summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/noder/decl.go
blob: 07353cc17eaaf2fa9358ab310f8732a678f265aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package noder

import (
	"go/constant"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/syntax"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/compile/internal/types2"
)

// TODO(mdempsky): Skip blank declarations? Probably only safe
// for declarations without pragmas.

func (g *irgen) decls(res *ir.Nodes, decls []syntax.Decl) {
	for _, decl := range decls {
		switch decl := decl.(type) {
		case *syntax.ConstDecl:
			g.constDecl(res, decl)
		case *syntax.FuncDecl:
			g.funcDecl(res, decl)
		case *syntax.TypeDecl:
			if ir.CurFunc == nil {
				continue // already handled in irgen.generate
			}
			g.typeDecl(res, decl)
		case *syntax.VarDecl:
			g.varDecl(res, decl)
		default:
			g.unhandled("declaration", decl)
		}
	}
}

func (g *irgen) importDecl(p *noder, decl *syntax.ImportDecl) {
	g.pragmaFlags(decl.Pragma, 0)

	// Get the imported package's path, as resolved already by types2
	// and gcimporter. This is the same path as would be computed by
	// parseImportPath.
	switch pkgNameOf(g.info, decl).Imported().Path() {
	case "unsafe":
		p.importedUnsafe = true
	case "embed":
		p.importedEmbed = true
	}
}

// pkgNameOf returns the PkgName associated with the given ImportDecl.
func pkgNameOf(info *types2.Info, decl *syntax.ImportDecl) *types2.PkgName {
	if name := decl.LocalPkgName; name != nil {
		return info.Defs[name].(*types2.PkgName)
	}
	return info.Implicits[decl].(*types2.PkgName)
}

func (g *irgen) constDecl(out *ir.Nodes, decl *syntax.ConstDecl) {
	g.pragmaFlags(decl.Pragma, 0)

	for _, name := range decl.NameList {
		name, obj := g.def(name)

		// For untyped numeric constants, make sure the value
		// representation matches what the rest of the
		// compiler (really just iexport) expects.
		// TODO(mdempsky): Revisit after #43891 is resolved.
		val := obj.(*types2.Const).Val()
		switch name.Type() {
		case types.UntypedInt, types.UntypedRune:
			val = constant.ToInt(val)
		case types.UntypedFloat:
			val = constant.ToFloat(val)
		case types.UntypedComplex:
			val = constant.ToComplex(val)
		}
		name.SetVal(val)

		out.Append(ir.NewDecl(g.pos(decl), ir.ODCLCONST, name))
	}
}

func (g *irgen) funcDecl(out *ir.Nodes, decl *syntax.FuncDecl) {
	assert(g.curDecl == "")
	// Set g.curDecl to the function name, as context for the type params declared
	// during types2-to-types1 translation if this is a generic function.
	g.curDecl = decl.Name.Value
	obj2 := g.info.Defs[decl.Name]
	recv := types2.AsSignature(obj2.Type()).Recv()
	if recv != nil {
		t2 := deref2(recv.Type())
		// This is a method, so set g.curDecl to recvTypeName.methName instead.
		g.curDecl = t2.(*types2.Named).Obj().Name() + "." + g.curDecl
	}

	fn := ir.NewFunc(g.pos(decl))
	fn.Nname, _ = g.def(decl.Name)
	fn.Nname.Func = fn
	fn.Nname.Defn = fn

	fn.Pragma = g.pragmaFlags(decl.Pragma, funcPragmas)
	if fn.Pragma&ir.Systemstack != 0 && fn.Pragma&ir.Nosplit != 0 {
		base.ErrorfAt(fn.Pos(), "go:nosplit and go:systemstack cannot be combined")
	}
	if fn.Pragma&ir.Nointerface != 0 {
		// Propagate //go:nointerface from Func.Pragma to Field.Nointerface.
		// This is a bit roundabout, but this is the earliest point where we've
		// processed the function's pragma flags, and we've also already created
		// the Fields to represent the receiver's method set.
		if recv := fn.Type().Recv(); recv != nil {
			typ := types.ReceiverBaseType(recv.Type)
			if orig := typ.OrigType(); orig != nil {
				// For a generic method, we mark the methods on the
				// base generic type, since those are the methods
				// that will be stenciled.
				typ = orig
			}
			meth := typecheck.Lookdot1(fn, typecheck.Lookup(decl.Name.Value), typ, typ.Methods(), 0)
			meth.SetNointerface(true)
		}
	}

	if decl.Body != nil {
		if fn.Pragma&ir.Noescape != 0 {
			base.ErrorfAt(fn.Pos(), "can only use //go:noescape with external func implementations")
		}
		if (fn.Pragma&ir.UintptrKeepAlive != 0 && fn.Pragma&ir.UintptrEscapes == 0) && fn.Pragma&ir.Nosplit == 0 {
			// Stack growth can't handle uintptr arguments that may
			// be pointers (as we don't know which are pointers
			// when creating the stack map). Thus uintptrkeepalive
			// functions (and all transitive callees) must be
			// nosplit.
			//
			// N.B. uintptrescapes implies uintptrkeepalive but it
			// is OK since the arguments must escape to the heap.
			//
			// TODO(prattmic): Add recursive nosplit check of callees.
			// TODO(prattmic): Functions with no body (i.e.,
			// assembly) must also be nosplit, but we can't check
			// that here.
			base.ErrorfAt(fn.Pos(), "go:uintptrkeepalive requires go:nosplit")
		}
	}

	if decl.Name.Value == "init" && decl.Recv == nil {
		g.target.Inits = append(g.target.Inits, fn)
	}

	saveHaveEmbed := g.haveEmbed
	saveCurDecl := g.curDecl
	g.curDecl = ""
	g.later(func() {
		defer func(b bool, s string) {
			// Revert haveEmbed and curDecl back to what they were before
			// the "later" function.
			g.haveEmbed = b
			g.curDecl = s
		}(g.haveEmbed, g.curDecl)

		// Set haveEmbed and curDecl to what they were for this funcDecl.
		g.haveEmbed = saveHaveEmbed
		g.curDecl = saveCurDecl
		if fn.Type().HasTParam() {
			g.topFuncIsGeneric = true
		}
		g.funcBody(fn, decl.Recv, decl.Type, decl.Body)
		g.topFuncIsGeneric = false
		if fn.Type().HasTParam() && fn.Body != nil {
			// Set pointers to the dcls/body of a generic function/method in
			// the Inl struct, so it is marked for export, is available for
			// stenciling, and works with Inline_Flood().
			fn.Inl = &ir.Inline{
				Cost: 1,
				Dcl:  fn.Dcl,
				Body: fn.Body,
			}
		}

		out.Append(fn)
	})
}

func (g *irgen) typeDecl(out *ir.Nodes, decl *syntax.TypeDecl) {
	// Set the position for any error messages we might print (e.g. too large types).
	base.Pos = g.pos(decl)
	assert(ir.CurFunc != nil || g.curDecl == "")
	// Set g.curDecl to the type name, as context for the type params declared
	// during types2-to-types1 translation if this is a generic type.
	saveCurDecl := g.curDecl
	g.curDecl = decl.Name.Value
	if decl.Alias {
		name, _ := g.def(decl.Name)
		g.pragmaFlags(decl.Pragma, 0)
		assert(name.Alias()) // should be set by irgen.obj

		out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
		g.curDecl = ""
		return
	}

	// Prevent size calculations until we set the underlying type.
	types.DeferCheckSize()

	name, obj := g.def(decl.Name)
	ntyp, otyp := name.Type(), obj.Type()
	if ir.CurFunc != nil {
		ntyp.SetVargen()
	}

	pragmas := g.pragmaFlags(decl.Pragma, 0)
	name.SetPragma(pragmas) // TODO(mdempsky): Is this still needed?

	ntyp.SetUnderlying(g.typeExpr(decl.Type))

	tparams := otyp.(*types2.Named).TypeParams()
	if n := tparams.Len(); n > 0 {
		rparams := make([]*types.Type, n)
		for i := range rparams {
			rparams[i] = g.typ(tparams.At(i))
		}
		// This will set hasTParam flag if any rparams are not concrete types.
		ntyp.SetRParams(rparams)
	}
	types.ResumeCheckSize()

	g.curDecl = saveCurDecl
	if otyp, ok := otyp.(*types2.Named); ok && otyp.NumMethods() != 0 {
		methods := make([]*types.Field, otyp.NumMethods())
		for i := range methods {
			m := otyp.Method(i)
			// Set g.curDecl to recvTypeName.methName, as context for the
			// method-specific type params in the receiver.
			g.curDecl = decl.Name.Value + "." + m.Name()
			meth := g.obj(m)
			methods[i] = types.NewField(meth.Pos(), g.selector(m), meth.Type())
			methods[i].Nname = meth
			g.curDecl = ""
		}
		ntyp.Methods().Set(methods)
	}

	out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
}

func (g *irgen) varDecl(out *ir.Nodes, decl *syntax.VarDecl) {
	pos := g.pos(decl)
	// Set the position for any error messages we might print (e.g. too large types).
	base.Pos = pos
	names := make([]*ir.Name, len(decl.NameList))
	for i, name := range decl.NameList {
		names[i], _ = g.def(name)
	}

	if decl.Pragma != nil {
		pragma := decl.Pragma.(*pragmas)
		varEmbed(g.makeXPos, names[0], decl, pragma, g.haveEmbed)
		g.reportUnused(pragma)
	}

	haveEmbed := g.haveEmbed
	do := func() {
		defer func(b bool) { g.haveEmbed = b }(g.haveEmbed)

		g.haveEmbed = haveEmbed
		values := g.exprList(decl.Values)

		var as2 *ir.AssignListStmt
		if len(values) != 0 && len(names) != len(values) {
			as2 = ir.NewAssignListStmt(pos, ir.OAS2, make([]ir.Node, len(names)), values)
		}

		for i, name := range names {
			if ir.CurFunc != nil {
				out.Append(ir.NewDecl(pos, ir.ODCL, name))
			}
			if as2 != nil {
				as2.Lhs[i] = name
				name.Defn = as2
			} else {
				as := ir.NewAssignStmt(pos, name, nil)
				if len(values) != 0 {
					as.Y = values[i]
					name.Defn = as
				} else if ir.CurFunc == nil {
					name.Defn = as
				}
				if !g.delayTransform() {
					lhs := []ir.Node{as.X}
					rhs := []ir.Node{}
					if as.Y != nil {
						rhs = []ir.Node{as.Y}
					}
					transformAssign(as, lhs, rhs)
					as.X = lhs[0]
					if as.Y != nil {
						as.Y = rhs[0]
					}
				}
				as.SetTypecheck(1)
				out.Append(as)
			}
		}
		if as2 != nil {
			if !g.delayTransform() {
				transformAssign(as2, as2.Lhs, as2.Rhs)
			}
			as2.SetTypecheck(1)
			out.Append(as2)
		}
	}

	// If we're within a function, we need to process the assignment
	// part of the variable declaration right away. Otherwise, we leave
	// it to be handled after all top-level declarations are processed.
	if ir.CurFunc != nil {
		do()
	} else {
		g.later(do)
	}
}

// pragmaFlags returns any specified pragma flags included in allowed,
// and reports errors about any other, unexpected pragmas.
func (g *irgen) pragmaFlags(pragma syntax.Pragma, allowed ir.PragmaFlag) ir.PragmaFlag {
	if pragma == nil {
		return 0
	}
	p := pragma.(*pragmas)
	present := p.Flag & allowed
	p.Flag &^= allowed
	g.reportUnused(p)
	return present
}

// reportUnused reports errors about any unused pragmas.
func (g *irgen) reportUnused(pragma *pragmas) {
	for _, pos := range pragma.Pos {
		if pos.Flag&pragma.Flag != 0 {
			base.ErrorfAt(g.makeXPos(pos.Pos), "misplaced compiler directive")
		}
	}
	if len(pragma.Embeds) > 0 {
		for _, e := range pragma.Embeds {
			base.ErrorfAt(g.makeXPos(e.Pos), "misplaced go:embed directive")
		}
	}
}