1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains transformation functions on nodes, which are the
// transformations that the typecheck package does that are distinct from the
// typechecking functionality. These transform functions are pared-down copies of
// the original typechecking functions, with all code removed that is related to:
//
// - Detecting compile-time errors (already done by types2)
// - Setting the actual type of existing nodes (already done based on
// type info from types2)
// - Dealing with untyped constants (which types2 has already resolved)
//
// Each of the transformation functions requires that node passed in has its type
// and typecheck flag set. If the transformation function replaces or adds new
// nodes, it will set the type and typecheck flag for those new nodes.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"fmt"
"go/constant"
)
// Transformation functions for expressions
// transformAdd transforms an addition operation (currently just addition of
// strings). Corresponds to the "binary operators" case in typecheck.typecheck1.
func transformAdd(n *ir.BinaryExpr) ir.Node {
assert(n.Type() != nil && n.Typecheck() == 1)
l := n.X
if l.Type().IsString() {
var add *ir.AddStringExpr
if l.Op() == ir.OADDSTR {
add = l.(*ir.AddStringExpr)
add.SetPos(n.Pos())
} else {
add = ir.NewAddStringExpr(n.Pos(), []ir.Node{l})
}
r := n.Y
if r.Op() == ir.OADDSTR {
r := r.(*ir.AddStringExpr)
add.List.Append(r.List.Take()...)
} else {
add.List.Append(r)
}
typed(l.Type(), add)
return add
}
return n
}
// Corresponds to typecheck.stringtoruneslit.
func stringtoruneslit(n *ir.ConvExpr) ir.Node {
if n.X.Op() != ir.OLITERAL || n.X.Val().Kind() != constant.String {
base.Fatalf("stringtoarraylit %v", n)
}
var list []ir.Node
i := 0
eltType := n.Type().Elem()
for _, r := range ir.StringVal(n.X) {
elt := ir.NewKeyExpr(base.Pos, ir.NewInt(int64(i)), ir.NewInt(int64(r)))
// Change from untyped int to the actual element type determined
// by types2. No need to change elt.Key, since the array indexes
// are just used for setting up the element ordering.
elt.Value.SetType(eltType)
list = append(list, elt)
i++
}
nn := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, n.Type(), list)
typed(n.Type(), nn)
// Need to transform the OCOMPLIT.
return transformCompLit(nn)
}
// transformConv transforms an OCONV node as needed, based on the types involved,
// etc. Corresponds to typecheck.tcConv.
func transformConv(n *ir.ConvExpr) ir.Node {
t := n.X.Type()
op, why := typecheck.Convertop(n.X.Op() == ir.OLITERAL, t, n.Type())
if op == ir.OXXX {
// types2 currently ignores pragmas, so a 'notinheap' mismatch is the
// one type-related error that it does not catch. This error will be
// caught here by Convertop (see two checks near beginning of
// Convertop) and reported at the end of noding.
base.ErrorfAt(n.Pos(), "cannot convert %L to type %v%s", n.X, n.Type(), why)
return n
}
n.SetOp(op)
switch n.Op() {
case ir.OCONVNOP:
if t.Kind() == n.Type().Kind() {
switch t.Kind() {
case types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128:
// Floating point casts imply rounding and
// so the conversion must be kept.
n.SetOp(ir.OCONV)
}
}
// Do not convert to []byte literal. See CL 125796.
// Generated code and compiler memory footprint is better without it.
case ir.OSTR2BYTES:
// ok
case ir.OSTR2RUNES:
if n.X.Op() == ir.OLITERAL {
return stringtoruneslit(n)
}
case ir.OBYTES2STR:
assert(t.IsSlice())
assert(t.Elem().Kind() == types.TUINT8)
if t.Elem() != types.ByteType && t.Elem() != types.Types[types.TUINT8] {
// If t is a slice of a user-defined byte type B (not uint8
// or byte), then add an extra CONVNOP from []B to []byte, so
// that the call to slicebytetostring() added in walk will
// typecheck correctly.
n.X = ir.NewConvExpr(n.X.Pos(), ir.OCONVNOP, types.NewSlice(types.ByteType), n.X)
n.X.SetTypecheck(1)
}
case ir.ORUNES2STR:
assert(t.IsSlice())
assert(t.Elem().Kind() == types.TINT32)
if t.Elem() != types.RuneType && t.Elem() != types.Types[types.TINT32] {
// If t is a slice of a user-defined rune type B (not uint32
// or rune), then add an extra CONVNOP from []B to []rune, so
// that the call to slicerunetostring() added in walk will
// typecheck correctly.
n.X = ir.NewConvExpr(n.X.Pos(), ir.OCONVNOP, types.NewSlice(types.RuneType), n.X)
n.X.SetTypecheck(1)
}
}
return n
}
// transformConvCall transforms a conversion call. Corresponds to the OTYPE part of
// typecheck.tcCall.
func transformConvCall(n *ir.CallExpr) ir.Node {
assert(n.Type() != nil && n.Typecheck() == 1)
arg := n.Args[0]
n1 := ir.NewConvExpr(n.Pos(), ir.OCONV, nil, arg)
typed(n.X.Type(), n1)
return transformConv(n1)
}
// transformCall transforms a normal function/method call. Corresponds to last half
// (non-conversion, non-builtin part) of typecheck.tcCall. This code should work even
// in the case of OCALL/OFUNCINST.
func transformCall(n *ir.CallExpr) {
// Set base.Pos, since transformArgs below may need it, but transformCall
// is called in some passes that don't set base.Pos.
ir.SetPos(n)
// n.Type() can be nil for calls with no return value
assert(n.Typecheck() == 1)
typecheck.RewriteNonNameCall(n)
transformArgs(n)
l := n.X
t := l.Type()
switch l.Op() {
case ir.ODOTINTER:
n.SetOp(ir.OCALLINTER)
case ir.ODOTMETH:
l := l.(*ir.SelectorExpr)
n.SetOp(ir.OCALLMETH)
tp := t.Recv().Type
if l.X == nil || !types.Identical(l.X.Type(), tp) {
base.Fatalf("method receiver")
}
default:
n.SetOp(ir.OCALLFUNC)
}
typecheckaste(ir.OCALL, n.X, n.IsDDD, t.Params(), n.Args)
if l.Op() == ir.ODOTMETH && len(deref(n.X.Type().Recv().Type).RParams()) == 0 {
typecheck.FixMethodCall(n)
}
if t.NumResults() == 1 {
if n.Op() == ir.OCALLFUNC && n.X.Op() == ir.ONAME {
if sym := n.X.(*ir.Name).Sym(); types.IsRuntimePkg(sym.Pkg) && sym.Name == "getg" {
// Emit code for runtime.getg() directly instead of calling function.
// Most such rewrites (for example the similar one for math.Sqrt) should be done in walk,
// so that the ordering pass can make sure to preserve the semantics of the original code
// (in particular, the exact time of the function call) by introducing temporaries.
// In this case, we know getg() always returns the same result within a given function
// and we want to avoid the temporaries, so we do the rewrite earlier than is typical.
n.SetOp(ir.OGETG)
}
}
return
}
}
// transformEarlyCall transforms the arguments of a call with an OFUNCINST node.
func transformEarlyCall(n *ir.CallExpr) {
transformArgs(n)
typecheckaste(ir.OCALL, n.X, n.IsDDD, n.X.Type().Params(), n.Args)
}
// transformCompare transforms a compare operation (currently just equals/not
// equals). Corresponds to the "comparison operators" case in
// typecheck.typecheck1, including tcArith.
func transformCompare(n *ir.BinaryExpr) {
assert(n.Type() != nil && n.Typecheck() == 1)
if (n.Op() == ir.OEQ || n.Op() == ir.ONE) && !types.Identical(n.X.Type(), n.Y.Type()) {
// Comparison is okay as long as one side is assignable to the
// other. The only allowed case where the conversion is not CONVNOP is
// "concrete == interface". In that case, check comparability of
// the concrete type. The conversion allocates, so only do it if
// the concrete type is huge.
l, r := n.X, n.Y
lt, rt := l.Type(), r.Type()
converted := false
if rt.Kind() != types.TBLANK {
aop, _ := typecheck.Assignop(lt, rt)
if aop != ir.OXXX {
types.CalcSize(lt)
if lt.HasShape() || rt.IsInterface() == lt.IsInterface() || lt.Size() >= 1<<16 {
l = ir.NewConvExpr(base.Pos, aop, rt, l)
l.SetTypecheck(1)
}
converted = true
}
}
if !converted && lt.Kind() != types.TBLANK {
aop, _ := typecheck.Assignop(rt, lt)
if aop != ir.OXXX {
types.CalcSize(rt)
if rt.HasShape() || rt.IsInterface() == lt.IsInterface() || rt.Size() >= 1<<16 {
r = ir.NewConvExpr(base.Pos, aop, lt, r)
r.SetTypecheck(1)
}
}
}
n.X, n.Y = l, r
}
}
// Corresponds to typecheck.implicitstar.
func implicitstar(n ir.Node) ir.Node {
// insert implicit * if needed for fixed array
t := n.Type()
if !t.IsPtr() {
return n
}
t = t.Elem()
if !t.IsArray() {
return n
}
star := ir.NewStarExpr(base.Pos, n)
star.SetImplicit(true)
return typed(t, star)
}
// transformIndex transforms an index operation. Corresponds to typecheck.tcIndex.
func transformIndex(n *ir.IndexExpr) {
assert(n.Type() != nil && n.Typecheck() == 1)
n.X = implicitstar(n.X)
l := n.X
t := l.Type()
if t.Kind() == types.TMAP {
n.Index = assignconvfn(n.Index, t.Key())
n.SetOp(ir.OINDEXMAP)
// Set type to just the map value, not (value, bool). This is
// different from types2, but fits the later stages of the
// compiler better.
n.SetType(t.Elem())
n.Assigned = false
}
}
// transformSlice transforms a slice operation. Corresponds to typecheck.tcSlice.
func transformSlice(n *ir.SliceExpr) {
assert(n.Type() != nil && n.Typecheck() == 1)
l := n.X
if l.Type().IsArray() {
addr := typecheck.NodAddr(n.X)
addr.SetImplicit(true)
typed(types.NewPtr(n.X.Type()), addr)
n.X = addr
l = addr
}
t := l.Type()
if t.IsString() {
n.SetOp(ir.OSLICESTR)
} else if t.IsPtr() && t.Elem().IsArray() {
if n.Op().IsSlice3() {
n.SetOp(ir.OSLICE3ARR)
} else {
n.SetOp(ir.OSLICEARR)
}
}
}
// Transformation functions for statements
// Corresponds to typecheck.checkassign.
func transformCheckAssign(stmt ir.Node, n ir.Node) {
if n.Op() == ir.OINDEXMAP {
n := n.(*ir.IndexExpr)
n.Assigned = true
return
}
}
// Corresponds to typecheck.assign.
func transformAssign(stmt ir.Node, lhs, rhs []ir.Node) {
checkLHS := func(i int, typ *types.Type) {
transformCheckAssign(stmt, lhs[i])
}
cr := len(rhs)
if len(rhs) == 1 {
if rtyp := rhs[0].Type(); rtyp != nil && rtyp.IsFuncArgStruct() {
cr = rtyp.NumFields()
}
}
// x, ok = y
assignOK:
for len(lhs) == 2 && cr == 1 {
stmt := stmt.(*ir.AssignListStmt)
r := rhs[0]
switch r.Op() {
case ir.OINDEXMAP:
stmt.SetOp(ir.OAS2MAPR)
case ir.ORECV:
stmt.SetOp(ir.OAS2RECV)
case ir.ODOTTYPE:
r := r.(*ir.TypeAssertExpr)
stmt.SetOp(ir.OAS2DOTTYPE)
r.SetOp(ir.ODOTTYPE2)
case ir.ODYNAMICDOTTYPE:
r := r.(*ir.DynamicTypeAssertExpr)
stmt.SetOp(ir.OAS2DOTTYPE)
r.SetOp(ir.ODYNAMICDOTTYPE2)
default:
break assignOK
}
checkLHS(0, r.Type())
checkLHS(1, types.UntypedBool)
t := lhs[0].Type()
if t != nil && rhs[0].Type().HasShape() && t.IsInterface() && !types.IdenticalStrict(t, rhs[0].Type()) {
// This is a multi-value assignment (map, channel, or dot-type)
// where the main result is converted to an interface during the
// assignment. Normally, the needed CONVIFACE is not created
// until (*orderState).as2ok(), because the AS2* ops and their
// sub-ops are so tightly intertwined. But we need to create the
// CONVIFACE now to enable dictionary lookups. So, assign the
// results first to temps, so that we can manifest the CONVIFACE
// in assigning the first temp to lhs[0]. If we added the
// CONVIFACE into rhs[0] directly, we would break a lot of later
// code that depends on the tight coupling between the AS2* ops
// and their sub-ops. (Issue #50642).
v := typecheck.Temp(rhs[0].Type())
ok := typecheck.Temp(types.Types[types.TBOOL])
as := ir.NewAssignListStmt(base.Pos, stmt.Op(), []ir.Node{v, ok}, []ir.Node{r})
as.Def = true
as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, v))
as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, ok))
as.SetTypecheck(1)
// Change stmt to be a normal assignment of the temps to the final
// left-hand-sides. We re-create the original multi-value assignment
// so that it assigns to the temps and add it as an init of stmt.
//
// TODO: fix the order of evaluation, so that the lval of lhs[0]
// is evaluated before rhs[0] (similar to problem in #50672).
stmt.SetOp(ir.OAS2)
stmt.PtrInit().Append(as)
// assignconvfn inserts the CONVIFACE.
stmt.Rhs = []ir.Node{assignconvfn(v, t), ok}
}
return
}
if len(lhs) != cr {
for i := range lhs {
checkLHS(i, nil)
}
return
}
// x,y,z = f()
if cr > len(rhs) {
stmt := stmt.(*ir.AssignListStmt)
stmt.SetOp(ir.OAS2FUNC)
r := rhs[0].(*ir.CallExpr)
rtyp := r.Type()
mismatched := false
failed := false
for i := range lhs {
result := rtyp.Field(i).Type
checkLHS(i, result)
if lhs[i].Type() == nil || result == nil {
failed = true
} else if lhs[i] != ir.BlankNode && !types.Identical(lhs[i].Type(), result) {
mismatched = true
}
}
if mismatched && !failed {
typecheck.RewriteMultiValueCall(stmt, r)
}
return
}
for i, r := range rhs {
checkLHS(i, r.Type())
if lhs[i].Type() != nil {
rhs[i] = assignconvfn(r, lhs[i].Type())
}
}
}
// Corresponds to typecheck.typecheckargs. Really just deals with multi-value calls.
func transformArgs(n ir.InitNode) {
var list []ir.Node
switch n := n.(type) {
default:
base.Fatalf("transformArgs %+v", n.Op())
case *ir.CallExpr:
list = n.Args
if n.IsDDD {
return
}
case *ir.ReturnStmt:
list = n.Results
}
if len(list) != 1 {
return
}
t := list[0].Type()
if t == nil || !t.IsFuncArgStruct() {
return
}
// Save n as n.Orig for fmt.go.
if ir.Orig(n) == n {
n.(ir.OrigNode).SetOrig(ir.SepCopy(n))
}
// Rewrite f(g()) into t1, t2, ... = g(); f(t1, t2, ...).
typecheck.RewriteMultiValueCall(n, list[0])
}
// assignconvfn converts node n for assignment to type t. Corresponds to
// typecheck.assignconvfn.
func assignconvfn(n ir.Node, t *types.Type) ir.Node {
if t.Kind() == types.TBLANK {
return n
}
if n.Op() == ir.OPAREN {
n = n.(*ir.ParenExpr).X
}
if types.IdenticalStrict(n.Type(), t) {
return n
}
op, why := Assignop(n.Type(), t)
if op == ir.OXXX {
base.Fatalf("found illegal assignment %+v -> %+v; %s", n.Type(), t, why)
}
r := ir.NewConvExpr(base.Pos, op, t, n)
r.SetTypecheck(1)
r.SetImplicit(true)
return r
}
func Assignop(src, dst *types.Type) (ir.Op, string) {
if src == dst {
return ir.OCONVNOP, ""
}
if src == nil || dst == nil || src.Kind() == types.TFORW || dst.Kind() == types.TFORW || src.Underlying() == nil || dst.Underlying() == nil {
return ir.OXXX, ""
}
// 1. src type is identical to dst (taking shapes into account)
if types.Identical(src, dst) {
// We already know from assignconvfn above that IdenticalStrict(src,
// dst) is false, so the types are not exactly the same and one of
// src or dst is a shape. If dst is an interface (which means src is
// an interface too), we need a real OCONVIFACE op; otherwise we need a
// OCONVNOP. See issue #48453.
if dst.IsInterface() {
return ir.OCONVIFACE, ""
} else {
return ir.OCONVNOP, ""
}
}
return typecheck.Assignop1(src, dst)
}
// Corresponds to typecheck.typecheckaste, but we add an extra flag convifaceOnly
// only. If convifaceOnly is true, we only do interface conversion. We use this to do
// early insertion of CONVIFACE nodes during noder2, when the function or args may
// have typeparams.
func typecheckaste(op ir.Op, call ir.Node, isddd bool, tstruct *types.Type, nl ir.Nodes) {
var t *types.Type
var i int
lno := base.Pos
defer func() { base.Pos = lno }()
var n ir.Node
if len(nl) == 1 {
n = nl[0]
}
i = 0
for _, tl := range tstruct.Fields().Slice() {
t = tl.Type
if tl.IsDDD() {
if isddd {
n = nl[i]
ir.SetPos(n)
if n.Type() != nil {
nl[i] = assignconvfn(n, t)
}
return
}
// TODO(mdempsky): Make into ... call with implicit slice.
for ; i < len(nl); i++ {
n = nl[i]
ir.SetPos(n)
if n.Type() != nil {
nl[i] = assignconvfn(n, t.Elem())
}
}
return
}
n = nl[i]
ir.SetPos(n)
if n.Type() != nil {
nl[i] = assignconvfn(n, t)
}
i++
}
}
// transformSend transforms a send statement, converting the value to appropriate
// type for the channel, as needed. Corresponds of typecheck.tcSend.
func transformSend(n *ir.SendStmt) {
n.Value = assignconvfn(n.Value, n.Chan.Type().Elem())
}
// transformReturn transforms a return node, by doing the needed assignments and
// any necessary conversions. Corresponds to typecheck.tcReturn()
func transformReturn(rs *ir.ReturnStmt) {
transformArgs(rs)
nl := rs.Results
if ir.HasNamedResults(ir.CurFunc) && len(nl) == 0 {
return
}
typecheckaste(ir.ORETURN, nil, false, ir.CurFunc.Type().Results(), nl)
}
// transformSelect transforms a select node, creating an assignment list as needed
// for each case. Corresponds to typecheck.tcSelect().
func transformSelect(sel *ir.SelectStmt) {
for _, ncase := range sel.Cases {
if ncase.Comm != nil {
n := ncase.Comm
oselrecv2 := func(dst, recv ir.Node, def bool) {
selrecv := ir.NewAssignListStmt(n.Pos(), ir.OSELRECV2, []ir.Node{dst, ir.BlankNode}, []ir.Node{recv})
if dst.Op() == ir.ONAME && dst.(*ir.Name).Defn == n {
// Must fix Defn for dst, since we are
// completely changing the node.
dst.(*ir.Name).Defn = selrecv
}
selrecv.Def = def
selrecv.SetTypecheck(1)
selrecv.SetInit(n.Init())
ncase.Comm = selrecv
}
switch n.Op() {
case ir.OAS:
// convert x = <-c into x, _ = <-c
// remove implicit conversions; the eventual assignment
// will reintroduce them.
n := n.(*ir.AssignStmt)
if r := n.Y; r.Op() == ir.OCONVNOP || r.Op() == ir.OCONVIFACE {
r := r.(*ir.ConvExpr)
if r.Implicit() {
n.Y = r.X
}
}
oselrecv2(n.X, n.Y, n.Def)
case ir.OAS2RECV:
n := n.(*ir.AssignListStmt)
n.SetOp(ir.OSELRECV2)
case ir.ORECV:
// convert <-c into _, _ = <-c
n := n.(*ir.UnaryExpr)
oselrecv2(ir.BlankNode, n, false)
case ir.OSEND:
break
}
}
}
}
// transformAsOp transforms an AssignOp statement. Corresponds to OASOP case in
// typecheck1.
func transformAsOp(n *ir.AssignOpStmt) {
transformCheckAssign(n, n.X)
}
// transformDot transforms an OXDOT (or ODOT) or ODOT, ODOTPTR, ODOTMETH,
// ODOTINTER, or OMETHVALUE, as appropriate. It adds in extra nodes as needed to
// access embedded fields. Corresponds to typecheck.tcDot.
func transformDot(n *ir.SelectorExpr, isCall bool) ir.Node {
assert(n.Type() != nil && n.Typecheck() == 1)
if n.Op() == ir.OXDOT {
n = typecheck.AddImplicitDots(n)
n.SetOp(ir.ODOT)
// Set the Selection field and typecheck flag for any new ODOT nodes
// added by AddImplicitDots(), and also transform to ODOTPTR if
// needed. Equivalent to 'n.X = typecheck(n.X, ctxExpr|ctxType)' in
// tcDot.
for n1 := n; n1.X.Op() == ir.ODOT; {
n1 = n1.X.(*ir.SelectorExpr)
if !n1.Implicit() {
break
}
t1 := n1.X.Type()
if t1.IsPtr() && !t1.Elem().IsInterface() {
t1 = t1.Elem()
n1.SetOp(ir.ODOTPTR)
}
typecheck.Lookdot(n1, t1, 0)
n1.SetTypecheck(1)
}
}
t := n.X.Type()
if n.X.Op() == ir.OTYPE {
return transformMethodExpr(n)
}
if t.IsPtr() && !t.Elem().IsInterface() {
t = t.Elem()
n.SetOp(ir.ODOTPTR)
}
f := typecheck.Lookdot(n, t, 0)
assert(f != nil)
if (n.Op() == ir.ODOTINTER || n.Op() == ir.ODOTMETH) && !isCall {
n.SetOp(ir.OMETHVALUE)
// This converts a method type to a function type. See issue 47775.
n.SetType(typecheck.NewMethodType(n.Type(), nil))
}
return n
}
// Corresponds to typecheck.typecheckMethodExpr.
func transformMethodExpr(n *ir.SelectorExpr) (res ir.Node) {
t := n.X.Type()
// Compute the method set for t.
var ms *types.Fields
if t.IsInterface() {
ms = t.AllMethods()
} else {
mt := types.ReceiverBaseType(t)
typecheck.CalcMethods(mt)
ms = mt.AllMethods()
// The method expression T.m requires a wrapper when T
// is different from m's declared receiver type. We
// normally generate these wrappers while writing out
// runtime type descriptors, which is always done for
// types declared at package scope. However, we need
// to make sure to generate wrappers for anonymous
// receiver types too.
if mt.Sym() == nil {
typecheck.NeedRuntimeType(t)
}
}
s := n.Sel
m := typecheck.Lookdot1(n, s, t, ms, 0)
if !t.HasShape() {
// It's OK to not find the method if t is instantiated by shape types,
// because we will use the methods on the generic type anyway.
assert(m != nil)
}
n.SetOp(ir.OMETHEXPR)
n.Selection = m
n.SetType(typecheck.NewMethodType(m.Type, n.X.Type()))
return n
}
// Corresponds to typecheck.tcAppend.
func transformAppend(n *ir.CallExpr) ir.Node {
transformArgs(n)
args := n.Args
t := args[0].Type()
assert(t.IsSlice())
if n.IsDDD {
// assignconvfn is of args[1] not required here, as the
// types of args[0] and args[1] don't need to match
// (They will both have an underlying type which are
// slices of identical base types, or be []byte and string.)
// See issue 53888.
return n
}
as := args[1:]
for i, n := range as {
assert(n.Type() != nil)
as[i] = assignconvfn(n, t.Elem())
}
return n
}
// Corresponds to typecheck.tcComplex.
func transformComplex(n *ir.BinaryExpr) ir.Node {
l := n.X
r := n.Y
assert(types.Identical(l.Type(), r.Type()))
var t *types.Type
switch l.Type().Kind() {
case types.TFLOAT32:
t = types.Types[types.TCOMPLEX64]
case types.TFLOAT64:
t = types.Types[types.TCOMPLEX128]
default:
panic(fmt.Sprintf("transformComplex: unexpected type %v", l.Type()))
}
// Must set the type here for generics, because this can't be determined
// by substitution of the generic types.
typed(t, n)
return n
}
// Corresponds to typecheck.tcDelete.
func transformDelete(n *ir.CallExpr) ir.Node {
transformArgs(n)
args := n.Args
assert(len(args) == 2)
l := args[0]
r := args[1]
args[1] = assignconvfn(r, l.Type().Key())
return n
}
// Corresponds to typecheck.tcMake.
func transformMake(n *ir.CallExpr) ir.Node {
args := n.Args
n.Args = nil
l := args[0]
t := l.Type()
assert(t != nil)
i := 1
var nn ir.Node
switch t.Kind() {
case types.TSLICE:
l = args[i]
i++
var r ir.Node
if i < len(args) {
r = args[i]
i++
}
nn = ir.NewMakeExpr(n.Pos(), ir.OMAKESLICE, l, r)
case types.TMAP:
if i < len(args) {
l = args[i]
i++
} else {
l = ir.NewInt(0)
}
nn = ir.NewMakeExpr(n.Pos(), ir.OMAKEMAP, l, nil)
nn.SetEsc(n.Esc())
case types.TCHAN:
l = nil
if i < len(args) {
l = args[i]
i++
} else {
l = ir.NewInt(0)
}
nn = ir.NewMakeExpr(n.Pos(), ir.OMAKECHAN, l, nil)
default:
panic(fmt.Sprintf("transformMake: unexpected type %v", t))
}
assert(i == len(args))
typed(n.Type(), nn)
return nn
}
// Corresponds to typecheck.tcPanic.
func transformPanic(n *ir.UnaryExpr) ir.Node {
n.X = assignconvfn(n.X, types.Types[types.TINTER])
return n
}
// Corresponds to typecheck.tcPrint.
func transformPrint(n *ir.CallExpr) ir.Node {
transformArgs(n)
return n
}
// Corresponds to typecheck.tcRealImag.
func transformRealImag(n *ir.UnaryExpr) ir.Node {
l := n.X
var t *types.Type
// Determine result type.
switch l.Type().Kind() {
case types.TCOMPLEX64:
t = types.Types[types.TFLOAT32]
case types.TCOMPLEX128:
t = types.Types[types.TFLOAT64]
default:
panic(fmt.Sprintf("transformRealImag: unexpected type %v", l.Type()))
}
// Must set the type here for generics, because this can't be determined
// by substitution of the generic types.
typed(t, n)
return n
}
// Corresponds to typecheck.tcLenCap.
func transformLenCap(n *ir.UnaryExpr) ir.Node {
n.X = implicitstar(n.X)
return n
}
// Corresponds to Builtin part of tcCall.
func transformBuiltin(n *ir.CallExpr) ir.Node {
// n.Type() can be nil for builtins with no return value
assert(n.Typecheck() == 1)
fun := n.X.(*ir.Name)
op := fun.BuiltinOp
switch op {
case ir.OAPPEND, ir.ODELETE, ir.OMAKE, ir.OPRINT, ir.OPRINTN, ir.ORECOVER:
n.SetOp(op)
n.X = nil
switch op {
case ir.OAPPEND:
return transformAppend(n)
case ir.ODELETE:
return transformDelete(n)
case ir.OMAKE:
return transformMake(n)
case ir.OPRINT, ir.OPRINTN:
return transformPrint(n)
case ir.ORECOVER:
// nothing more to do
return n
}
case ir.OCAP, ir.OCLOSE, ir.OIMAG, ir.OLEN, ir.OPANIC, ir.OREAL:
transformArgs(n)
fallthrough
case ir.ONEW, ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF, ir.OUNSAFESLICEDATA, ir.OUNSAFESTRINGDATA:
u := ir.NewUnaryExpr(n.Pos(), op, n.Args[0])
u1 := typed(n.Type(), ir.InitExpr(n.Init(), u)) // typecheckargs can add to old.Init
switch op {
case ir.OCAP, ir.OLEN:
return transformLenCap(u1.(*ir.UnaryExpr))
case ir.OREAL, ir.OIMAG:
return transformRealImag(u1.(*ir.UnaryExpr))
case ir.OPANIC:
return transformPanic(u1.(*ir.UnaryExpr))
case ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF:
// This corresponds to the EvalConst() call near end of typecheck().
return typecheck.EvalConst(u1)
case ir.OCLOSE, ir.ONEW, ir.OUNSAFESTRINGDATA, ir.OUNSAFESLICEDATA:
// nothing more to do
return u1
}
case ir.OCOMPLEX, ir.OCOPY, ir.OUNSAFEADD, ir.OUNSAFESLICE, ir.OUNSAFESTRING:
transformArgs(n)
b := ir.NewBinaryExpr(n.Pos(), op, n.Args[0], n.Args[1])
n1 := typed(n.Type(), ir.InitExpr(n.Init(), b))
if op != ir.OCOMPLEX {
// nothing more to do
return n1
}
return transformComplex(n1.(*ir.BinaryExpr))
default:
panic(fmt.Sprintf("transformBuiltin: unexpected op %v", op))
}
return n
}
func hasKeys(l ir.Nodes) bool {
for _, n := range l {
if n.Op() == ir.OKEY || n.Op() == ir.OSTRUCTKEY {
return true
}
}
return false
}
// transformArrayLit runs assignconvfn on each array element and returns the
// length of the slice/array that is needed to hold all the array keys/indexes
// (one more than the highest index). Corresponds to typecheck.typecheckarraylit.
func transformArrayLit(elemType *types.Type, bound int64, elts []ir.Node) int64 {
var key, length int64
for i, elt := range elts {
ir.SetPos(elt)
r := elts[i]
var kv *ir.KeyExpr
if elt.Op() == ir.OKEY {
elt := elt.(*ir.KeyExpr)
key = typecheck.IndexConst(elt.Key)
assert(key >= 0)
kv = elt
r = elt.Value
}
r = assignconvfn(r, elemType)
if kv != nil {
kv.Value = r
} else {
elts[i] = r
}
key++
if key > length {
length = key
}
}
return length
}
// transformCompLit transforms n to an OARRAYLIT, OSLICELIT, OMAPLIT, or
// OSTRUCTLIT node, with any needed conversions. Corresponds to
// typecheck.tcCompLit (and includes parts corresponding to tcStructLitKey).
func transformCompLit(n *ir.CompLitExpr) (res ir.Node) {
assert(n.Type() != nil && n.Typecheck() == 1)
lno := base.Pos
defer func() {
base.Pos = lno
}()
// Save original node (including n.Right)
n.SetOrig(ir.Copy(n))
ir.SetPos(n)
t := n.Type()
switch t.Kind() {
default:
base.Fatalf("transformCompLit %v", t.Kind())
case types.TARRAY:
transformArrayLit(t.Elem(), t.NumElem(), n.List)
n.SetOp(ir.OARRAYLIT)
case types.TSLICE:
length := transformArrayLit(t.Elem(), -1, n.List)
n.SetOp(ir.OSLICELIT)
n.Len = length
case types.TMAP:
for _, l := range n.List {
ir.SetPos(l)
assert(l.Op() == ir.OKEY)
l := l.(*ir.KeyExpr)
r := l.Key
l.Key = assignconvfn(r, t.Key())
r = l.Value
l.Value = assignconvfn(r, t.Elem())
}
n.SetOp(ir.OMAPLIT)
case types.TSTRUCT:
// Need valid field offsets for Xoffset below.
types.CalcSize(t)
if len(n.List) != 0 && !hasKeys(n.List) {
// simple list of values
ls := n.List
for i, n1 := range ls {
ir.SetPos(n1)
f := t.Field(i)
n1 = assignconvfn(n1, f.Type)
ls[i] = ir.NewStructKeyExpr(base.Pos, f, n1)
}
assert(len(ls) >= t.NumFields())
} else {
// keyed list
ls := n.List
for i, l := range ls {
ir.SetPos(l)
kv := l.(*ir.KeyExpr)
key := kv.Key
s := key.Sym()
if types.IsExported(s.Name) && s.Pkg != types.LocalPkg {
// Exported field names should always have
// local pkg. We only need to do this
// adjustment for generic functions that are
// being transformed after being imported
// from another package.
s = typecheck.Lookup(s.Name)
}
// An OXDOT uses the Sym field to hold
// the field to the right of the dot,
// so s will be non-nil, but an OXDOT
// is never a valid struct literal key.
assert(!(s == nil || key.Op() == ir.OXDOT || s.IsBlank()))
f := typecheck.Lookdot1(nil, s, t, t.Fields(), 0)
l := ir.NewStructKeyExpr(l.Pos(), f, kv.Value)
ls[i] = l
l.Value = assignconvfn(l.Value, f.Type)
}
}
n.SetOp(ir.OSTRUCTLIT)
}
return n
}
// transformAddr corresponds to typecheck.tcAddr.
func transformAddr(n *ir.AddrExpr) {
switch n.X.Op() {
case ir.OARRAYLIT, ir.OMAPLIT, ir.OSLICELIT, ir.OSTRUCTLIT:
n.SetOp(ir.OPTRLIT)
}
}
|