1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) def(name *syntax.Name) (*ir.Name, types2.Object) {
obj, ok := g.info.Defs[name]
if !ok {
base.FatalfAt(g.pos(name), "unknown name %v", name)
}
return g.obj(obj), obj
}
// use returns the Name or InstExpr node associated with the use of name,
// possibly instantiated by type arguments. The returned node will have
// the correct type and be marked as typechecked.
func (g *irgen) use(name *syntax.Name) ir.Node {
obj2, ok := g.info.Uses[name]
if !ok {
base.FatalfAt(g.pos(name), "unknown name %v", name)
}
obj := ir.CaptureName(g.pos(name), ir.CurFunc, g.obj(obj2))
if obj.Defn != nil && obj.Defn.Op() == ir.ONAME {
// If CaptureName created a closure variable, then transfer the
// type of the captured name to the new closure variable.
obj.SetTypecheck(1)
obj.SetType(obj.Defn.Type())
}
if obj.Class == ir.PFUNC {
if inst, ok := g.info.Instances[name]; ok {
// This is the case where inferring types required the
// types of the function arguments.
targs := make([]ir.Ntype, inst.TypeArgs.Len())
for i := range targs {
targs[i] = ir.TypeNode(g.typ(inst.TypeArgs.At(i)))
}
typ := g.substType(obj.Type(), obj.Type().TParams(), targs)
return typed(typ, ir.NewInstExpr(g.pos(name), ir.OFUNCINST, obj, targs))
}
}
return obj
}
// obj returns the Name that represents the given object. If no such Name exists
// yet, it will be implicitly created. The returned node will have the correct
// type and be marked as typechecked.
//
// For objects declared at function scope, ir.CurFunc must already be
// set to the respective function when the Name is created.
func (g *irgen) obj(obj types2.Object) *ir.Name {
// For imported objects, we use iimport directly instead of mapping
// the types2 representation.
if obj.Pkg() != g.self {
if sig, ok := obj.Type().(*types2.Signature); ok && sig.Recv() != nil {
// We can't import a method by name - must import the type
// and access the method from it.
base.FatalfAt(g.pos(obj), "tried to import a method directly")
}
sym := g.sym(obj)
if sym.Def != nil {
return sym.Def.(*ir.Name)
}
n := typecheck.Resolve(ir.NewIdent(src.NoXPos, sym))
if n, ok := n.(*ir.Name); ok {
n.SetTypecheck(1)
return n
}
base.FatalfAt(g.pos(obj), "failed to resolve %v", obj)
}
if name, ok := g.objs[obj]; ok {
return name // previously mapped
}
var name *ir.Name
pos := g.pos(obj)
class := typecheck.DeclContext
if obj.Parent() == g.self.Scope() {
class = ir.PEXTERN // forward reference to package-block declaration
}
// "You are in a maze of twisting little passages, all different."
switch obj := obj.(type) {
case *types2.Const:
name = g.objCommon(pos, ir.OLITERAL, g.sym(obj), class, g.typ(obj.Type()))
case *types2.Func:
sig := obj.Type().(*types2.Signature)
var sym *types.Sym
var typ *types.Type
if recv := sig.Recv(); recv == nil {
if obj.Name() == "init" {
sym = Renameinit()
} else {
sym = g.sym(obj)
}
typ = g.typ(sig)
} else {
sym = g.selector(obj)
if !sym.IsBlank() {
sym = ir.MethodSym(g.typ(recv.Type()), sym)
}
typ = g.signature(g.param(recv), sig)
}
name = g.objCommon(pos, ir.ONAME, sym, ir.PFUNC, typ)
case *types2.TypeName:
if obj.IsAlias() {
name = g.objCommon(pos, ir.OTYPE, g.sym(obj), class, g.typ(obj.Type()))
name.SetAlias(true)
} else {
name = ir.NewDeclNameAt(pos, ir.OTYPE, g.sym(obj))
g.objFinish(name, class, types.NewNamed(name))
}
case *types2.Var:
sym := g.sym(obj)
if class == ir.PPARAMOUT && (sym == nil || sym.IsBlank()) {
// Backend needs names for result parameters,
// even if they're anonymous or blank.
nresults := 0
for _, n := range ir.CurFunc.Dcl {
if n.Class == ir.PPARAMOUT {
nresults++
}
}
if sym == nil {
sym = typecheck.LookupNum("~r", nresults) // 'r' for "result"
} else {
sym = typecheck.LookupNum("~b", nresults) // 'b' for "blank"
}
}
name = g.objCommon(pos, ir.ONAME, sym, class, g.typ(obj.Type()))
default:
g.unhandled("object", obj)
}
g.objs[obj] = name
name.SetTypecheck(1)
return name
}
func (g *irgen) objCommon(pos src.XPos, op ir.Op, sym *types.Sym, class ir.Class, typ *types.Type) *ir.Name {
name := ir.NewDeclNameAt(pos, op, sym)
g.objFinish(name, class, typ)
return name
}
func (g *irgen) objFinish(name *ir.Name, class ir.Class, typ *types.Type) {
sym := name.Sym()
name.SetType(typ)
name.Class = class
if name.Class == ir.PFUNC {
sym.SetFunc(true)
}
name.SetTypecheck(1)
if ir.IsBlank(name) {
return
}
switch class {
case ir.PEXTERN:
g.target.Externs = append(g.target.Externs, name)
fallthrough
case ir.PFUNC:
sym.Def = name
if name.Class == ir.PFUNC && name.Type().Recv() != nil {
break // methods are exported with their receiver type
}
if types.IsExported(sym.Name) {
// Generic functions can be marked for export here, even
// though they will not be compiled until instantiated.
typecheck.Export(name)
}
if base.Flag.AsmHdr != "" && !name.Sym().Asm() {
name.Sym().SetAsm(true)
g.target.Asms = append(g.target.Asms, name)
}
default:
// Function-scoped declaration.
name.Curfn = ir.CurFunc
if name.Op() == ir.ONAME {
ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, name)
}
}
}
|