1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ir
import (
"cmd/compile/internal/base"
"cmd/compile/internal/types"
"cmd/internal/src"
"go/constant"
)
// A Decl is a declaration of a const, type, or var. (A declared func is a Func.)
type Decl struct {
miniNode
X *Name // the thing being declared
}
func NewDecl(pos src.XPos, op Op, x *Name) *Decl {
n := &Decl{X: x}
n.pos = pos
switch op {
default:
panic("invalid Decl op " + op.String())
case ODCL, ODCLCONST, ODCLTYPE:
n.op = op
}
return n
}
func (*Decl) isStmt() {}
// A Stmt is a Node that can appear as a statement.
// This includes statement-like expressions such as f().
//
// (It's possible it should include <-c, but that would require
// splitting ORECV out of UnaryExpr, which hasn't yet been
// necessary. Maybe instead we will introduce ExprStmt at
// some point.)
type Stmt interface {
Node
isStmt()
}
// A miniStmt is a miniNode with extra fields common to statements.
type miniStmt struct {
miniNode
init Nodes
}
func (*miniStmt) isStmt() {}
func (n *miniStmt) Init() Nodes { return n.init }
func (n *miniStmt) SetInit(x Nodes) { n.init = x }
func (n *miniStmt) PtrInit() *Nodes { return &n.init }
// An AssignListStmt is an assignment statement with
// more than one item on at least one side: Lhs = Rhs.
// If Def is true, the assignment is a :=.
type AssignListStmt struct {
miniStmt
Lhs Nodes
Def bool
Rhs Nodes
}
func NewAssignListStmt(pos src.XPos, op Op, lhs, rhs []Node) *AssignListStmt {
n := &AssignListStmt{}
n.pos = pos
n.SetOp(op)
n.Lhs = lhs
n.Rhs = rhs
return n
}
func (n *AssignListStmt) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OAS2, OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV, OSELRECV2:
n.op = op
}
}
// An AssignStmt is a simple assignment statement: X = Y.
// If Def is true, the assignment is a :=.
type AssignStmt struct {
miniStmt
X Node
Def bool
Y Node
}
func NewAssignStmt(pos src.XPos, x, y Node) *AssignStmt {
n := &AssignStmt{X: x, Y: y}
n.pos = pos
n.op = OAS
return n
}
func (n *AssignStmt) SetOp(op Op) {
switch op {
default:
panic(n.no("SetOp " + op.String()))
case OAS:
n.op = op
}
}
// An AssignOpStmt is an AsOp= assignment statement: X AsOp= Y.
type AssignOpStmt struct {
miniStmt
X Node
AsOp Op // OADD etc
Y Node
IncDec bool // actually ++ or --
}
func NewAssignOpStmt(pos src.XPos, asOp Op, x, y Node) *AssignOpStmt {
n := &AssignOpStmt{AsOp: asOp, X: x, Y: y}
n.pos = pos
n.op = OASOP
return n
}
// A BlockStmt is a block: { List }.
type BlockStmt struct {
miniStmt
List Nodes
}
func NewBlockStmt(pos src.XPos, list []Node) *BlockStmt {
n := &BlockStmt{}
n.pos = pos
if !pos.IsKnown() {
n.pos = base.Pos
if len(list) > 0 {
n.pos = list[0].Pos()
}
}
n.op = OBLOCK
n.List = list
return n
}
// A BranchStmt is a break, continue, fallthrough, or goto statement.
type BranchStmt struct {
miniStmt
Label *types.Sym // label if present
}
func NewBranchStmt(pos src.XPos, op Op, label *types.Sym) *BranchStmt {
switch op {
case OBREAK, OCONTINUE, OFALL, OGOTO:
// ok
default:
panic("NewBranch " + op.String())
}
n := &BranchStmt{Label: label}
n.pos = pos
n.op = op
return n
}
func (n *BranchStmt) Sym() *types.Sym { return n.Label }
// A CaseClause is a case statement in a switch or select: case List: Body.
type CaseClause struct {
miniStmt
Var *Name // declared variable for this case in type switch
List Nodes // list of expressions for switch, early select
// RTypes is a list of RType expressions, which are copied to the
// corresponding OEQ nodes that are emitted when switch statements
// are desugared. RTypes[i] must be non-nil if the emitted
// comparison for List[i] will be a mixed interface/concrete
// comparison; see reflectdata.CompareRType for details.
//
// Because mixed interface/concrete switch cases are rare, we allow
// len(RTypes) < len(List). Missing entries are implicitly nil.
RTypes Nodes
Body Nodes
}
func NewCaseStmt(pos src.XPos, list, body []Node) *CaseClause {
n := &CaseClause{List: list, Body: body}
n.pos = pos
n.op = OCASE
return n
}
type CommClause struct {
miniStmt
Comm Node // communication case
Body Nodes
}
func NewCommStmt(pos src.XPos, comm Node, body []Node) *CommClause {
n := &CommClause{Comm: comm, Body: body}
n.pos = pos
n.op = OCASE
return n
}
// A ForStmt is a non-range for loop: for Init; Cond; Post { Body }
type ForStmt struct {
miniStmt
Label *types.Sym
Cond Node
Post Node
Body Nodes
HasBreak bool
}
func NewForStmt(pos src.XPos, init Node, cond, post Node, body []Node) *ForStmt {
n := &ForStmt{Cond: cond, Post: post}
n.pos = pos
n.op = OFOR
if init != nil {
n.init = []Node{init}
}
n.Body = body
return n
}
// A GoDeferStmt is a go or defer statement: go Call / defer Call.
//
// The two opcodes use a single syntax because the implementations
// are very similar: both are concerned with saving Call and running it
// in a different context (a separate goroutine or a later time).
type GoDeferStmt struct {
miniStmt
Call Node
}
func NewGoDeferStmt(pos src.XPos, op Op, call Node) *GoDeferStmt {
n := &GoDeferStmt{Call: call}
n.pos = pos
switch op {
case ODEFER, OGO:
n.op = op
default:
panic("NewGoDeferStmt " + op.String())
}
return n
}
// An IfStmt is a return statement: if Init; Cond { Body } else { Else }.
type IfStmt struct {
miniStmt
Cond Node
Body Nodes
Else Nodes
Likely bool // code layout hint
}
func NewIfStmt(pos src.XPos, cond Node, body, els []Node) *IfStmt {
n := &IfStmt{Cond: cond}
n.pos = pos
n.op = OIF
n.Body = body
n.Else = els
return n
}
// A JumpTableStmt is used to implement switches. Its semantics are:
//
// tmp := jt.Idx
// if tmp == Cases[0] goto Targets[0]
// if tmp == Cases[1] goto Targets[1]
// ...
// if tmp == Cases[n] goto Targets[n]
//
// Note that a JumpTableStmt is more like a multiway-goto than
// a multiway-if. In particular, the case bodies are just
// labels to jump to, not not full Nodes lists.
type JumpTableStmt struct {
miniStmt
// Value used to index the jump table.
// We support only integer types that
// are at most the size of a uintptr.
Idx Node
// If Idx is equal to Cases[i], jump to Targets[i].
// Cases entries must be distinct and in increasing order.
// The length of Cases and Targets must be equal.
Cases []constant.Value
Targets []*types.Sym
}
func NewJumpTableStmt(pos src.XPos, idx Node) *JumpTableStmt {
n := &JumpTableStmt{Idx: idx}
n.pos = pos
n.op = OJUMPTABLE
return n
}
// An InlineMarkStmt is a marker placed just before an inlined body.
type InlineMarkStmt struct {
miniStmt
Index int64
}
func NewInlineMarkStmt(pos src.XPos, index int64) *InlineMarkStmt {
n := &InlineMarkStmt{Index: index}
n.pos = pos
n.op = OINLMARK
return n
}
func (n *InlineMarkStmt) Offset() int64 { return n.Index }
func (n *InlineMarkStmt) SetOffset(x int64) { n.Index = x }
// A LabelStmt is a label statement (just the label, not including the statement it labels).
type LabelStmt struct {
miniStmt
Label *types.Sym // "Label:"
}
func NewLabelStmt(pos src.XPos, label *types.Sym) *LabelStmt {
n := &LabelStmt{Label: label}
n.pos = pos
n.op = OLABEL
return n
}
func (n *LabelStmt) Sym() *types.Sym { return n.Label }
// A RangeStmt is a range loop: for Key, Value = range X { Body }
type RangeStmt struct {
miniStmt
Label *types.Sym
Def bool
X Node
RType Node `mknode:"-"` // see reflectdata/helpers.go
Key Node
Value Node
Body Nodes
HasBreak bool
Prealloc *Name
// When desugaring the RangeStmt during walk, the assignments to Key
// and Value may require OCONVIFACE operations. If so, these fields
// will be copied to their respective ConvExpr fields.
KeyTypeWord Node `mknode:"-"`
KeySrcRType Node `mknode:"-"`
ValueTypeWord Node `mknode:"-"`
ValueSrcRType Node `mknode:"-"`
}
func NewRangeStmt(pos src.XPos, key, value, x Node, body []Node) *RangeStmt {
n := &RangeStmt{X: x, Key: key, Value: value}
n.pos = pos
n.op = ORANGE
n.Body = body
return n
}
// A ReturnStmt is a return statement.
type ReturnStmt struct {
miniStmt
origNode // for typecheckargs rewrite
Results Nodes // return list
}
func NewReturnStmt(pos src.XPos, results []Node) *ReturnStmt {
n := &ReturnStmt{}
n.pos = pos
n.op = ORETURN
n.orig = n
n.Results = results
return n
}
// A SelectStmt is a block: { Cases }.
type SelectStmt struct {
miniStmt
Label *types.Sym
Cases []*CommClause
HasBreak bool
// TODO(rsc): Instead of recording here, replace with a block?
Compiled Nodes // compiled form, after walkSelect
}
func NewSelectStmt(pos src.XPos, cases []*CommClause) *SelectStmt {
n := &SelectStmt{Cases: cases}
n.pos = pos
n.op = OSELECT
return n
}
// A SendStmt is a send statement: X <- Y.
type SendStmt struct {
miniStmt
Chan Node
Value Node
}
func NewSendStmt(pos src.XPos, ch, value Node) *SendStmt {
n := &SendStmt{Chan: ch, Value: value}
n.pos = pos
n.op = OSEND
return n
}
// A SwitchStmt is a switch statement: switch Init; Tag { Cases }.
type SwitchStmt struct {
miniStmt
Tag Node
Cases []*CaseClause
Label *types.Sym
HasBreak bool
// TODO(rsc): Instead of recording here, replace with a block?
Compiled Nodes // compiled form, after walkSwitch
}
func NewSwitchStmt(pos src.XPos, tag Node, cases []*CaseClause) *SwitchStmt {
n := &SwitchStmt{Tag: tag, Cases: cases}
n.pos = pos
n.op = OSWITCH
return n
}
// A TailCallStmt is a tail call statement, which is used for back-end
// code generation to jump directly to another function entirely.
type TailCallStmt struct {
miniStmt
Call *CallExpr // the underlying call
}
func NewTailCallStmt(pos src.XPos, call *CallExpr) *TailCallStmt {
n := &TailCallStmt{Call: call}
n.pos = pos
n.op = OTAILCALL
return n
}
// A TypeSwitchGuard is the [Name :=] X.(type) in a type switch.
type TypeSwitchGuard struct {
miniNode
Tag *Ident
X Node
Used bool
}
func NewTypeSwitchGuard(pos src.XPos, tag *Ident, x Node) *TypeSwitchGuard {
n := &TypeSwitchGuard{Tag: tag, X: x}
n.pos = pos
n.op = OTYPESW
return n
}
|