
// ITab is an expression that yields a *runtime.itab value
// representing the asserted type within the assertee expression's
// original interface type.
//
// ITab is only used for assertions from non-empty interface type to
// a concrete (i.e., non-interface) type. For all other assertions,
// ITab is nil.
ITab Node
}
func NewDynamicTypeAssertExpr(pos src.XPos, op Op, x, rtype Node) *DynamicTypeAssertExpr {
n := &DynamicTypeAssertExpr{X: x, RType: rtype}
n.pos = pos
n.op = op
return n
}
func (n *DynamicTypeAssertExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case ODYNAMICDOTTYPE, ODYNAMICDOTTYPE2:
n.op = op
}
}
// A UnaryExpr is a unary expression Op X,
// or Op(X) for a builtin function that does not end up being a call.
type UnaryExpr struct {
miniExpr
X Node
}
func NewUnaryExpr(pos src.XPos, op Op, x Node) *UnaryExpr {
n := &UnaryExpr{X: x}
n.pos = pos
n.SetOp(op)
return n
}
func (n *UnaryExpr) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OBITNOT, ONEG, ONOT, OPLUS, ORECV,
OALIGNOF, OCAP, OCLOSE, OIMAG, OLEN, ONEW,
OOFFSETOF, OPANIC, OREAL, OSIZEOF,
OCHECKNIL, OCFUNC, OIDATA, OITAB, OSPTR,
OUNSAFESTRINGDATA, OUNSAFESLICEDATA:
n.op = op
}
}
// Probably temporary: using Implicit() flag to mark generic function nodes that
// are called to make getGfInfo analysis easier in one pre-order pass.
func (n *InstExpr) Implicit() bool { return n.flags&miniExprImplicit != 0 }
func (n *InstExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }
// An InstExpr is a generic function or type instantiation.
type InstExpr struct {
miniExpr
X Node
Targs []Ntype
}
func NewInstExpr(pos src.XPos, op Op, x Node, targs []Ntype) *InstExpr {
n := &InstExpr{X: x, Targs: targs}
n.pos = pos
n.op = op
return n
}
func IsZero(n Node) bool {
switch n.Op() {
case ONIL:
return true
case OLITERAL:
switch u := n.Val(); u.Kind() {
case constant.String:
return constant.StringVal(u) == ""
case constant.Bool:
return !constant.BoolVal(u)
default:
return constant.Sign(u) == 0
}
case OARRAYLIT:
n := n.(*CompLitExpr)
for _, n1 := range n.List {
if n1.Op() == OKEY {
n1 = n1.(*KeyExpr).Value
}
if !IsZero(n1) {
return false
}
}
return true
case OSTRUCTLIT:
n := n.(*CompLitExpr)
for _, n1 := range n.List {
n1 := n1.(*StructKeyExpr)
if !IsZero(n1.Value) {
return false
}
}
return true
}
return false
}
// lvalue etc
func IsAddressable(n Node) bool {
switch n.Op() {
case OINDEX:
n := n.(*IndexExpr)
if n.X.Type() != nil && n.X.Type().IsArray() {
return IsAddressable(n.X)
}
if n.X.Type() != nil && n.X.Type().IsString() {
return false
}
fallthrough
case ODEREF, ODOTPTR:
return true
case ODOT:
n := n.(*SelectorExpr)
return IsAddressable(n.X)
case ONAME:
n := n.(*Name)
if n.Class == PFUNC {
return false
}
return true
case OLINKSYMOFFSET:
return true
}
return false
}
func StaticValue(n Node) Node {
for {
if n.Op() == OCONVNOP {
n = n.(*ConvExpr).X
continue
}
if n.Op() == OINLCALL {
n = n.(*InlinedCallExpr).SingleResult()
continue
}
n1 := staticValue1(n)
if n1 == nil {
return n
}
n = n1
}
}
// staticValue1 implements a simple SSA-like optimization. If n is a local variable
// that is initialized and never reassigned, staticValue1 returns the initializer
// expression. Otherwise, it returns nil.
func staticValue1(nn Node) Node {
if nn.Op() != ONAME {
return nil
}
n := nn.(*Name)
if n.Class != PAUTO {
return nil
}
defn := n.Defn
if defn == nil {
return nil
}
var rhs Node
FindRHS:
switch defn.Op() {
case OAS:
defn := defn.(*AssignStmt)
rhs = defn.Y
case OAS2:
defn := defn.(*AssignListStmt)
for i, lhs := range defn.Lhs {
if lhs == n {
rhs = defn.Rhs[i]
break FindRHS
}
}
base.Fatalf("%v missing from LHS of %v", n, defn)
default:
return nil
}
if rhs == nil {
base.Fatalf("RHS is nil: %v", defn)
}
if reassigned(n) {
return nil
}
return rhs
}
// reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean
// indicating whether the name has any assignments other than its declaration.
// The second return value is the first such assignment encountered in the walk, if any. It is mostly
// useful for -m output documenting the reason for inhibited optimizations.
// NB: global variables are always considered to be re-assigned.
// TODO: handle initial declaration not including an assignment and followed by a single assignment?
func reassigned(name *Name) bool {
if name.Op() != ONAME {
base.Fatalf("reassigned %v", name)
}
// no way to reliably check for no-reassignment of globals, assume it can be
if name.Curfn == nil {
return true
}
// TODO(mdempsky): This is inefficient and becoming increasingly
// unwieldy. Figure out a way to generalize escape analysis's
// reassignment detection for use by inlining and devirtualization.
// isName reports whether n is a reference to name.
isName := func(x Node) bool {
n, ok := x.(*Name)
return ok && n.Canonical() == name
}
var do func(n Node) bool
do = func(n Node) bool {
switch n.Op() {
case OAS:
n := n.(*AssignStmt)
if isName(n.X) && n != name.Defn {
return true
}
case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE, OAS2RECV, OSELRECV2:
n := n.(*AssignListStmt)
for _, p := range n.Lhs {
if isName(p) && n != name.Defn {
return true
}
}
case OADDR:
n := n.(*AddrExpr)
if isName(OuterValue(n.X)) {
return true
}
case ORANGE:
n := n.(*RangeStmt)
if isName(n.Key) || isName(n.Value) {
return true
}
case OCLOSURE:
n := n.(*ClosureExpr)
if Any(n.Func, do) {
return true
}
}
return false
}
return Any(name.Curfn, do)
}
// IsIntrinsicCall reports whether the compiler back end will treat the call as an intrinsic operation.
var IsIntrinsicCall = func(*CallExpr) bool { return false }
// SameSafeExpr checks whether it is safe to reuse one of l and r
// instead of computing both. SameSafeExpr assumes that l and r are
// used in the same statement or expression. In order for it to be
// safe to reuse l or r, they must:
// - be the same expression
// - not have side-effects (no function calls, no channel ops);
// however, panics are ok
// - not cause inappropriate aliasing; e.g. two string to []byte
// conversions, must result in two distinct slices
//
// The handling of OINDEXMAP is subtle. OINDEXMAP can occur both
// as an lvalue (map assignment) and an rvalue (map access). This is
// currently OK, since the only place SameSafeExpr gets used on an
// lvalue expression is for OSLICE and OAPPEND optimizations, and it
// is correct in those settings.
func SameSafeExpr(l Node, r Node) bool {
for l.Op() == OCONVNOP {
l = l.(*ConvExpr).X
}
for r.Op() == OCONVNOP {
r = r.(*ConvExpr).X
}
if l.Op() != r.Op() || !types.Identical(l.Type(), r.Type()) {
return false
}
switch l.Op() {
case ONAME:
return l == r
case ODOT, ODOTPTR:
l := l.(*SelectorExpr)
r := r.(*SelectorExpr)
return l.Sel != nil && r.Sel != nil && l.Sel == r.Sel && SameSafeExpr(l.X, r.X)
case ODEREF:
l := l.(*StarExpr)
r := r.(*StarExpr)
return SameSafeExpr(l.X, r.X)
case ONOT, OBITNOT, OPLUS, ONEG:
l := l.(*UnaryExpr)
r := r.(*UnaryExpr)
return SameSafeExpr(l.X, r.X)
case OCONV:
l := l.(*ConvExpr)
r := r.(*ConvExpr)
// Some conversions can't be reused, such as []byte(str).
// Allow only numeric-ish types. This is a bit conservative.
return types.IsSimple[l.Type().Kind()] && SameSafeExpr(l.X, r.X)
case OINDEX, OINDEXMAP:
l := l.(*IndexExpr)
r := r.(*IndexExpr)
return SameSafeExpr(l.X, r.X) && SameSafeExpr(l.Index, r.Index)
case OADD, OSUB, OOR, OXOR, OMUL, OLSH, ORSH, OAND, OANDNOT, ODIV, OMOD:
l := l.(*BinaryExpr)
r := r.(*BinaryExpr)
return SameSafeExpr(l.X, r.X) && SameSafeExpr(l.Y, r.Y)
case OLITERAL:
return constant.Compare(l.Val(), token.EQL, r.Val())
case ONIL:
return true
}
return false
}
// ShouldCheckPtr reports whether pointer checking should be enabled for
// function fn at a given level. See debugHelpFooter for defined
// levels.
func ShouldCheckPtr(fn *Func, level int) bool {
return base.Debug.Checkptr >= level && fn.Pragma&NoCheckPtr == 0
}
// ShouldAsanCheckPtr reports whether pointer checking should be enabled for
// function fn when -asan is enabled.
func ShouldAsanCheckPtr(fn *Func) bool {
return base.Flag.ASan && fn.Pragma&NoCheckPtr == 0
}
// IsReflectHeaderDataField reports whether l is an expression p.Data
// where p has type reflect.SliceHeader or reflect.StringHeader.
func IsReflectHeaderDataField(l Node) bool {
if l.Type() != types.Types[types.TUINTPTR] {
return false
}
var tsym *types.Sym
switch l.Op() {
case ODOT:
l := l.(*SelectorExpr)
tsym = l.X.Type().Sym()
case ODOTPTR:
l := l.(*SelectorExpr)
tsym = l.X.Type().Elem().Sym()
default:
return false
}
if tsym == nil || l.Sym().Name != "Data" || tsym.Pkg.Path != "reflect" {
return false
}
return tsym.Name == "SliceHeader" || tsym.Name == "StringHeader"
}
func ParamNames(ft *types.Type) []Node {
args := make([]Node, ft.NumParams())
for i, f := range ft.Params().FieldSlice() {
args[i] = AsNode(f.Nname)
}
return args
}
// MethodSym returns the method symbol representing a method name
// associated with a specific receiver type.
//
// Method symbols can be used to distinguish the same method appearing
// in different method sets. For example, T.M and (*T).M have distinct
// method symbols.
//
// The returned symbol will be marked as a function.
func MethodSym(recv *types.Type, msym *types.Sym) *types.Sym {
sym := MethodSymSuffix(recv, msym, "")
sym.SetFunc(true)
return sym
}
// MethodSymSuffix is like methodsym, but allows attaching a
// distinguisher suffix. To avoid collisions, the suffix must not
// start with a letter, number, or period.
func MethodSymSuffix(recv *types.Type, msym *types.Sym, suffix string) *types.Sym {
if msym.IsBlank() {
base.Fatalf("blank method name")
}
rsym := recv.Sym()
if recv.IsPtr() {
if rsym != nil {
base.Fatalf("declared pointer receiver type: %v", recv)
}
rsym = recv.Elem().Sym()
}
// Find the package the receiver type appeared in. For
// anonymous receiver types (i.e., anonymous structs with
// embedded fields), use the "go" pseudo-package instead.
rpkg := Pkgs.Go
if rsym != nil {
rpkg = rsym.Pkg
}
var b bytes.Buffer
if recv.IsPtr() {
// The parentheses aren't really necessary, but
// they're pretty traditional at this point.
fmt.Fprintf(&b, "(%-S)", recv)
} else {
fmt.Fprintf(&b, "%-S", recv)
}
// A particular receiver type may have multiple non-exported
// methods with the same name. To disambiguate them, include a
// package qualifier for names that came from a different
// package than the receiver type.
if !types.IsExported(msym.Name) && msym.Pkg != rpkg {
b.WriteString(".")
b.WriteString(msym.Pkg.Prefix)
}
b.WriteString(".")
b.WriteString(msym.Name)
b.WriteString(suffix)
return rpkg.LookupBytes(b.Bytes())
}
// MethodExprName returns the ONAME representing the method
// referenced by expression n, which must be a method selector,
// method expression, or method value.
func MethodExprName(n Node) *Name {
name, _ := MethodExprFunc(n).Nname.(*Name)
return name
}
// MethodExprFunc is like MethodExprName, but returns the types.Field instead.
func MethodExprFunc(n Node) *types.Field {
switch n.Op() {
case ODOTMETH, OMETHEXPR, OMETHVALUE:
return n.(*SelectorExpr).Selection
}
base.Fatalf("unexpected node: %v (%v)", n, n.Op())
panic("unreachable")
}
|