summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/noder/irgen.go
blob: d0349260e85468066fef25b929d4282fe781ec22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package noder

import (
	"fmt"
	"regexp"
	"sort"

	"cmd/compile/internal/base"
	"cmd/compile/internal/dwarfgen"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/syntax"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/compile/internal/types2"
	"cmd/internal/src"
)

var versionErrorRx = regexp.MustCompile(`requires go[0-9]+\.[0-9]+ or later`)

// checkFiles configures and runs the types2 checker on the given
// parsed source files and then returns the result.
func checkFiles(noders []*noder) (posMap, *types2.Package, *types2.Info) {
	if base.SyntaxErrors() != 0 {
		base.ErrorExit()
	}

	// setup and syntax error reporting
	var m posMap
	files := make([]*syntax.File, len(noders))
	for i, p := range noders {
		m.join(&p.posMap)
		files[i] = p.file
	}

	// typechecking
	ctxt := types2.NewContext()
	importer := gcimports{
		ctxt:     ctxt,
		packages: make(map[string]*types2.Package),
	}
	conf := types2.Config{
		Context:            ctxt,
		GoVersion:          base.Flag.Lang,
		IgnoreBranchErrors: true, // parser already checked via syntax.CheckBranches mode
		Error: func(err error) {
			terr := err.(types2.Error)
			msg := terr.Msg
			// if we have a version error, hint at the -lang setting
			if versionErrorRx.MatchString(msg) {
				msg = fmt.Sprintf("%s (-lang was set to %s; check go.mod)", msg, base.Flag.Lang)
			}
			base.ErrorfAt(m.makeXPos(terr.Pos), "%s", msg)
		},
		Importer:               &importer,
		Sizes:                  &gcSizes{},
		OldComparableSemantics: base.Flag.OldComparable, // default is new comparable semantics
	}
	info := &types2.Info{
		StoreTypesInSyntax: true,
		Defs:               make(map[*syntax.Name]types2.Object),
		Uses:               make(map[*syntax.Name]types2.Object),
		Selections:         make(map[*syntax.SelectorExpr]*types2.Selection),
		Implicits:          make(map[syntax.Node]types2.Object),
		Scopes:             make(map[syntax.Node]*types2.Scope),
		Instances:          make(map[*syntax.Name]types2.Instance),
		// expand as needed
	}

	pkg, err := conf.Check(base.Ctxt.Pkgpath, files, info)

	// Check for anonymous interface cycles (#56103).
	if base.Debug.InterfaceCycles == 0 {
		var f cycleFinder
		for _, file := range files {
			syntax.Inspect(file, func(n syntax.Node) bool {
				if n, ok := n.(*syntax.InterfaceType); ok {
					if f.hasCycle(n.GetTypeInfo().Type.(*types2.Interface)) {
						base.ErrorfAt(m.makeXPos(n.Pos()), "invalid recursive type: anonymous interface refers to itself (see https://go.dev/issue/56103)")

						for typ := range f.cyclic {
							f.cyclic[typ] = false // suppress duplicate errors
						}
					}
					return false
				}
				return true
			})
		}
	}

	// Implementation restriction: we don't allow not-in-heap types to
	// be used as type arguments (#54765).
	{
		type nihTarg struct {
			pos src.XPos
			typ types2.Type
		}
		var nihTargs []nihTarg

		for name, inst := range info.Instances {
			for i := 0; i < inst.TypeArgs.Len(); i++ {
				if targ := inst.TypeArgs.At(i); isNotInHeap(targ) {
					nihTargs = append(nihTargs, nihTarg{m.makeXPos(name.Pos()), targ})
				}
			}
		}
		sort.Slice(nihTargs, func(i, j int) bool {
			ti, tj := nihTargs[i], nihTargs[j]
			return ti.pos.Before(tj.pos)
		})
		for _, targ := range nihTargs {
			base.ErrorfAt(targ.pos, "cannot use incomplete (or unallocatable) type as a type argument: %v", targ.typ)
		}
	}

	base.ExitIfErrors()
	if err != nil {
		base.FatalfAt(src.NoXPos, "conf.Check error: %v", err)
	}

	return m, pkg, info
}

// check2 type checks a Go package using types2, and then generates IR
// using the results.
func check2(noders []*noder) {
	m, pkg, info := checkFiles(noders)

	g := irgen{
		target: typecheck.Target,
		self:   pkg,
		info:   info,
		posMap: m,
		objs:   make(map[types2.Object]*ir.Name),
		typs:   make(map[types2.Type]*types.Type),
	}
	g.generate(noders)
}

// Information about sub-dictionary entries in a dictionary
type subDictInfo struct {
	// Call or XDOT node that requires a dictionary.
	callNode ir.Node
	// Saved CallExpr.X node (*ir.SelectorExpr or *InstExpr node) for a generic
	// method or function call, since this node will get dropped when the generic
	// method/function call is transformed to a call on the instantiated shape
	// function. Nil for other kinds of calls or XDOTs.
	savedXNode ir.Node
}

// dictInfo is the dictionary format for an instantiation of a generic function with
// particular shapes. shapeParams, derivedTypes, subDictCalls, itabConvs, and methodExprClosures
// describe the actual dictionary entries in order, and the remaining fields are other info
// needed in doing dictionary processing during compilation.
type dictInfo struct {
	// Types substituted for the type parameters, which are shape types.
	shapeParams []*types.Type
	// All types derived from those typeparams used in the instantiation.
	derivedTypes []*types.Type
	// Nodes in the instantiation that requires a subdictionary. Includes
	// method and function calls (OCALL), function values (OFUNCINST), method
	// values/expressions (OXDOT).
	subDictCalls []subDictInfo
	// Nodes in the instantiation that are a conversion from a typeparam/derived
	// type to a specific interface.
	itabConvs []ir.Node
	// Method expression closures. For a generic type T with method M(arg1, arg2) res,
	// these closures are func(rcvr T, arg1, arg2) res.
	// These closures capture no variables, they are just the generic version of ·f symbols
	// that live in the dictionary instead of in the readonly globals section.
	methodExprClosures []methodExprClosure

	// Mapping from each shape type that substitutes a type param, to its
	// type bound (which is also substituted with shapes if it is parameterized)
	shapeToBound map[*types.Type]*types.Type

	// For type switches on nonempty interfaces, a map from OTYPE entries of
	// HasShape type, to the interface type we're switching from.
	type2switchType map[ir.Node]*types.Type

	startSubDict            int // Start of dict entries for subdictionaries
	startItabConv           int // Start of dict entries for itab conversions
	startMethodExprClosures int // Start of dict entries for closures for method expressions
	dictLen                 int // Total number of entries in dictionary
}

type methodExprClosure struct {
	idx  int    // index in list of shape parameters
	name string // method name
}

// instInfo is information gathered on an shape instantiation of a function.
type instInfo struct {
	fun       *ir.Func // The instantiated function (with body)
	dictParam *ir.Name // The node inside fun that refers to the dictionary param

	dictInfo *dictInfo
}

type irgen struct {
	target *ir.Package
	self   *types2.Package
	info   *types2.Info

	posMap
	objs   map[types2.Object]*ir.Name
	typs   map[types2.Type]*types.Type
	marker dwarfgen.ScopeMarker

	// laterFuncs records tasks that need to run after all declarations
	// are processed.
	laterFuncs []func()
	// haveEmbed indicates whether the current node belongs to file that
	// imports "embed" package.
	haveEmbed bool

	// exprStmtOK indicates whether it's safe to generate expressions or
	// statements yet.
	exprStmtOK bool

	// types which we need to finish, by doing g.fillinMethods.
	typesToFinalize []*typeDelayInfo

	// True when we are compiling a top-level generic function or method. Use to
	// avoid adding closures of generic functions/methods to the target.Decls
	// list.
	topFuncIsGeneric bool

	// The context during type/function/method declarations that is used to
	// uniquely name type parameters. We need unique names for type params so we
	// can be sure they match up correctly between types2-to-types1 translation
	// and types1 importing.
	curDecl string
}

// genInst has the information for creating needed instantiations and modifying
// functions to use instantiations.
type genInst struct {
	dnum int // for generating unique dictionary variables

	// Map from the names of all instantiations to information about the
	// instantiations.
	instInfoMap map[*types.Sym]*instInfo

	// Dictionary syms which we need to finish, by writing out any itabconv
	// or method expression closure entries.
	dictSymsToFinalize []*delayInfo

	// New instantiations created during this round of buildInstantiations().
	newInsts []ir.Node
}

func (g *irgen) later(fn func()) {
	g.laterFuncs = append(g.laterFuncs, fn)
}

type delayInfo struct {
	gf     *ir.Name
	targs  []*types.Type
	sym    *types.Sym
	off    int
	isMeth bool
}

type typeDelayInfo struct {
	typ  *types2.Named
	ntyp *types.Type
}

func (g *irgen) generate(noders []*noder) {
	types.LocalPkg.Name = g.self.Name()
	typecheck.TypecheckAllowed = true

	// Prevent size calculations until we set the underlying type
	// for all package-block defined types.
	types.DeferCheckSize()

	// At this point, types2 has already handled name resolution and
	// type checking. We just need to map from its object and type
	// representations to those currently used by the rest of the
	// compiler. This happens in a few passes.

	// 1. Process all import declarations. We use the compiler's own
	// importer for this, rather than types2's gcimporter-derived one,
	// to handle extensions and inline function bodies correctly.
	//
	// Also, we need to do this in a separate pass, because mappings are
	// instantiated on demand. If we interleaved processing import
	// declarations with other declarations, it's likely we'd end up
	// wanting to map an object/type from another source file, but not
	// yet have the import data it relies on.
	declLists := make([][]syntax.Decl, len(noders))
Outer:
	for i, p := range noders {
		g.pragmaFlags(p.file.Pragma, ir.GoBuildPragma)
		for j, decl := range p.file.DeclList {
			switch decl := decl.(type) {
			case *syntax.ImportDecl:
				g.importDecl(p, decl)
			default:
				declLists[i] = p.file.DeclList[j:]
				continue Outer // no more ImportDecls
			}
		}
	}

	// 2. Process all package-block type declarations. As with imports,
	// we need to make sure all types are properly instantiated before
	// trying to map any expressions that utilize them. In particular,
	// we need to make sure type pragmas are already known (see comment
	// in irgen.typeDecl).
	//
	// We could perhaps instead defer processing of package-block
	// variable initializers and function bodies, like noder does, but
	// special-casing just package-block type declarations minimizes the
	// differences between processing package-block and function-scoped
	// declarations.
	for _, declList := range declLists {
		for _, decl := range declList {
			switch decl := decl.(type) {
			case *syntax.TypeDecl:
				g.typeDecl((*ir.Nodes)(&g.target.Decls), decl)
			}
		}
	}
	types.ResumeCheckSize()

	// 3. Process all remaining declarations.
	for i, declList := range declLists {
		old := g.haveEmbed
		g.haveEmbed = noders[i].importedEmbed
		g.decls((*ir.Nodes)(&g.target.Decls), declList)
		g.haveEmbed = old
	}
	g.exprStmtOK = true

	// 4. Run any "later" tasks. Avoid using 'range' so that tasks can
	// recursively queue further tasks. (Not currently utilized though.)
	for len(g.laterFuncs) > 0 {
		fn := g.laterFuncs[0]
		g.laterFuncs = g.laterFuncs[1:]
		fn()
	}

	if base.Flag.W > 1 {
		for _, n := range g.target.Decls {
			s := fmt.Sprintf("\nafter noder2 %v", n)
			ir.Dump(s, n)
		}
	}

	for _, p := range noders {
		// Process linkname and cgo pragmas.
		p.processPragmas()

		// Double check for any type-checking inconsistencies. This can be
		// removed once we're confident in IR generation results.
		syntax.Crawl(p.file, func(n syntax.Node) bool {
			g.validate(n)
			return false
		})
	}

	if base.Flag.Complete {
		for _, n := range g.target.Decls {
			if fn, ok := n.(*ir.Func); ok {
				if fn.Body == nil && fn.Nname.Sym().Linkname == "" {
					base.ErrorfAt(fn.Pos(), "missing function body")
				}
			}
		}
	}

	// Check for unusual case where noder2 encounters a type error that types2
	// doesn't check for (e.g. notinheap incompatibility).
	base.ExitIfErrors()

	typecheck.DeclareUniverse()

	// Create any needed instantiations of generic functions and transform
	// existing and new functions to use those instantiations.
	BuildInstantiations()

	// Remove all generic functions from g.target.Decl, since they have been
	// used for stenciling, but don't compile. Generic functions will already
	// have been marked for export as appropriate.
	j := 0
	for i, decl := range g.target.Decls {
		if decl.Op() != ir.ODCLFUNC || !decl.Type().HasTParam() {
			g.target.Decls[j] = g.target.Decls[i]
			j++
		}
	}
	g.target.Decls = g.target.Decls[:j]

	base.Assertf(len(g.laterFuncs) == 0, "still have %d later funcs", len(g.laterFuncs))
}

func (g *irgen) unhandled(what string, p poser) {
	base.FatalfAt(g.pos(p), "unhandled %s: %T", what, p)
	panic("unreachable")
}

// delayTransform returns true if we should delay all transforms, because we are
// creating the nodes for a generic function/method.
func (g *irgen) delayTransform() bool {
	return g.topFuncIsGeneric
}

func (g *irgen) typeAndValue(x syntax.Expr) syntax.TypeAndValue {
	tv := x.GetTypeInfo()
	if tv.Type == nil {
		base.FatalfAt(g.pos(x), "missing type for %v (%T)", x, x)
	}
	return tv
}

func (g *irgen) type2(x syntax.Expr) syntax.Type {
	tv := x.GetTypeInfo()
	if tv.Type == nil {
		base.FatalfAt(g.pos(x), "missing type for %v (%T)", x, x)
	}
	return tv.Type
}

// A cycleFinder detects anonymous interface cycles (go.dev/issue/56103).
type cycleFinder struct {
	cyclic map[*types2.Interface]bool
}

// hasCycle reports whether typ is part of an anonymous interface cycle.
func (f *cycleFinder) hasCycle(typ *types2.Interface) bool {
	// We use Method instead of ExplicitMethod to implicitly expand any
	// embedded interfaces. Then we just need to walk any anonymous
	// types, keeping track of *types2.Interface types we visit along
	// the way.
	for i := 0; i < typ.NumMethods(); i++ {
		if f.visit(typ.Method(i).Type()) {
			return true
		}
	}
	return false
}

// visit recursively walks typ0 to check any referenced interface types.
func (f *cycleFinder) visit(typ0 types2.Type) bool {
	for { // loop for tail recursion
		switch typ := typ0.(type) {
		default:
			base.Fatalf("unexpected type: %T", typ)

		case *types2.Basic, *types2.Named, *types2.TypeParam:
			return false // named types cannot be part of an anonymous cycle
		case *types2.Pointer:
			typ0 = typ.Elem()
		case *types2.Array:
			typ0 = typ.Elem()
		case *types2.Chan:
			typ0 = typ.Elem()
		case *types2.Map:
			if f.visit(typ.Key()) {
				return true
			}
			typ0 = typ.Elem()
		case *types2.Slice:
			typ0 = typ.Elem()

		case *types2.Struct:
			for i := 0; i < typ.NumFields(); i++ {
				if f.visit(typ.Field(i).Type()) {
					return true
				}
			}
			return false

		case *types2.Interface:
			// The empty interface (e.g., "any") cannot be part of a cycle.
			if typ.NumExplicitMethods() == 0 && typ.NumEmbeddeds() == 0 {
				return false
			}

			// As an optimization, we wait to allocate cyclic here, after
			// we've found at least one other (non-empty) anonymous
			// interface. This means when a cycle is present, we need to
			// make an extra recursive call to actually detect it. But for
			// most packages, it allows skipping the map allocation
			// entirely.
			if x, ok := f.cyclic[typ]; ok {
				return x
			}
			if f.cyclic == nil {
				f.cyclic = make(map[*types2.Interface]bool)
			}
			f.cyclic[typ] = true
			if f.hasCycle(typ) {
				return true
			}
			f.cyclic[typ] = false
			return false

		case *types2.Signature:
			return f.visit(typ.Params()) || f.visit(typ.Results())
		case *types2.Tuple:
			for i := 0; i < typ.Len(); i++ {
				if f.visit(typ.At(i).Type()) {
					return true
				}
			}
			return false
		}
	}
}