summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/reflectdata/helpers.go
blob: 99461cff52bacdd20ae941fb4e74be808806e2f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package reflectdata

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/types"
	"cmd/internal/src"
)

func hasRType(n, rtype ir.Node, fieldName string) bool {
	if rtype != nil {
		return true
	}

	// We make an exception for `init`, because we still depend on
	// pkginit for sorting package initialization statements, and it
	// gets confused by implicit conversions. Also, because
	// package-scope statements can never be generic, so they'll never
	// require dictionary lookups.
	if base.Debug.Unified != 0 && ir.CurFunc.Nname.Sym().Name != "init" {
		ir.Dump("CurFunc", ir.CurFunc)
		base.FatalfAt(n.Pos(), "missing %s in %v: %+v", fieldName, ir.CurFunc, n)
	}

	return false
}

// assertOp asserts that n is an op.
func assertOp(n ir.Node, op ir.Op) {
	base.AssertfAt(n.Op() == op, n.Pos(), "want %v, have %v", op, n)
}

// assertOp2 asserts that n is an op1 or op2.
func assertOp2(n ir.Node, op1, op2 ir.Op) {
	base.AssertfAt(n.Op() == op1 || n.Op() == op2, n.Pos(), "want %v or %v, have %v", op1, op2, n)
}

// kindRType asserts that typ has the given kind, and returns an
// expression that yields the *runtime._type value representing typ.
func kindRType(pos src.XPos, typ *types.Type, k types.Kind) ir.Node {
	base.AssertfAt(typ.Kind() == k, pos, "want %v type, have %v", k, typ)
	return TypePtrAt(pos, typ)
}

// mapRType asserts that typ is a map type, and returns an expression
// that yields the *runtime._type value representing typ.
func mapRType(pos src.XPos, typ *types.Type) ir.Node {
	return kindRType(pos, typ, types.TMAP)
}

// chanRType asserts that typ is a map type, and returns an expression
// that yields the *runtime._type value representing typ.
func chanRType(pos src.XPos, typ *types.Type) ir.Node {
	return kindRType(pos, typ, types.TCHAN)
}

// sliceElemRType asserts that typ is a slice type, and returns an
// expression that yields the *runtime._type value representing typ's
// element type.
func sliceElemRType(pos src.XPos, typ *types.Type) ir.Node {
	base.AssertfAt(typ.IsSlice(), pos, "want slice type, have %v", typ)
	return TypePtrAt(pos, typ.Elem())
}

// concreteRType asserts that typ is not an interface type, and
// returns an expression that yields the *runtime._type value
// representing typ.
func concreteRType(pos src.XPos, typ *types.Type) ir.Node {
	base.AssertfAt(!typ.IsInterface(), pos, "want non-interface type, have %v", typ)
	return TypePtrAt(pos, typ)
}

// AppendElemRType asserts that n is an "append" operation, and
// returns an expression that yields the *runtime._type value
// representing the result slice type's element type.
func AppendElemRType(pos src.XPos, n *ir.CallExpr) ir.Node {
	assertOp(n, ir.OAPPEND)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	return sliceElemRType(pos, n.Type())
}

// CompareRType asserts that n is a comparison (== or !=) operation
// between expressions of interface and non-interface type, and
// returns an expression that yields the *runtime._type value
// representing the non-interface type.
func CompareRType(pos src.XPos, n *ir.BinaryExpr) ir.Node {
	assertOp2(n, ir.OEQ, ir.ONE)
	base.AssertfAt(n.X.Type().IsInterface() != n.Y.Type().IsInterface(), n.Pos(), "expect mixed interface and non-interface, have %L and %L", n.X, n.Y)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	typ := n.X.Type()
	if typ.IsInterface() {
		typ = n.Y.Type()
	}
	return concreteRType(pos, typ)
}

// ConvIfaceTypeWord asserts that n is conversion to interface type,
// and returns an expression that yields the *runtime._type or
// *runtime.itab value necessary for implementing the conversion.
//
//   - *runtime._type for the destination type, for I2I conversions
//   - *runtime.itab, for T2I conversions
//   - *runtime._type for the source type, for T2E conversions
func ConvIfaceTypeWord(pos src.XPos, n *ir.ConvExpr) ir.Node {
	assertOp(n, ir.OCONVIFACE)
	src, dst := n.X.Type(), n.Type()
	base.AssertfAt(dst.IsInterface(), n.Pos(), "want interface type, have %L", n)
	if hasRType(n, n.TypeWord, "TypeWord") {
		return n.TypeWord
	}
	if dst.IsEmptyInterface() {
		return concreteRType(pos, src) // direct eface construction
	}
	if !src.IsInterface() {
		return ITabAddrAt(pos, src, dst) // direct iface construction
	}
	return TypePtrAt(pos, dst) // convI2I
}

// ConvIfaceSrcRType asserts that n is a conversion from
// non-interface type to interface type (or OCONVIDATA operation), and
// returns an expression that yields the *runtime._type for copying
// the convertee value to the heap.
func ConvIfaceSrcRType(pos src.XPos, n *ir.ConvExpr) ir.Node {
	assertOp2(n, ir.OCONVIFACE, ir.OCONVIDATA)
	if hasRType(n, n.SrcRType, "SrcRType") {
		return n.SrcRType
	}
	return concreteRType(pos, n.X.Type())
}

// CopyElemRType asserts that n is a "copy" operation, and returns an
// expression that yields the *runtime._type value representing the
// destination slice type's element type.
func CopyElemRType(pos src.XPos, n *ir.BinaryExpr) ir.Node {
	assertOp(n, ir.OCOPY)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	return sliceElemRType(pos, n.X.Type())
}

// DeleteMapRType asserts that n is a "delete" operation, and returns
// an expression that yields the *runtime._type value representing the
// map type.
func DeleteMapRType(pos src.XPos, n *ir.CallExpr) ir.Node {
	assertOp(n, ir.ODELETE)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	return mapRType(pos, n.Args[0].Type())
}

// IndexMapRType asserts that n is a map index operation, and returns
// an expression that yields the *runtime._type value representing the
// map type.
func IndexMapRType(pos src.XPos, n *ir.IndexExpr) ir.Node {
	assertOp(n, ir.OINDEXMAP)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	return mapRType(pos, n.X.Type())
}

// MakeChanRType asserts that n is a "make" operation for a channel
// type, and returns an expression that yields the *runtime._type
// value representing that channel type.
func MakeChanRType(pos src.XPos, n *ir.MakeExpr) ir.Node {
	assertOp(n, ir.OMAKECHAN)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	return chanRType(pos, n.Type())
}

// MakeMapRType asserts that n is a "make" operation for a map type,
// and returns an expression that yields the *runtime._type value
// representing that map type.
func MakeMapRType(pos src.XPos, n *ir.MakeExpr) ir.Node {
	assertOp(n, ir.OMAKEMAP)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	return mapRType(pos, n.Type())
}

// MakeSliceElemRType asserts that n is a "make" operation for a slice
// type, and returns an expression that yields the *runtime._type
// value representing that slice type's element type.
func MakeSliceElemRType(pos src.XPos, n *ir.MakeExpr) ir.Node {
	assertOp2(n, ir.OMAKESLICE, ir.OMAKESLICECOPY)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	return sliceElemRType(pos, n.Type())
}

// RangeMapRType asserts that n is a "range" loop over a map value,
// and returns an expression that yields the *runtime._type value
// representing that map type.
func RangeMapRType(pos src.XPos, n *ir.RangeStmt) ir.Node {
	assertOp(n, ir.ORANGE)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	return mapRType(pos, n.X.Type())
}

// UnsafeSliceElemRType asserts that n is an "unsafe.Slice" operation,
// and returns an expression that yields the *runtime._type value
// representing the result slice type's element type.
func UnsafeSliceElemRType(pos src.XPos, n *ir.BinaryExpr) ir.Node {
	assertOp(n, ir.OUNSAFESLICE)
	if hasRType(n, n.RType, "RType") {
		return n.RType
	}
	return sliceElemRType(pos, n.Type())
}