summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/loopbce.go
blob: 696930fed8e65048f91e044468b3f8962b5e3421 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"cmd/compile/internal/base"
	"fmt"
	"math"
)

type indVarFlags uint8

const (
	indVarMinExc indVarFlags = 1 << iota // minimum value is exclusive (default: inclusive)
	indVarMaxInc                         // maximum value is inclusive (default: exclusive)
)

type indVar struct {
	ind   *Value // induction variable
	min   *Value // minimum value, inclusive/exclusive depends on flags
	max   *Value // maximum value, inclusive/exclusive depends on flags
	entry *Block // entry block in the loop.
	flags indVarFlags
	// Invariant: for all blocks strictly dominated by entry:
	//	min <= ind <  max    [if flags == 0]
	//	min <  ind <  max    [if flags == indVarMinExc]
	//	min <= ind <= max    [if flags == indVarMaxInc]
	//	min <  ind <= max    [if flags == indVarMinExc|indVarMaxInc]
}

// parseIndVar checks whether the SSA value passed as argument is a valid induction
// variable, and, if so, extracts:
//   - the minimum bound
//   - the increment value
//   - the "next" value (SSA value that is Phi'd into the induction variable every loop)
//
// Currently, we detect induction variables that match (Phi min nxt),
// with nxt being (Add inc ind).
// If it can't parse the induction variable correctly, it returns (nil, nil, nil).
func parseIndVar(ind *Value) (min, inc, nxt *Value) {
	if ind.Op != OpPhi {
		return
	}

	if n := ind.Args[0]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) {
		min, nxt = ind.Args[1], n
	} else if n := ind.Args[1]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) {
		min, nxt = ind.Args[0], n
	} else {
		// Not a recognized induction variable.
		return
	}

	if nxt.Args[0] == ind { // nxt = ind + inc
		inc = nxt.Args[1]
	} else if nxt.Args[1] == ind { // nxt = inc + ind
		inc = nxt.Args[0]
	} else {
		panic("unreachable") // one of the cases must be true from the above.
	}

	return
}

// findIndVar finds induction variables in a function.
//
// Look for variables and blocks that satisfy the following
//
//	 loop:
//	   ind = (Phi min nxt),
//	   if ind < max
//	     then goto enter_loop
//	     else goto exit_loop
//
//	   enter_loop:
//		do something
//	      nxt = inc + ind
//		goto loop
//
//	 exit_loop:
//
// TODO: handle 32 bit operations
func findIndVar(f *Func) []indVar {
	var iv []indVar
	sdom := f.Sdom()

	for _, b := range f.Blocks {
		if b.Kind != BlockIf || len(b.Preds) != 2 {
			continue
		}

		var ind *Value   // induction variable
		var init *Value  // starting value
		var limit *Value // ending value

		// Check thet the control if it either ind </<= limit or limit </<= ind.
		// TODO: Handle 32-bit comparisons.
		// TODO: Handle unsigned comparisons?
		c := b.Controls[0]
		inclusive := false
		switch c.Op {
		case OpLeq64:
			inclusive = true
			fallthrough
		case OpLess64:
			ind, limit = c.Args[0], c.Args[1]
		default:
			continue
		}

		// See if this is really an induction variable
		less := true
		init, inc, nxt := parseIndVar(ind)
		if init == nil {
			// We failed to parse the induction variable. Before punting, we want to check
			// whether the control op was written with the induction variable on the RHS
			// instead of the LHS. This happens for the downwards case, like:
			//     for i := len(n)-1; i >= 0; i--
			init, inc, nxt = parseIndVar(limit)
			if init == nil {
				// No recognied induction variable on either operand
				continue
			}

			// Ok, the arguments were reversed. Swap them, and remember that we're
			// looking at a ind >/>= loop (so the induction must be decrementing).
			ind, limit = limit, ind
			less = false
		}

		if ind.Block != b {
			// TODO: Could be extended to include disjointed loop headers.
			// I don't think this is causing missed optimizations in real world code often.
			// See https://go.dev/issue/63955
			continue
		}

		// Expect the increment to be a nonzero constant.
		if inc.Op != OpConst64 {
			continue
		}
		step := inc.AuxInt
		if step == 0 {
			continue
		}

		// Increment sign must match comparison direction.
		// When incrementing, the termination comparison must be ind </<= limit.
		// When decrementing, the termination comparison must be ind >/>= limit.
		// See issue 26116.
		if step > 0 && !less {
			continue
		}
		if step < 0 && less {
			continue
		}

		// Up to now we extracted the induction variable (ind),
		// the increment delta (inc), the temporary sum (nxt),
		// the initial value (init) and the limiting value (limit).
		//
		// We also know that ind has the form (Phi init nxt) where
		// nxt is (Add inc nxt) which means: 1) inc dominates nxt
		// and 2) there is a loop starting at inc and containing nxt.
		//
		// We need to prove that the induction variable is incremented
		// only when it's smaller than the limiting value.
		// Two conditions must happen listed below to accept ind
		// as an induction variable.

		// First condition: loop entry has a single predecessor, which
		// is the header block.  This implies that b.Succs[0] is
		// reached iff ind < limit.
		if len(b.Succs[0].b.Preds) != 1 {
			// b.Succs[1] must exit the loop.
			continue
		}

		// Second condition: b.Succs[0] dominates nxt so that
		// nxt is computed when inc < limit.
		if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
			// inc+ind can only be reached through the branch that enters the loop.
			continue
		}

		// Check for overflow/underflow. We need to make sure that inc never causes
		// the induction variable to wrap around.
		// We use a function wrapper here for easy return true / return false / keep going logic.
		// This function returns true if the increment will never overflow/underflow.
		ok := func() bool {
			if step > 0 {
				if limit.Op == OpConst64 {
					// Figure out the actual largest value.
					v := limit.AuxInt
					if !inclusive {
						if v == math.MinInt64 {
							return false // < minint is never satisfiable.
						}
						v--
					}
					if init.Op == OpConst64 {
						// Use stride to compute a better lower limit.
						if init.AuxInt > v {
							return false
						}
						v = addU(init.AuxInt, diff(v, init.AuxInt)/uint64(step)*uint64(step))
					}
					if addWillOverflow(v, step) {
						return false
					}
					if inclusive && v != limit.AuxInt || !inclusive && v+1 != limit.AuxInt {
						// We know a better limit than the programmer did. Use our limit instead.
						limit = f.ConstInt64(f.Config.Types.Int64, v)
						inclusive = true
					}
					return true
				}
				if step == 1 && !inclusive {
					// Can't overflow because maxint is never a possible value.
					return true
				}
				// If the limit is not a constant, check to see if it is a
				// negative offset from a known non-negative value.
				knn, k := findKNN(limit)
				if knn == nil || k < 0 {
					return false
				}
				// limit == (something nonnegative) - k. That subtraction can't underflow, so
				// we can trust it.
				if inclusive {
					// ind <= knn - k cannot overflow if step is at most k
					return step <= k
				}
				// ind < knn - k cannot overflow if step is at most k+1
				return step <= k+1 && k != math.MaxInt64
			} else { // step < 0
				if limit.Op == OpConst64 {
					// Figure out the actual smallest value.
					v := limit.AuxInt
					if !inclusive {
						if v == math.MaxInt64 {
							return false // > maxint is never satisfiable.
						}
						v++
					}
					if init.Op == OpConst64 {
						// Use stride to compute a better lower limit.
						if init.AuxInt < v {
							return false
						}
						v = subU(init.AuxInt, diff(init.AuxInt, v)/uint64(-step)*uint64(-step))
					}
					if subWillUnderflow(v, -step) {
						return false
					}
					if inclusive && v != limit.AuxInt || !inclusive && v-1 != limit.AuxInt {
						// We know a better limit than the programmer did. Use our limit instead.
						limit = f.ConstInt64(f.Config.Types.Int64, v)
						inclusive = true
					}
					return true
				}
				if step == -1 && !inclusive {
					// Can't underflow because minint is never a possible value.
					return true
				}
			}
			return false

		}

		if ok() {
			flags := indVarFlags(0)
			var min, max *Value
			if step > 0 {
				min = init
				max = limit
				if inclusive {
					flags |= indVarMaxInc
				}
			} else {
				min = limit
				max = init
				flags |= indVarMaxInc
				if !inclusive {
					flags |= indVarMinExc
				}
				step = -step
			}
			if f.pass.debug >= 1 {
				printIndVar(b, ind, min, max, step, flags)
			}

			iv = append(iv, indVar{
				ind:   ind,
				min:   min,
				max:   max,
				entry: b.Succs[0].b,
				flags: flags,
			})
			b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
		}

		// TODO: other unrolling idioms
		// for i := 0; i < KNN - KNN % k ; i += k
		// for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
		// for i := 0; i < KNN&(-k) ; i += k // k a power of 2
	}

	return iv
}

// addWillOverflow reports whether x+y would result in a value more than maxint.
func addWillOverflow(x, y int64) bool {
	return x+y < x
}

// subWillUnderflow reports whether x-y would result in a value less than minint.
func subWillUnderflow(x, y int64) bool {
	return x-y > x
}

// diff returns x-y as a uint64. Requires x>=y.
func diff(x, y int64) uint64 {
	if x < y {
		base.Fatalf("diff %d - %d underflowed", x, y)
	}
	return uint64(x - y)
}

// addU returns x+y. Requires that x+y does not overflow an int64.
func addU(x int64, y uint64) int64 {
	if y >= 1<<63 {
		if x >= 0 {
			base.Fatalf("addU overflowed %d + %d", x, y)
		}
		x += 1<<63 - 1
		x += 1
		y -= 1 << 63
	}
	if addWillOverflow(x, int64(y)) {
		base.Fatalf("addU overflowed %d + %d", x, y)
	}
	return x + int64(y)
}

// subU returns x-y. Requires that x-y does not underflow an int64.
func subU(x int64, y uint64) int64 {
	if y >= 1<<63 {
		if x < 0 {
			base.Fatalf("subU underflowed %d - %d", x, y)
		}
		x -= 1<<63 - 1
		x -= 1
		y -= 1 << 63
	}
	if subWillUnderflow(x, int64(y)) {
		base.Fatalf("subU underflowed %d - %d", x, y)
	}
	return x - int64(y)
}

// if v is known to be x - c, where x is known to be nonnegative and c is a
// constant, return x, c. Otherwise return nil, 0.
func findKNN(v *Value) (*Value, int64) {
	var x, y *Value
	x = v
	switch v.Op {
	case OpSub64:
		x = v.Args[0]
		y = v.Args[1]

	case OpAdd64:
		x = v.Args[0]
		y = v.Args[1]
		if x.Op == OpConst64 {
			x, y = y, x
		}
	}
	switch x.Op {
	case OpSliceLen, OpStringLen, OpSliceCap:
	default:
		return nil, 0
	}
	if y == nil {
		return x, 0
	}
	if y.Op != OpConst64 {
		return nil, 0
	}
	if v.Op == OpAdd64 {
		return x, -y.AuxInt
	}
	return x, y.AuxInt
}

func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {
	mb1, mb2 := "[", "]"
	if flags&indVarMinExc != 0 {
		mb1 = "("
	}
	if flags&indVarMaxInc == 0 {
		mb2 = ")"
	}

	mlim1, mlim2 := fmt.Sprint(min.AuxInt), fmt.Sprint(max.AuxInt)
	if !min.isGenericIntConst() {
		if b.Func.pass.debug >= 2 {
			mlim1 = fmt.Sprint(min)
		} else {
			mlim1 = "?"
		}
	}
	if !max.isGenericIntConst() {
		if b.Func.pass.debug >= 2 {
			mlim2 = fmt.Sprint(max)
		} else {
			mlim2 = "?"
		}
	}
	extra := ""
	if b.Func.pass.debug >= 2 {
		extra = fmt.Sprintf(" (%s)", i)
	}
	b.Func.Warnl(b.Pos, "Induction variable: limits %v%v,%v%v, increment %d%s", mb1, mlim1, mlim2, mb2, inc, extra)
}