1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/internal/src"
"fmt"
)
// fuseEarly runs fuse(f, fuseTypePlain|fuseTypeIntInRange).
func fuseEarly(f *Func) { fuse(f, fuseTypePlain|fuseTypeIntInRange) }
// fuseLate runs fuse(f, fuseTypePlain|fuseTypeIf|fuseTypeBranchRedirect).
func fuseLate(f *Func) { fuse(f, fuseTypePlain|fuseTypeIf|fuseTypeBranchRedirect) }
type fuseType uint8
const (
fuseTypePlain fuseType = 1 << iota
fuseTypeIf
fuseTypeIntInRange
fuseTypeBranchRedirect
fuseTypeShortCircuit
)
// fuse simplifies control flow by joining basic blocks.
func fuse(f *Func, typ fuseType) {
for changed := true; changed; {
changed = false
// Be sure to avoid quadratic behavior in fuseBlockPlain. See issue 13554.
// Previously this was dealt with using backwards iteration, now fuseBlockPlain
// handles large runs of blocks.
for i := len(f.Blocks) - 1; i >= 0; i-- {
b := f.Blocks[i]
if typ&fuseTypeIf != 0 {
changed = fuseBlockIf(b) || changed
}
if typ&fuseTypeIntInRange != 0 {
changed = fuseIntegerComparisons(b) || changed
}
if typ&fuseTypePlain != 0 {
changed = fuseBlockPlain(b) || changed
}
if typ&fuseTypeShortCircuit != 0 {
changed = shortcircuitBlock(b) || changed
}
}
if typ&fuseTypeBranchRedirect != 0 {
changed = fuseBranchRedirect(f) || changed
}
if changed {
f.invalidateCFG()
}
}
}
// fuseBlockIf handles the following cases where s0 and s1 are empty blocks.
//
// b b b b
// \ / \ / | \ / \ / | | |
// s0 s1 | s1 s0 | | |
// \ / | / \ | | |
// ss ss ss ss
//
// If all Phi ops in ss have identical variables for slots corresponding to
// s0, s1 and b then the branch can be dropped.
// This optimization often comes up in switch statements with multiple
// expressions in a case clause:
//
// switch n {
// case 1,2,3: return 4
// }
//
// TODO: If ss doesn't contain any OpPhis, are s0 and s1 dead code anyway.
func fuseBlockIf(b *Block) bool {
if b.Kind != BlockIf {
return false
}
// It doesn't matter how much Preds does s0 or s1 have.
var ss0, ss1 *Block
s0 := b.Succs[0].b
i0 := b.Succs[0].i
if s0.Kind != BlockPlain || !isEmpty(s0) {
s0, ss0 = b, s0
} else {
ss0 = s0.Succs[0].b
i0 = s0.Succs[0].i
}
s1 := b.Succs[1].b
i1 := b.Succs[1].i
if s1.Kind != BlockPlain || !isEmpty(s1) {
s1, ss1 = b, s1
} else {
ss1 = s1.Succs[0].b
i1 = s1.Succs[0].i
}
if ss0 != ss1 {
if s0.Kind == BlockPlain && isEmpty(s0) && s1.Kind == BlockPlain && isEmpty(s1) {
// Two special cases where both s0, s1 and ss are empty blocks.
if s0 == ss1 {
s0, ss0 = b, ss1
} else if ss0 == s1 {
s1, ss1 = b, ss0
} else {
return false
}
} else {
return false
}
}
ss := ss0
// s0 and s1 are equal with b if the corresponding block is missing
// (2nd, 3rd and 4th case in the figure).
for _, v := range ss.Values {
if v.Op == OpPhi && v.Uses > 0 && v.Args[i0] != v.Args[i1] {
return false
}
}
// We do not need to redirect the Preds of s0 and s1 to ss,
// the following optimization will do this.
b.removeEdge(0)
if s0 != b && len(s0.Preds) == 0 {
s0.removeEdge(0)
// Move any (dead) values in s0 to b,
// where they will be eliminated by the next deadcode pass.
for _, v := range s0.Values {
v.Block = b
}
b.Values = append(b.Values, s0.Values...)
// Clear s0.
s0.Kind = BlockInvalid
s0.Values = nil
s0.Succs = nil
s0.Preds = nil
}
b.Kind = BlockPlain
b.Likely = BranchUnknown
b.ResetControls()
// The values in b may be dead codes, and clearing them in time may
// obtain new optimization opportunities.
// First put dead values that can be deleted into a slice walkValues.
// Then put their arguments in walkValues before resetting the dead values
// in walkValues, because the arguments may also become dead values.
walkValues := []*Value{}
for _, v := range b.Values {
if v.Uses == 0 && v.removeable() {
walkValues = append(walkValues, v)
}
}
for len(walkValues) != 0 {
v := walkValues[len(walkValues)-1]
walkValues = walkValues[:len(walkValues)-1]
if v.Uses == 0 && v.removeable() {
walkValues = append(walkValues, v.Args...)
v.reset(OpInvalid)
}
}
return true
}
// isEmpty reports whether b contains any live values.
// There may be false positives.
func isEmpty(b *Block) bool {
for _, v := range b.Values {
if v.Uses > 0 || v.Op.IsCall() || v.Op.HasSideEffects() || v.Type.IsVoid() {
return false
}
}
return true
}
// fuseBlockPlain handles a run of blocks with length >= 2,
// whose interior has single predecessors and successors,
// b must be BlockPlain, allowing it to be any node except the
// last (multiple successors means not BlockPlain).
// Cycles are handled and merged into b's successor.
func fuseBlockPlain(b *Block) bool {
if b.Kind != BlockPlain {
return false
}
c := b.Succs[0].b
if len(c.Preds) != 1 || c == b { // At least 2 distinct blocks.
return false
}
// find earliest block in run. Avoid simple cycles.
for len(b.Preds) == 1 && b.Preds[0].b != c && b.Preds[0].b.Kind == BlockPlain {
b = b.Preds[0].b
}
// find latest block in run. Still beware of simple cycles.
for {
if c.Kind != BlockPlain {
break
} // Has exactly 1 successor
cNext := c.Succs[0].b
if cNext == b {
break
} // not a cycle
if len(cNext.Preds) != 1 {
break
} // no other incoming edge
c = cNext
}
// Try to preserve any statement marks on the ends of blocks; move values to C
var b_next *Block
for bx := b; bx != c; bx = b_next {
// For each bx with an end-of-block statement marker,
// try to move it to a value in the next block,
// or to the next block's end, if possible.
b_next = bx.Succs[0].b
if bx.Pos.IsStmt() == src.PosIsStmt {
l := bx.Pos.Line() // looking for another place to mark for line l
outOfOrder := false
for _, v := range b_next.Values {
if v.Pos.IsStmt() == src.PosNotStmt {
continue
}
if l == v.Pos.Line() { // Found a Value with same line, therefore done.
v.Pos = v.Pos.WithIsStmt()
l = 0
break
}
if l < v.Pos.Line() {
// The order of values in a block is not specified so OOO in a block is not interesting,
// but they do all come before the end of the block, so this disqualifies attaching to end of b_next.
outOfOrder = true
}
}
if l != 0 && !outOfOrder && (b_next.Pos.Line() == l || b_next.Pos.IsStmt() != src.PosIsStmt) {
b_next.Pos = bx.Pos.WithIsStmt()
}
}
// move all of bx's values to c (note containing loop excludes c)
for _, v := range bx.Values {
v.Block = c
}
}
// Compute the total number of values and find the largest value slice in the run, to maximize chance of storage reuse.
total := 0
totalBeforeMax := 0 // number of elements preceding the maximum block (i.e. its position in the result).
max_b := b // block with maximum capacity
for bx := b; ; bx = bx.Succs[0].b {
if cap(bx.Values) > cap(max_b.Values) {
totalBeforeMax = total
max_b = bx
}
total += len(bx.Values)
if bx == c {
break
}
}
// Use c's storage if fused blocks will fit, else use the max if that will fit, else allocate new storage.
// Take care to avoid c.Values pointing to b.valstorage.
// See golang.org/issue/18602.
// It's important to keep the elements in the same order; maintenance of
// debugging information depends on the order of *Values in Blocks.
// This can also cause changes in the order (which may affect other
// optimizations and possibly compiler output) for 32-vs-64 bit compilation
// platforms (word size affects allocation bucket size affects slice capacity).
// figure out what slice will hold the values,
// preposition the destination elements if not allocating new storage
var t []*Value
if total <= len(c.valstorage) {
t = c.valstorage[:total]
max_b = c
totalBeforeMax = total - len(c.Values)
copy(t[totalBeforeMax:], c.Values)
} else if total <= cap(max_b.Values) { // in place, somewhere
t = max_b.Values[0:total]
copy(t[totalBeforeMax:], max_b.Values)
} else {
t = make([]*Value, total)
max_b = nil
}
// copy the values
copyTo := 0
for bx := b; ; bx = bx.Succs[0].b {
if bx != max_b {
copy(t[copyTo:], bx.Values)
} else if copyTo != totalBeforeMax { // trust but verify.
panic(fmt.Errorf("totalBeforeMax (%d) != copyTo (%d), max_b=%v, b=%v, c=%v", totalBeforeMax, copyTo, max_b, b, c))
}
if bx == c {
break
}
copyTo += len(bx.Values)
}
c.Values = t
// replace b->c edge with preds(b) -> c
c.predstorage[0] = Edge{}
if len(b.Preds) > len(b.predstorage) {
c.Preds = b.Preds
} else {
c.Preds = append(c.predstorage[:0], b.Preds...)
}
for i, e := range c.Preds {
p := e.b
p.Succs[e.i] = Edge{c, i}
}
f := b.Func
if f.Entry == b {
f.Entry = c
}
// trash b's fields, just in case
for bx := b; bx != c; bx = b_next {
b_next = bx.Succs[0].b
bx.Kind = BlockInvalid
bx.Values = nil
bx.Preds = nil
bx.Succs = nil
}
return true
}
|