1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
|
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package graph collects a set of samples into a directed graph.
// Original file location: https://github.com/google/pprof/tree/main/internal/graph/graph.go
package pgo
import (
"fmt"
"internal/profile"
"math"
"sort"
"strings"
)
// Options encodes the options for constructing a graph
type Options struct {
SampleValue func(s []int64) int64 // Function to compute the value of a sample
SampleMeanDivisor func(s []int64) int64 // Function to compute the divisor for mean graphs, or nil
CallTree bool // Build a tree instead of a graph
DropNegative bool // Drop nodes with overall negative values
KeptNodes NodeSet // If non-nil, only use nodes in this set
}
// Nodes is an ordered collection of graph nodes.
type Nodes []*Node
// Node is an entry on a profiling report. It represents a unique
// program location.
type Node struct {
// Info describes the source location associated to this node.
Info NodeInfo
// Function represents the function that this node belongs to. On
// graphs with sub-function resolution (eg line number or
// addresses), two nodes in a NodeMap that are part of the same
// function have the same value of Node.Function. If the Node
// represents the whole function, it points back to itself.
Function *Node
// Values associated to this node. Flat is exclusive to this node,
// Cum includes all descendents.
Flat, FlatDiv, Cum, CumDiv int64
// In and out Contains the nodes immediately reaching or reached by
// this node.
In, Out EdgeMap
}
// Graph summarizes a performance profile into a format that is
// suitable for visualization.
type Graph struct {
Nodes Nodes
}
// FlatValue returns the exclusive value for this node, computing the
// mean if a divisor is available.
func (n *Node) FlatValue() int64 {
if n.FlatDiv == 0 {
return n.Flat
}
return n.Flat / n.FlatDiv
}
// CumValue returns the inclusive value for this node, computing the
// mean if a divisor is available.
func (n *Node) CumValue() int64 {
if n.CumDiv == 0 {
return n.Cum
}
return n.Cum / n.CumDiv
}
// AddToEdge increases the weight of an edge between two nodes. If
// there isn't such an edge one is created.
func (n *Node) AddToEdge(to *Node, v int64, residual, inline bool) {
n.AddToEdgeDiv(to, 0, v, residual, inline)
}
// AddToEdgeDiv increases the weight of an edge between two nodes. If
// there isn't such an edge one is created.
func (n *Node) AddToEdgeDiv(to *Node, dv, v int64, residual, inline bool) {
if e := n.Out.FindTo(to); e != nil {
e.WeightDiv += dv
e.Weight += v
if residual {
e.Residual = true
}
if !inline {
e.Inline = false
}
return
}
info := &Edge{Src: n, Dest: to, WeightDiv: dv, Weight: v, Residual: residual, Inline: inline}
n.Out.Add(info)
to.In.Add(info)
}
// NodeInfo contains the attributes for a node.
type NodeInfo struct {
Name string
Address uint64
StartLine, Lineno int
//File string
//OrigName string
//Objfile string
}
// PrintableName calls the Node's Formatter function with a single space separator.
func (i *NodeInfo) PrintableName() string {
return strings.Join(i.NameComponents(), " ")
}
// NameComponents returns the components of the printable name to be used for a node.
func (i *NodeInfo) NameComponents() []string {
var name []string
if i.Address != 0 {
name = append(name, fmt.Sprintf("%016x", i.Address))
}
if fun := i.Name; fun != "" {
name = append(name, fun)
}
switch {
case i.Lineno != 0:
// User requested line numbers, provide what we have.
name = append(name, fmt.Sprintf(":%d", i.Lineno))
case i.Name != "":
// User requested function name. It was already included.
default:
// Do not leave it empty if there is no information at all.
name = append(name, "<unknown>")
}
return name
}
// NodeMap maps from a node info struct to a node. It is used to merge
// report entries with the same info.
type NodeMap map[NodeInfo]*Node
// NodeSet is a collection of node info structs.
type NodeSet map[NodeInfo]bool
// NodePtrSet is a collection of nodes. Trimming a graph or tree requires a set
// of objects which uniquely identify the nodes to keep. In a graph, NodeInfo
// works as a unique identifier; however, in a tree multiple nodes may share
// identical NodeInfos. A *Node does uniquely identify a node so we can use that
// instead. Though a *Node also uniquely identifies a node in a graph,
// currently, during trimming, graphs are rebuilt from scratch using only the
// NodeSet, so there would not be the required context of the initial graph to
// allow for the use of *Node.
type NodePtrSet map[*Node]bool
// FindOrInsertNode takes the info for a node and either returns a matching node
// from the node map if one exists, or adds one to the map if one does not.
// If kept is non-nil, nodes are only added if they can be located on it.
func (nm NodeMap) FindOrInsertNode(info NodeInfo, kept NodeSet) *Node {
if kept != nil {
if _, ok := kept[info]; !ok {
return nil
}
}
if n, ok := nm[info]; ok {
return n
}
n := &Node{
Info: info,
}
nm[info] = n
if info.Address == 0 && info.Lineno == 0 {
// This node represents the whole function, so point Function
// back to itself.
n.Function = n
return n
}
// Find a node that represents the whole function.
info.Address = 0
info.Lineno = 0
n.Function = nm.FindOrInsertNode(info, nil)
return n
}
// EdgeMap is used to represent the incoming/outgoing edges from a node.
type EdgeMap []*Edge
func (em EdgeMap) FindTo(n *Node) *Edge {
for _, e := range em {
if e.Dest == n {
return e
}
}
return nil
}
func (em *EdgeMap) Add(e *Edge) {
*em = append(*em, e)
}
func (em *EdgeMap) Delete(e *Edge) {
for i, edge := range *em {
if edge == e {
(*em)[i] = (*em)[len(*em)-1]
*em = (*em)[:len(*em)-1]
return
}
}
}
// Edge contains any attributes to be represented about edges in a graph.
type Edge struct {
Src, Dest *Node
// The summary weight of the edge
Weight, WeightDiv int64
// residual edges connect nodes that were connected through a
// separate node, which has been removed from the report.
Residual bool
// An inline edge represents a call that was inlined into the caller.
Inline bool
}
// WeightValue returns the weight value for this edge, normalizing if a
// divisor is available.
func (e *Edge) WeightValue() int64 {
if e.WeightDiv == 0 {
return e.Weight
}
return e.Weight / e.WeightDiv
}
// newGraph computes a graph from a profile.
func newGraph(prof *profile.Profile, o *Options) *Graph {
nodes, locationMap := CreateNodes(prof, o)
seenNode := make(map[*Node]bool)
seenEdge := make(map[nodePair]bool)
for _, sample := range prof.Sample {
var w, dw int64
w = o.SampleValue(sample.Value)
if o.SampleMeanDivisor != nil {
dw = o.SampleMeanDivisor(sample.Value)
}
if dw == 0 && w == 0 {
continue
}
for k := range seenNode {
delete(seenNode, k)
}
for k := range seenEdge {
delete(seenEdge, k)
}
var parent *Node
// A residual edge goes over one or more nodes that were not kept.
residual := false
// Group the sample frames, based on a global map.
// Count only the last two frames as a call edge. Frames higher up
// the stack are unlikely to be repeated calls (e.g. runtime.main
// calling main.main). So adding weights to call edges higher up
// the stack may be not reflecting the actual call edge weights
// in the program. Without a branch profile this is just an
// approximation.
i := 1
if last := len(sample.Location) - 1; last < i {
i = last
}
for ; i >= 0; i-- {
l := sample.Location[i]
locNodes := locationMap.get(l.ID)
for ni := len(locNodes) - 1; ni >= 0; ni-- {
n := locNodes[ni]
if n == nil {
residual = true
continue
}
// Add cum weight to all nodes in stack, avoiding double counting.
_, sawNode := seenNode[n]
if !sawNode {
seenNode[n] = true
n.addSample(dw, w, false)
}
// Update edge weights for all edges in stack, avoiding double counting.
if (!sawNode || !seenEdge[nodePair{n, parent}]) && parent != nil && n != parent {
seenEdge[nodePair{n, parent}] = true
parent.AddToEdgeDiv(n, dw, w, residual, ni != len(locNodes)-1)
}
parent = n
residual = false
}
}
if parent != nil && !residual {
// Add flat weight to leaf node.
parent.addSample(dw, w, true)
}
}
return selectNodesForGraph(nodes, o.DropNegative)
}
func selectNodesForGraph(nodes Nodes, dropNegative bool) *Graph {
// Collect nodes into a graph.
gNodes := make(Nodes, 0, len(nodes))
for _, n := range nodes {
if n == nil {
continue
}
if n.Cum == 0 && n.Flat == 0 {
continue
}
if dropNegative && isNegative(n) {
continue
}
gNodes = append(gNodes, n)
}
return &Graph{gNodes}
}
type nodePair struct {
src, dest *Node
}
func newTree(prof *profile.Profile, o *Options) (g *Graph) {
parentNodeMap := make(map[*Node]NodeMap, len(prof.Sample))
for _, sample := range prof.Sample {
var w, dw int64
w = o.SampleValue(sample.Value)
if o.SampleMeanDivisor != nil {
dw = o.SampleMeanDivisor(sample.Value)
}
if dw == 0 && w == 0 {
continue
}
var parent *Node
// Group the sample frames, based on a per-node map.
for i := len(sample.Location) - 1; i >= 0; i-- {
l := sample.Location[i]
lines := l.Line
if len(lines) == 0 {
lines = []profile.Line{{}} // Create empty line to include location info.
}
for lidx := len(lines) - 1; lidx >= 0; lidx-- {
nodeMap := parentNodeMap[parent]
if nodeMap == nil {
nodeMap = make(NodeMap)
parentNodeMap[parent] = nodeMap
}
n := nodeMap.findOrInsertLine(l, lines[lidx], o)
if n == nil {
continue
}
n.addSample(dw, w, false)
if parent != nil {
parent.AddToEdgeDiv(n, dw, w, false, lidx != len(lines)-1)
}
parent = n
}
}
if parent != nil {
parent.addSample(dw, w, true)
}
}
nodes := make(Nodes, len(prof.Location))
for _, nm := range parentNodeMap {
nodes = append(nodes, nm.nodes()...)
}
return selectNodesForGraph(nodes, o.DropNegative)
}
// isNegative returns true if the node is considered as "negative" for the
// purposes of drop_negative.
func isNegative(n *Node) bool {
switch {
case n.Flat < 0:
return true
case n.Flat == 0 && n.Cum < 0:
return true
default:
return false
}
}
type locationMap struct {
s []Nodes // a slice for small sequential IDs
m map[uint64]Nodes // fallback for large IDs (unlikely)
}
func (l *locationMap) add(id uint64, n Nodes) {
if id < uint64(len(l.s)) {
l.s[id] = n
} else {
l.m[id] = n
}
}
func (l locationMap) get(id uint64) Nodes {
if id < uint64(len(l.s)) {
return l.s[id]
} else {
return l.m[id]
}
}
// CreateNodes creates graph nodes for all locations in a profile. It
// returns set of all nodes, plus a mapping of each location to the
// set of corresponding nodes (one per location.Line).
func CreateNodes(prof *profile.Profile, o *Options) (Nodes, locationMap) {
locations := locationMap{make([]Nodes, len(prof.Location)+1), make(map[uint64]Nodes)}
nm := make(NodeMap, len(prof.Location))
for _, l := range prof.Location {
lines := l.Line
if len(lines) == 0 {
lines = []profile.Line{{}} // Create empty line to include location info.
}
nodes := make(Nodes, len(lines))
for ln := range lines {
nodes[ln] = nm.findOrInsertLine(l, lines[ln], o)
}
locations.add(l.ID, nodes)
}
return nm.nodes(), locations
}
func (nm NodeMap) nodes() Nodes {
nodes := make(Nodes, 0, len(nm))
for _, n := range nm {
nodes = append(nodes, n)
}
return nodes
}
func (nm NodeMap) findOrInsertLine(l *profile.Location, li profile.Line, o *Options) *Node {
var objfile string
if m := l.Mapping; m != nil && m.File != "" {
objfile = m.File
}
if ni := nodeInfo(l, li, objfile, o); ni != nil {
return nm.FindOrInsertNode(*ni, o.KeptNodes)
}
return nil
}
func nodeInfo(l *profile.Location, line profile.Line, objfile string, o *Options) *NodeInfo {
if line.Function == nil {
return &NodeInfo{Address: l.Address}
}
ni := &NodeInfo{
Address: l.Address,
Lineno: int(line.Line),
Name: line.Function.Name,
}
ni.StartLine = int(line.Function.StartLine)
return ni
}
// Sum adds the flat and cum values of a set of nodes.
func (ns Nodes) Sum() (flat int64, cum int64) {
for _, n := range ns {
flat += n.Flat
cum += n.Cum
}
return
}
func (n *Node) addSample(dw, w int64, flat bool) {
// Update sample value
if flat {
n.FlatDiv += dw
n.Flat += w
} else {
n.CumDiv += dw
n.Cum += w
}
}
// String returns a text representation of a graph, for debugging purposes.
func (g *Graph) String() string {
var s []string
nodeIndex := make(map[*Node]int, len(g.Nodes))
for i, n := range g.Nodes {
nodeIndex[n] = i + 1
}
for i, n := range g.Nodes {
name := n.Info.PrintableName()
var in, out []int
for _, from := range n.In {
in = append(in, nodeIndex[from.Src])
}
for _, to := range n.Out {
out = append(out, nodeIndex[to.Dest])
}
s = append(s, fmt.Sprintf("%d: %s[flat=%d cum=%d] %x -> %v ", i+1, name, n.Flat, n.Cum, in, out))
}
return strings.Join(s, "\n")
}
// DiscardLowFrequencyNodes returns a set of the nodes at or over a
// specific cum value cutoff.
func (g *Graph) DiscardLowFrequencyNodes(nodeCutoff int64) NodeSet {
return makeNodeSet(g.Nodes, nodeCutoff)
}
// DiscardLowFrequencyNodePtrs returns a NodePtrSet of nodes at or over a
// specific cum value cutoff.
func (g *Graph) DiscardLowFrequencyNodePtrs(nodeCutoff int64) NodePtrSet {
cutNodes := getNodesAboveCumCutoff(g.Nodes, nodeCutoff)
kept := make(NodePtrSet, len(cutNodes))
for _, n := range cutNodes {
kept[n] = true
}
return kept
}
func makeNodeSet(nodes Nodes, nodeCutoff int64) NodeSet {
cutNodes := getNodesAboveCumCutoff(nodes, nodeCutoff)
kept := make(NodeSet, len(cutNodes))
for _, n := range cutNodes {
kept[n.Info] = true
}
return kept
}
// getNodesAboveCumCutoff returns all the nodes which have a Cum value greater
// than or equal to cutoff.
func getNodesAboveCumCutoff(nodes Nodes, nodeCutoff int64) Nodes {
cutoffNodes := make(Nodes, 0, len(nodes))
for _, n := range nodes {
if abs64(n.Cum) < nodeCutoff {
continue
}
cutoffNodes = append(cutoffNodes, n)
}
return cutoffNodes
}
// TrimLowFrequencyEdges removes edges that have less than
// the specified weight. Returns the number of edges removed
func (g *Graph) TrimLowFrequencyEdges(edgeCutoff int64) int {
var droppedEdges int
for _, n := range g.Nodes {
for _, e := range n.In {
if abs64(e.Weight) < edgeCutoff {
n.In.Delete(e)
e.Src.Out.Delete(e)
droppedEdges++
}
}
}
return droppedEdges
}
// SortNodes sorts the nodes in a graph based on a specific heuristic.
func (g *Graph) SortNodes(cum bool, visualMode bool) {
// Sort nodes based on requested mode
switch {
case visualMode:
// Specialized sort to produce a more visually-interesting graph
g.Nodes.Sort(EntropyOrder)
case cum:
g.Nodes.Sort(CumNameOrder)
default:
g.Nodes.Sort(FlatNameOrder)
}
}
// SelectTopNodePtrs returns a set of the top maxNodes *Node in a graph.
func (g *Graph) SelectTopNodePtrs(maxNodes int, visualMode bool) NodePtrSet {
set := make(NodePtrSet)
for _, node := range g.selectTopNodes(maxNodes, visualMode) {
set[node] = true
}
return set
}
// SelectTopNodes returns a set of the top maxNodes nodes in a graph.
func (g *Graph) SelectTopNodes(maxNodes int, visualMode bool) NodeSet {
return makeNodeSet(g.selectTopNodes(maxNodes, visualMode), 0)
}
// selectTopNodes returns a slice of the top maxNodes nodes in a graph.
func (g *Graph) selectTopNodes(maxNodes int, visualMode bool) Nodes {
if maxNodes > len(g.Nodes) {
maxNodes = len(g.Nodes)
}
return g.Nodes[:maxNodes]
}
// nodeSorter is a mechanism used to allow a report to be sorted
// in different ways.
type nodeSorter struct {
rs Nodes
less func(l, r *Node) bool
}
func (s nodeSorter) Len() int { return len(s.rs) }
func (s nodeSorter) Swap(i, j int) { s.rs[i], s.rs[j] = s.rs[j], s.rs[i] }
func (s nodeSorter) Less(i, j int) bool { return s.less(s.rs[i], s.rs[j]) }
// Sort reorders a slice of nodes based on the specified ordering
// criteria. The result is sorted in decreasing order for (absolute)
// numeric quantities, alphabetically for text, and increasing for
// addresses.
func (ns Nodes) Sort(o NodeOrder) error {
var s nodeSorter
switch o {
case FlatNameOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
return iv > jv
}
if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
return iv < jv
}
if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
return iv > jv
}
return compareNodes(l, r)
},
}
case FlatCumNameOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
return iv > jv
}
if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
return iv > jv
}
if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
return iv < jv
}
return compareNodes(l, r)
},
}
case NameOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := l.Info.Name, r.Info.Name; iv != jv {
return iv < jv
}
return compareNodes(l, r)
},
}
case FileOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := l.Info.StartLine, r.Info.StartLine; iv != jv {
return iv < jv
}
return compareNodes(l, r)
},
}
case AddressOrder:
s = nodeSorter{ns,
func(l, r *Node) bool {
if iv, jv := l.Info.Address, r.Info.Address; iv != jv {
return iv < jv
}
return compareNodes(l, r)
},
}
case CumNameOrder, EntropyOrder:
// Hold scoring for score-based ordering
var score map[*Node]int64
scoreOrder := func(l, r *Node) bool {
if iv, jv := abs64(score[l]), abs64(score[r]); iv != jv {
return iv > jv
}
if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
return iv < jv
}
if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
return iv > jv
}
return compareNodes(l, r)
}
switch o {
case CumNameOrder:
score = make(map[*Node]int64, len(ns))
for _, n := range ns {
score[n] = n.Cum
}
s = nodeSorter{ns, scoreOrder}
case EntropyOrder:
score = make(map[*Node]int64, len(ns))
for _, n := range ns {
score[n] = entropyScore(n)
}
s = nodeSorter{ns, scoreOrder}
}
default:
return fmt.Errorf("report: unrecognized sort ordering: %d", o)
}
sort.Sort(s)
return nil
}
// compareNodes compares two nodes to provide a deterministic ordering
// between them. Two nodes cannot have the same Node.Info value.
func compareNodes(l, r *Node) bool {
return fmt.Sprint(l.Info) < fmt.Sprint(r.Info)
}
// entropyScore computes a score for a node representing how important
// it is to include this node on a graph visualization. It is used to
// sort the nodes and select which ones to display if we have more
// nodes than desired in the graph. This number is computed by looking
// at the flat and cum weights of the node and the incoming/outgoing
// edges. The fundamental idea is to penalize nodes that have a simple
// fallthrough from their incoming to the outgoing edge.
func entropyScore(n *Node) int64 {
score := float64(0)
if len(n.In) == 0 {
score++ // Favor entry nodes
} else {
score += edgeEntropyScore(n, n.In, 0)
}
if len(n.Out) == 0 {
score++ // Favor leaf nodes
} else {
score += edgeEntropyScore(n, n.Out, n.Flat)
}
return int64(score*float64(n.Cum)) + n.Flat
}
// edgeEntropyScore computes the entropy value for a set of edges
// coming in or out of a node. Entropy (as defined in information
// theory) refers to the amount of information encoded by the set of
// edges. A set of edges that have a more interesting distribution of
// samples gets a higher score.
func edgeEntropyScore(n *Node, edges EdgeMap, self int64) float64 {
score := float64(0)
total := self
for _, e := range edges {
if e.Weight > 0 {
total += abs64(e.Weight)
}
}
if total != 0 {
for _, e := range edges {
frac := float64(abs64(e.Weight)) / float64(total)
score += -frac * math.Log2(frac)
}
if self > 0 {
frac := float64(abs64(self)) / float64(total)
score += -frac * math.Log2(frac)
}
}
return score
}
// NodeOrder sets the ordering for a Sort operation
type NodeOrder int
// Sorting options for node sort.
const (
FlatNameOrder NodeOrder = iota
FlatCumNameOrder
CumNameOrder
NameOrder
FileOrder
AddressOrder
EntropyOrder
)
// Sort returns a slice of the edges in the map, in a consistent
// order. The sort order is first based on the edge weight
// (higher-to-lower) and then by the node names to avoid flakiness.
func (e EdgeMap) Sort() []*Edge {
el := make(edgeList, 0, len(e))
for _, w := range e {
el = append(el, w)
}
sort.Sort(el)
return el
}
// Sum returns the total weight for a set of nodes.
func (e EdgeMap) Sum() int64 {
var ret int64
for _, edge := range e {
ret += edge.Weight
}
return ret
}
type edgeList []*Edge
func (el edgeList) Len() int {
return len(el)
}
func (el edgeList) Less(i, j int) bool {
if el[i].Weight != el[j].Weight {
return abs64(el[i].Weight) > abs64(el[j].Weight)
}
from1 := el[i].Src.Info.PrintableName()
from2 := el[j].Src.Info.PrintableName()
if from1 != from2 {
return from1 < from2
}
to1 := el[i].Dest.Info.PrintableName()
to2 := el[j].Dest.Info.PrintableName()
return to1 < to2
}
func (el edgeList) Swap(i, j int) {
el[i], el[j] = el[j], el[i]
}
func abs64(i int64) int64 {
if i < 0 {
return -i
}
return i
}
|