summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/poset.go
blob: ad89de3f1357ec068ca373be166a286fbefb6d44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"fmt"
	"os"
)

// If true, check poset integrity after every mutation
var debugPoset = false

const uintSize = 32 << (^uint(0) >> 63) // 32 or 64

// bitset is a bit array for dense indexes.
type bitset []uint

func newBitset(n int) bitset {
	return make(bitset, (n+uintSize-1)/uintSize)
}

func (bs bitset) Reset() {
	for i := range bs {
		bs[i] = 0
	}
}

func (bs bitset) Set(idx uint32) {
	bs[idx/uintSize] |= 1 << (idx % uintSize)
}

func (bs bitset) Clear(idx uint32) {
	bs[idx/uintSize] &^= 1 << (idx % uintSize)
}

func (bs bitset) Test(idx uint32) bool {
	return bs[idx/uintSize]&(1<<(idx%uintSize)) != 0
}

type undoType uint8

const (
	undoInvalid     undoType = iota
	undoCheckpoint           // a checkpoint to group undo passes
	undoSetChl               // change back left child of undo.idx to undo.edge
	undoSetChr               // change back right child of undo.idx to undo.edge
	undoNonEqual             // forget that SSA value undo.ID is non-equal to undo.idx (another ID)
	undoNewNode              // remove new node created for SSA value undo.ID
	undoNewConstant          // remove the constant node idx from the constants map
	undoAliasNode            // unalias SSA value undo.ID so that it points back to node index undo.idx
	undoNewRoot              // remove node undo.idx from root list
	undoChangeRoot           // remove node undo.idx from root list, and put back undo.edge.Target instead
	undoMergeRoot            // remove node undo.idx from root list, and put back its children instead
)

// posetUndo represents an undo pass to be performed.
// It's an union of fields that can be used to store information,
// and typ is the discriminant, that specifies which kind
// of operation must be performed. Not all fields are always used.
type posetUndo struct {
	typ  undoType
	idx  uint32
	ID   ID
	edge posetEdge
}

const (
	// Make poset handle constants as unsigned numbers.
	posetFlagUnsigned = 1 << iota
)

// A poset edge. The zero value is the null/empty edge.
// Packs target node index (31 bits) and strict flag (1 bit).
type posetEdge uint32

func newedge(t uint32, strict bool) posetEdge {
	s := uint32(0)
	if strict {
		s = 1
	}
	return posetEdge(t<<1 | s)
}
func (e posetEdge) Target() uint32 { return uint32(e) >> 1 }
func (e posetEdge) Strict() bool   { return uint32(e)&1 != 0 }
func (e posetEdge) String() string {
	s := fmt.Sprint(e.Target())
	if e.Strict() {
		s += "*"
	}
	return s
}

// posetNode is a node of a DAG within the poset.
type posetNode struct {
	l, r posetEdge
}

// poset is a union-find data structure that can represent a partially ordered set
// of SSA values. Given a binary relation that creates a partial order (eg: '<'),
// clients can record relations between SSA values using SetOrder, and later
// check relations (in the transitive closure) with Ordered. For instance,
// if SetOrder is called to record that A<B and B<C, Ordered will later confirm
// that A<C.
//
// It is possible to record equality relations between SSA values with SetEqual and check
// equality with Equal. Equality propagates into the transitive closure for the partial
// order so that if we know that A<B<C and later learn that A==D, Ordered will return
// true for D<C.
//
// It is also possible to record inequality relations between nodes with SetNonEqual;
// non-equality relations are not transitive, but they can still be useful: for instance
// if we know that A<=B and later we learn that A!=B, we can deduce that A<B.
// NonEqual can be used to check whether it is known that the nodes are different, either
// because SetNonEqual was called before, or because we know that they are strictly ordered.
//
// poset will refuse to record new relations that contradict existing relations:
// for instance if A<B<C, calling SetOrder for C<A will fail returning false; also
// calling SetEqual for C==A will fail.
//
// poset is implemented as a forest of DAGs; in each DAG, if there is a path (directed)
// from node A to B, it means that A<B (or A<=B). Equality is represented by mapping
// two SSA values to the same DAG node; when a new equality relation is recorded
// between two existing nodes,the nodes are merged, adjusting incoming and outgoing edges.
//
// Constants are specially treated. When a constant is added to the poset, it is
// immediately linked to other constants already present; so for instance if the
// poset knows that x<=3, and then x is tested against 5, 5 is first added and linked
// 3 (using 3<5), so that the poset knows that x<=3<5; at that point, it is able
// to answer x<5 correctly. This means that all constants are always within the same
// DAG; as an implementation detail, we enfoce that the DAG containtining the constants
// is always the first in the forest.
//
// poset is designed to be memory efficient and do little allocations during normal usage.
// Most internal data structures are pre-allocated and flat, so for instance adding a
// new relation does not cause any allocation. For performance reasons,
// each node has only up to two outgoing edges (like a binary tree), so intermediate
// "extra" nodes are required to represent more than two relations. For instance,
// to record that A<I, A<J, A<K (with no known relation between I,J,K), we create the
// following DAG:
//
//	  A
//	 / \
//	I  extra
//	    /  \
//	   J    K
type poset struct {
	lastidx   uint32            // last generated dense index
	flags     uint8             // internal flags
	values    map[ID]uint32     // map SSA values to dense indexes
	constants map[int64]uint32  // record SSA constants together with their value
	nodes     []posetNode       // nodes (in all DAGs)
	roots     []uint32          // list of root nodes (forest)
	noneq     map[uint32]bitset // non-equal relations
	undo      []posetUndo       // undo chain
}

func newPoset() *poset {
	return &poset{
		values:    make(map[ID]uint32),
		constants: make(map[int64]uint32, 8),
		nodes:     make([]posetNode, 1, 16),
		roots:     make([]uint32, 0, 4),
		noneq:     make(map[uint32]bitset),
		undo:      make([]posetUndo, 0, 4),
	}
}

func (po *poset) SetUnsigned(uns bool) {
	if uns {
		po.flags |= posetFlagUnsigned
	} else {
		po.flags &^= posetFlagUnsigned
	}
}

// Handle children
func (po *poset) setchl(i uint32, l posetEdge) { po.nodes[i].l = l }
func (po *poset) setchr(i uint32, r posetEdge) { po.nodes[i].r = r }
func (po *poset) chl(i uint32) uint32          { return po.nodes[i].l.Target() }
func (po *poset) chr(i uint32) uint32          { return po.nodes[i].r.Target() }
func (po *poset) children(i uint32) (posetEdge, posetEdge) {
	return po.nodes[i].l, po.nodes[i].r
}

// upush records a new undo step. It can be used for simple
// undo passes that record up to one index and one edge.
func (po *poset) upush(typ undoType, p uint32, e posetEdge) {
	po.undo = append(po.undo, posetUndo{typ: typ, idx: p, edge: e})
}

// upushnew pushes an undo pass for a new node
func (po *poset) upushnew(id ID, idx uint32) {
	po.undo = append(po.undo, posetUndo{typ: undoNewNode, ID: id, idx: idx})
}

// upushneq pushes a new undo pass for a nonequal relation
func (po *poset) upushneq(idx1 uint32, idx2 uint32) {
	po.undo = append(po.undo, posetUndo{typ: undoNonEqual, ID: ID(idx1), idx: idx2})
}

// upushalias pushes a new undo pass for aliasing two nodes
func (po *poset) upushalias(id ID, i2 uint32) {
	po.undo = append(po.undo, posetUndo{typ: undoAliasNode, ID: id, idx: i2})
}

// upushconst pushes a new undo pass for a new constant
func (po *poset) upushconst(idx uint32, old uint32) {
	po.undo = append(po.undo, posetUndo{typ: undoNewConstant, idx: idx, ID: ID(old)})
}

// addchild adds i2 as direct child of i1.
func (po *poset) addchild(i1, i2 uint32, strict bool) {
	i1l, i1r := po.children(i1)
	e2 := newedge(i2, strict)

	if i1l == 0 {
		po.setchl(i1, e2)
		po.upush(undoSetChl, i1, 0)
	} else if i1r == 0 {
		po.setchr(i1, e2)
		po.upush(undoSetChr, i1, 0)
	} else {
		// If n1 already has two children, add an intermediate extra
		// node to record the relation correctly (without relating
		// n2 to other existing nodes). Use a non-deterministic value
		// to decide whether to append on the left or the right, to avoid
		// creating degenerated chains.
		//
		//      n1
		//     /  \
		//   i1l  extra
		//        /   \
		//      i1r   n2
		//
		extra := po.newnode(nil)
		if (i1^i2)&1 != 0 { // non-deterministic
			po.setchl(extra, i1r)
			po.setchr(extra, e2)
			po.setchr(i1, newedge(extra, false))
			po.upush(undoSetChr, i1, i1r)
		} else {
			po.setchl(extra, i1l)
			po.setchr(extra, e2)
			po.setchl(i1, newedge(extra, false))
			po.upush(undoSetChl, i1, i1l)
		}
	}
}

// newnode allocates a new node bound to SSA value n.
// If n is nil, this is an extra node (= only used internally).
func (po *poset) newnode(n *Value) uint32 {
	i := po.lastidx + 1
	po.lastidx++
	po.nodes = append(po.nodes, posetNode{})
	if n != nil {
		if po.values[n.ID] != 0 {
			panic("newnode for Value already inserted")
		}
		po.values[n.ID] = i
		po.upushnew(n.ID, i)
	} else {
		po.upushnew(0, i)
	}
	return i
}

// lookup searches for a SSA value into the forest of DAGS, and return its node.
// Constants are materialized on the fly during lookup.
func (po *poset) lookup(n *Value) (uint32, bool) {
	i, f := po.values[n.ID]
	if !f && n.isGenericIntConst() {
		po.newconst(n)
		i, f = po.values[n.ID]
	}
	return i, f
}

// newconst creates a node for a constant. It links it to other constants, so
// that n<=5 is detected true when n<=3 is known to be true.
// TODO: this is O(N), fix it.
func (po *poset) newconst(n *Value) {
	if !n.isGenericIntConst() {
		panic("newconst on non-constant")
	}

	// If the same constant is already present in the poset through a different
	// Value, just alias to it without allocating a new node.
	val := n.AuxInt
	if po.flags&posetFlagUnsigned != 0 {
		val = int64(n.AuxUnsigned())
	}
	if c, found := po.constants[val]; found {
		po.values[n.ID] = c
		po.upushalias(n.ID, 0)
		return
	}

	// Create the new node for this constant
	i := po.newnode(n)

	// If this is the first constant, put it as a new root, as
	// we can't record an existing connection so we don't have
	// a specific DAG to add it to. Notice that we want all
	// constants to be in root #0, so make sure the new root
	// goes there.
	if len(po.constants) == 0 {
		idx := len(po.roots)
		po.roots = append(po.roots, i)
		po.roots[0], po.roots[idx] = po.roots[idx], po.roots[0]
		po.upush(undoNewRoot, i, 0)
		po.constants[val] = i
		po.upushconst(i, 0)
		return
	}

	// Find the lower and upper bound among existing constants. That is,
	// find the higher constant that is lower than the one that we're adding,
	// and the lower constant that is higher.
	// The loop is duplicated to handle signed and unsigned comparison,
	// depending on how the poset was configured.
	var lowerptr, higherptr uint32

	if po.flags&posetFlagUnsigned != 0 {
		var lower, higher uint64
		val1 := n.AuxUnsigned()
		for val2, ptr := range po.constants {
			val2 := uint64(val2)
			if val1 == val2 {
				panic("unreachable")
			}
			if val2 < val1 && (lowerptr == 0 || val2 > lower) {
				lower = val2
				lowerptr = ptr
			} else if val2 > val1 && (higherptr == 0 || val2 < higher) {
				higher = val2
				higherptr = ptr
			}
		}
	} else {
		var lower, higher int64
		val1 := n.AuxInt
		for val2, ptr := range po.constants {
			if val1 == val2 {
				panic("unreachable")
			}
			if val2 < val1 && (lowerptr == 0 || val2 > lower) {
				lower = val2
				lowerptr = ptr
			} else if val2 > val1 && (higherptr == 0 || val2 < higher) {
				higher = val2
				higherptr = ptr
			}
		}
	}

	if lowerptr == 0 && higherptr == 0 {
		// This should not happen, as at least one
		// other constant must exist if we get here.
		panic("no constant found")
	}

	// Create the new node and connect it to the bounds, so that
	// lower < n < higher. We could have found both bounds or only one
	// of them, depending on what other constants are present in the poset.
	// Notice that we always link constants together, so they
	// are always part of the same DAG.
	switch {
	case lowerptr != 0 && higherptr != 0:
		// Both bounds are present, record lower < n < higher.
		po.addchild(lowerptr, i, true)
		po.addchild(i, higherptr, true)

	case lowerptr != 0:
		// Lower bound only, record lower < n.
		po.addchild(lowerptr, i, true)

	case higherptr != 0:
		// Higher bound only. To record n < higher, we need
		// an extra root:
		//
		//        extra
		//        /   \
		//      root   \
		//       /      n
		//     ....    /
		//       \    /
		//       higher
		//
		i2 := higherptr
		r2 := po.findroot(i2)
		if r2 != po.roots[0] { // all constants should be in root #0
			panic("constant not in root #0")
		}
		extra := po.newnode(nil)
		po.changeroot(r2, extra)
		po.upush(undoChangeRoot, extra, newedge(r2, false))
		po.addchild(extra, r2, false)
		po.addchild(extra, i, false)
		po.addchild(i, i2, true)
	}

	po.constants[val] = i
	po.upushconst(i, 0)
}

// aliasnewnode records that a single node n2 (not in the poset yet) is an alias
// of the master node n1.
func (po *poset) aliasnewnode(n1, n2 *Value) {
	i1, i2 := po.values[n1.ID], po.values[n2.ID]
	if i1 == 0 || i2 != 0 {
		panic("aliasnewnode invalid arguments")
	}

	po.values[n2.ID] = i1
	po.upushalias(n2.ID, 0)
}

// aliasnodes records that all the nodes i2s are aliases of a single master node n1.
// aliasnodes takes care of rearranging the DAG, changing references of parent/children
// of nodes in i2s, so that they point to n1 instead.
// Complexity is O(n) (with n being the total number of nodes in the poset, not just
// the number of nodes being aliased).
func (po *poset) aliasnodes(n1 *Value, i2s bitset) {
	i1 := po.values[n1.ID]
	if i1 == 0 {
		panic("aliasnode for non-existing node")
	}
	if i2s.Test(i1) {
		panic("aliasnode i2s contains n1 node")
	}

	// Go through all the nodes to adjust parent/chidlren of nodes in i2s
	for idx, n := range po.nodes {
		// Do not touch i1 itself, otherwise we can create useless self-loops
		if uint32(idx) == i1 {
			continue
		}
		l, r := n.l, n.r

		// Rename all references to i2s into i1
		if i2s.Test(l.Target()) {
			po.setchl(uint32(idx), newedge(i1, l.Strict()))
			po.upush(undoSetChl, uint32(idx), l)
		}
		if i2s.Test(r.Target()) {
			po.setchr(uint32(idx), newedge(i1, r.Strict()))
			po.upush(undoSetChr, uint32(idx), r)
		}

		// Connect all children of i2s to i1 (unless those children
		// are in i2s as well, in which case it would be useless)
		if i2s.Test(uint32(idx)) {
			if l != 0 && !i2s.Test(l.Target()) {
				po.addchild(i1, l.Target(), l.Strict())
			}
			if r != 0 && !i2s.Test(r.Target()) {
				po.addchild(i1, r.Target(), r.Strict())
			}
			po.setchl(uint32(idx), 0)
			po.setchr(uint32(idx), 0)
			po.upush(undoSetChl, uint32(idx), l)
			po.upush(undoSetChr, uint32(idx), r)
		}
	}

	// Reassign all existing IDs that point to i2 to i1.
	// This includes n2.ID.
	for k, v := range po.values {
		if i2s.Test(v) {
			po.values[k] = i1
			po.upushalias(k, v)
		}
	}

	// If one of the aliased nodes is a constant, then make sure
	// po.constants is updated to point to the master node.
	for val, idx := range po.constants {
		if i2s.Test(idx) {
			po.constants[val] = i1
			po.upushconst(i1, idx)
		}
	}
}

func (po *poset) isroot(r uint32) bool {
	for i := range po.roots {
		if po.roots[i] == r {
			return true
		}
	}
	return false
}

func (po *poset) changeroot(oldr, newr uint32) {
	for i := range po.roots {
		if po.roots[i] == oldr {
			po.roots[i] = newr
			return
		}
	}
	panic("changeroot on non-root")
}

func (po *poset) removeroot(r uint32) {
	for i := range po.roots {
		if po.roots[i] == r {
			po.roots = append(po.roots[:i], po.roots[i+1:]...)
			return
		}
	}
	panic("removeroot on non-root")
}

// dfs performs a depth-first search within the DAG whose root is r.
// f is the visit function called for each node; if it returns true,
// the search is aborted and true is returned. The root node is
// visited too.
// If strict, ignore edges across a path until at least one
// strict edge is found. For instance, for a chain A<=B<=C<D<=E<F,
// a strict walk visits D,E,F.
// If the visit ends, false is returned.
func (po *poset) dfs(r uint32, strict bool, f func(i uint32) bool) bool {
	closed := newBitset(int(po.lastidx + 1))
	open := make([]uint32, 1, 64)
	open[0] = r

	if strict {
		// Do a first DFS; walk all paths and stop when we find a strict
		// edge, building a "next" list of nodes reachable through strict
		// edges. This will be the bootstrap open list for the real DFS.
		next := make([]uint32, 0, 64)

		for len(open) > 0 {
			i := open[len(open)-1]
			open = open[:len(open)-1]

			// Don't visit the same node twice. Notice that all nodes
			// across non-strict paths are still visited at least once, so
			// a non-strict path can never obscure a strict path to the
			// same node.
			if !closed.Test(i) {
				closed.Set(i)

				l, r := po.children(i)
				if l != 0 {
					if l.Strict() {
						next = append(next, l.Target())
					} else {
						open = append(open, l.Target())
					}
				}
				if r != 0 {
					if r.Strict() {
						next = append(next, r.Target())
					} else {
						open = append(open, r.Target())
					}
				}
			}
		}
		open = next
		closed.Reset()
	}

	for len(open) > 0 {
		i := open[len(open)-1]
		open = open[:len(open)-1]

		if !closed.Test(i) {
			if f(i) {
				return true
			}
			closed.Set(i)
			l, r := po.children(i)
			if l != 0 {
				open = append(open, l.Target())
			}
			if r != 0 {
				open = append(open, r.Target())
			}
		}
	}
	return false
}

// Returns true if there is a path from i1 to i2.
// If strict ==  true: if the function returns true, then i1 <  i2.
// If strict == false: if the function returns true, then i1 <= i2.
// If the function returns false, no relation is known.
func (po *poset) reaches(i1, i2 uint32, strict bool) bool {
	return po.dfs(i1, strict, func(n uint32) bool {
		return n == i2
	})
}

// findroot finds i's root, that is which DAG contains i.
// Returns the root; if i is itself a root, it is returned.
// Panic if i is not in any DAG.
func (po *poset) findroot(i uint32) uint32 {
	// TODO(rasky): if needed, a way to speed up this search is
	// storing a bitset for each root using it as a mini bloom filter
	// of nodes present under that root.
	for _, r := range po.roots {
		if po.reaches(r, i, false) {
			return r
		}
	}
	panic("findroot didn't find any root")
}

// mergeroot merges two DAGs into one DAG by creating a new extra root
func (po *poset) mergeroot(r1, r2 uint32) uint32 {
	// Root #0 is special as it contains all constants. Since mergeroot
	// discards r2 as root and keeps r1, make sure that r2 is not root #0,
	// otherwise constants would move to a different root.
	if r2 == po.roots[0] {
		r1, r2 = r2, r1
	}
	r := po.newnode(nil)
	po.setchl(r, newedge(r1, false))
	po.setchr(r, newedge(r2, false))
	po.changeroot(r1, r)
	po.removeroot(r2)
	po.upush(undoMergeRoot, r, 0)
	return r
}

// collapsepath marks n1 and n2 as equal and collapses as equal all
// nodes across all paths between n1 and n2. If a strict edge is
// found, the function does not modify the DAG and returns false.
// Complexity is O(n).
func (po *poset) collapsepath(n1, n2 *Value) bool {
	i1, i2 := po.values[n1.ID], po.values[n2.ID]
	if po.reaches(i1, i2, true) {
		return false
	}

	// Find all the paths from i1 to i2
	paths := po.findpaths(i1, i2)
	// Mark all nodes in all the paths as aliases of n1
	// (excluding n1 itself)
	paths.Clear(i1)
	po.aliasnodes(n1, paths)
	return true
}

// findpaths is a recursive function that calculates all paths from cur to dst
// and return them as a bitset (the index of a node is set in the bitset if
// that node is on at least one path from cur to dst).
// We do a DFS from cur (stopping going deep any time we reach dst, if ever),
// and mark as part of the paths any node that has a children which is already
// part of the path (or is dst itself).
func (po *poset) findpaths(cur, dst uint32) bitset {
	seen := newBitset(int(po.lastidx + 1))
	path := newBitset(int(po.lastidx + 1))
	path.Set(dst)
	po.findpaths1(cur, dst, seen, path)
	return path
}

func (po *poset) findpaths1(cur, dst uint32, seen bitset, path bitset) {
	if cur == dst {
		return
	}
	seen.Set(cur)
	l, r := po.chl(cur), po.chr(cur)
	if !seen.Test(l) {
		po.findpaths1(l, dst, seen, path)
	}
	if !seen.Test(r) {
		po.findpaths1(r, dst, seen, path)
	}
	if path.Test(l) || path.Test(r) {
		path.Set(cur)
	}
}

// Check whether it is recorded that i1!=i2
func (po *poset) isnoneq(i1, i2 uint32) bool {
	if i1 == i2 {
		return false
	}
	if i1 < i2 {
		i1, i2 = i2, i1
	}

	// Check if we recorded a non-equal relation before
	if bs, ok := po.noneq[i1]; ok && bs.Test(i2) {
		return true
	}
	return false
}

// Record that i1!=i2
func (po *poset) setnoneq(n1, n2 *Value) {
	i1, f1 := po.lookup(n1)
	i2, f2 := po.lookup(n2)

	// If any of the nodes do not exist in the poset, allocate them. Since
	// we don't know any relation (in the partial order) about them, they must
	// become independent roots.
	if !f1 {
		i1 = po.newnode(n1)
		po.roots = append(po.roots, i1)
		po.upush(undoNewRoot, i1, 0)
	}
	if !f2 {
		i2 = po.newnode(n2)
		po.roots = append(po.roots, i2)
		po.upush(undoNewRoot, i2, 0)
	}

	if i1 == i2 {
		panic("setnoneq on same node")
	}
	if i1 < i2 {
		i1, i2 = i2, i1
	}
	bs := po.noneq[i1]
	if bs == nil {
		// Given that we record non-equality relations using the
		// higher index as a key, the bitsize will never change size.
		// TODO(rasky): if memory is a problem, consider allocating
		// a small bitset and lazily grow it when higher indices arrive.
		bs = newBitset(int(i1))
		po.noneq[i1] = bs
	} else if bs.Test(i2) {
		// Already recorded
		return
	}
	bs.Set(i2)
	po.upushneq(i1, i2)
}

// CheckIntegrity verifies internal integrity of a poset. It is intended
// for debugging purposes.
func (po *poset) CheckIntegrity() {
	// Record which index is a constant
	constants := newBitset(int(po.lastidx + 1))
	for _, c := range po.constants {
		constants.Set(c)
	}

	// Verify that each node appears in a single DAG, and that
	// all constants are within the first DAG
	seen := newBitset(int(po.lastidx + 1))
	for ridx, r := range po.roots {
		if r == 0 {
			panic("empty root")
		}

		po.dfs(r, false, func(i uint32) bool {
			if seen.Test(i) {
				panic("duplicate node")
			}
			seen.Set(i)
			if constants.Test(i) {
				if ridx != 0 {
					panic("constants not in the first DAG")
				}
			}
			return false
		})
	}

	// Verify that values contain the minimum set
	for id, idx := range po.values {
		if !seen.Test(idx) {
			panic(fmt.Errorf("spurious value [%d]=%d", id, idx))
		}
	}

	// Verify that only existing nodes have non-zero children
	for i, n := range po.nodes {
		if n.l|n.r != 0 {
			if !seen.Test(uint32(i)) {
				panic(fmt.Errorf("children of unknown node %d->%v", i, n))
			}
			if n.l.Target() == uint32(i) || n.r.Target() == uint32(i) {
				panic(fmt.Errorf("self-loop on node %d", i))
			}
		}
	}
}

// CheckEmpty checks that a poset is completely empty.
// It can be used for debugging purposes, as a poset is supposed to
// be empty after it's fully rolled back through Undo.
func (po *poset) CheckEmpty() error {
	if len(po.nodes) != 1 {
		return fmt.Errorf("non-empty nodes list: %v", po.nodes)
	}
	if len(po.values) != 0 {
		return fmt.Errorf("non-empty value map: %v", po.values)
	}
	if len(po.roots) != 0 {
		return fmt.Errorf("non-empty root list: %v", po.roots)
	}
	if len(po.constants) != 0 {
		return fmt.Errorf("non-empty constants: %v", po.constants)
	}
	if len(po.undo) != 0 {
		return fmt.Errorf("non-empty undo list: %v", po.undo)
	}
	if po.lastidx != 0 {
		return fmt.Errorf("lastidx index is not zero: %v", po.lastidx)
	}
	for _, bs := range po.noneq {
		for _, x := range bs {
			if x != 0 {
				return fmt.Errorf("non-empty noneq map")
			}
		}
	}
	return nil
}

// DotDump dumps the poset in graphviz format to file fn, with the specified title.
func (po *poset) DotDump(fn string, title string) error {
	f, err := os.Create(fn)
	if err != nil {
		return err
	}
	defer f.Close()

	// Create reverse index mapping (taking aliases into account)
	names := make(map[uint32]string)
	for id, i := range po.values {
		s := names[i]
		if s == "" {
			s = fmt.Sprintf("v%d", id)
		} else {
			s += fmt.Sprintf(", v%d", id)
		}
		names[i] = s
	}

	// Create reverse constant mapping
	consts := make(map[uint32]int64)
	for val, idx := range po.constants {
		consts[idx] = val
	}

	fmt.Fprintf(f, "digraph poset {\n")
	fmt.Fprintf(f, "\tedge [ fontsize=10 ]\n")
	for ridx, r := range po.roots {
		fmt.Fprintf(f, "\tsubgraph root%d {\n", ridx)
		po.dfs(r, false, func(i uint32) bool {
			if val, ok := consts[i]; ok {
				// Constant
				var vals string
				if po.flags&posetFlagUnsigned != 0 {
					vals = fmt.Sprint(uint64(val))
				} else {
					vals = fmt.Sprint(int64(val))
				}
				fmt.Fprintf(f, "\t\tnode%d [shape=box style=filled fillcolor=cadetblue1 label=<%s <font point-size=\"6\">%s [%d]</font>>]\n",
					i, vals, names[i], i)
			} else {
				// Normal SSA value
				fmt.Fprintf(f, "\t\tnode%d [label=<%s <font point-size=\"6\">[%d]</font>>]\n", i, names[i], i)
			}
			chl, chr := po.children(i)
			for _, ch := range []posetEdge{chl, chr} {
				if ch != 0 {
					if ch.Strict() {
						fmt.Fprintf(f, "\t\tnode%d -> node%d [label=\" <\" color=\"red\"]\n", i, ch.Target())
					} else {
						fmt.Fprintf(f, "\t\tnode%d -> node%d [label=\" <=\" color=\"green\"]\n", i, ch.Target())
					}
				}
			}
			return false
		})
		fmt.Fprintf(f, "\t}\n")
	}
	fmt.Fprintf(f, "\tlabelloc=\"t\"\n")
	fmt.Fprintf(f, "\tlabeldistance=\"3.0\"\n")
	fmt.Fprintf(f, "\tlabel=%q\n", title)
	fmt.Fprintf(f, "}\n")
	return nil
}

// Ordered reports whether n1<n2. It returns false either when it is
// certain that n1<n2 is false, or if there is not enough information
// to tell.
// Complexity is O(n).
func (po *poset) Ordered(n1, n2 *Value) bool {
	if debugPoset {
		defer po.CheckIntegrity()
	}
	if n1.ID == n2.ID {
		panic("should not call Ordered with n1==n2")
	}

	i1, f1 := po.lookup(n1)
	i2, f2 := po.lookup(n2)
	if !f1 || !f2 {
		return false
	}

	return i1 != i2 && po.reaches(i1, i2, true)
}

// OrderedOrEqual reports whether n1<=n2. It returns false either when it is
// certain that n1<=n2 is false, or if there is not enough information
// to tell.
// Complexity is O(n).
func (po *poset) OrderedOrEqual(n1, n2 *Value) bool {
	if debugPoset {
		defer po.CheckIntegrity()
	}
	if n1.ID == n2.ID {
		panic("should not call Ordered with n1==n2")
	}

	i1, f1 := po.lookup(n1)
	i2, f2 := po.lookup(n2)
	if !f1 || !f2 {
		return false
	}

	return i1 == i2 || po.reaches(i1, i2, false)
}

// Equal reports whether n1==n2. It returns false either when it is
// certain that n1==n2 is false, or if there is not enough information
// to tell.
// Complexity is O(1).
func (po *poset) Equal(n1, n2 *Value) bool {
	if debugPoset {
		defer po.CheckIntegrity()
	}
	if n1.ID == n2.ID {
		panic("should not call Equal with n1==n2")
	}

	i1, f1 := po.lookup(n1)
	i2, f2 := po.lookup(n2)
	return f1 && f2 && i1 == i2
}

// NonEqual reports whether n1!=n2. It returns false either when it is
// certain that n1!=n2 is false, or if there is not enough information
// to tell.
// Complexity is O(n) (because it internally calls Ordered to see if we
// can infer n1!=n2 from n1<n2 or n2<n1).
func (po *poset) NonEqual(n1, n2 *Value) bool {
	if debugPoset {
		defer po.CheckIntegrity()
	}
	if n1.ID == n2.ID {
		panic("should not call NonEqual with n1==n2")
	}

	// If we never saw the nodes before, we don't
	// have a recorded non-equality.
	i1, f1 := po.lookup(n1)
	i2, f2 := po.lookup(n2)
	if !f1 || !f2 {
		return false
	}

	// Check if we recored inequality
	if po.isnoneq(i1, i2) {
		return true
	}

	// Check if n1<n2 or n2<n1, in which case we can infer that n1!=n2
	if po.Ordered(n1, n2) || po.Ordered(n2, n1) {
		return true
	}

	return false
}

// setOrder records that n1<n2 or n1<=n2 (depending on strict). Returns false
// if this is a contradiction.
// Implements SetOrder() and SetOrderOrEqual()
func (po *poset) setOrder(n1, n2 *Value, strict bool) bool {
	i1, f1 := po.lookup(n1)
	i2, f2 := po.lookup(n2)

	switch {
	case !f1 && !f2:
		// Neither n1 nor n2 are in the poset, so they are not related
		// in any way to existing nodes.
		// Create a new DAG to record the relation.
		i1, i2 = po.newnode(n1), po.newnode(n2)
		po.roots = append(po.roots, i1)
		po.upush(undoNewRoot, i1, 0)
		po.addchild(i1, i2, strict)

	case f1 && !f2:
		// n1 is in one of the DAGs, while n2 is not. Add n2 as children
		// of n1.
		i2 = po.newnode(n2)
		po.addchild(i1, i2, strict)

	case !f1 && f2:
		// n1 is not in any DAG but n2 is. If n2 is a root, we can put
		// n1 in its place as a root; otherwise, we need to create a new
		// extra root to record the relation.
		i1 = po.newnode(n1)

		if po.isroot(i2) {
			po.changeroot(i2, i1)
			po.upush(undoChangeRoot, i1, newedge(i2, strict))
			po.addchild(i1, i2, strict)
			return true
		}

		// Search for i2's root; this requires a O(n) search on all
		// DAGs
		r := po.findroot(i2)

		// Re-parent as follows:
		//
		//                  extra
		//     r            /   \
		//      \   ===>   r    i1
		//      i2          \   /
		//                    i2
		//
		extra := po.newnode(nil)
		po.changeroot(r, extra)
		po.upush(undoChangeRoot, extra, newedge(r, false))
		po.addchild(extra, r, false)
		po.addchild(extra, i1, false)
		po.addchild(i1, i2, strict)

	case f1 && f2:
		// If the nodes are aliased, fail only if we're setting a strict order
		// (that is, we cannot set n1<n2 if n1==n2).
		if i1 == i2 {
			return !strict
		}

		// If we are trying to record n1<=n2 but we learned that n1!=n2,
		// record n1<n2, as it provides more information.
		if !strict && po.isnoneq(i1, i2) {
			strict = true
		}

		// Both n1 and n2 are in the poset. This is the complex part of the algorithm
		// as we need to find many different cases and DAG shapes.

		// Check if n1 somehow reaches n2
		if po.reaches(i1, i2, false) {
			// This is the table of all cases we need to handle:
			//
			//      DAG          New      Action
			//      ---------------------------------------------------
			// #1:  N1<=X<=N2 |  N1<=N2 | do nothing
			// #2:  N1<=X<=N2 |  N1<N2  | add strict edge (N1<N2)
			// #3:  N1<X<N2   |  N1<=N2 | do nothing (we already know more)
			// #4:  N1<X<N2   |  N1<N2  | do nothing

			// Check if we're in case #2
			if strict && !po.reaches(i1, i2, true) {
				po.addchild(i1, i2, true)
				return true
			}

			// Case #1, #3 o #4: nothing to do
			return true
		}

		// Check if n2 somehow reaches n1
		if po.reaches(i2, i1, false) {
			// This is the table of all cases we need to handle:
			//
			//      DAG           New      Action
			//      ---------------------------------------------------
			// #5:  N2<=X<=N1  |  N1<=N2 | collapse path (learn that N1=X=N2)
			// #6:  N2<=X<=N1  |  N1<N2  | contradiction
			// #7:  N2<X<N1    |  N1<=N2 | contradiction in the path
			// #8:  N2<X<N1    |  N1<N2  | contradiction

			if strict {
				// Cases #6 and #8: contradiction
				return false
			}

			// We're in case #5 or #7. Try to collapse path, and that will
			// fail if it realizes that we are in case #7.
			return po.collapsepath(n2, n1)
		}

		// We don't know of any existing relation between n1 and n2. They could
		// be part of the same DAG or not.
		// Find their roots to check whether they are in the same DAG.
		r1, r2 := po.findroot(i1), po.findroot(i2)
		if r1 != r2 {
			// We need to merge the two DAGs to record a relation between the nodes
			po.mergeroot(r1, r2)
		}

		// Connect n1 and n2
		po.addchild(i1, i2, strict)
	}

	return true
}

// SetOrder records that n1<n2. Returns false if this is a contradiction
// Complexity is O(1) if n2 was never seen before, or O(n) otherwise.
func (po *poset) SetOrder(n1, n2 *Value) bool {
	if debugPoset {
		defer po.CheckIntegrity()
	}
	if n1.ID == n2.ID {
		panic("should not call SetOrder with n1==n2")
	}
	return po.setOrder(n1, n2, true)
}

// SetOrderOrEqual records that n1<=n2. Returns false if this is a contradiction
// Complexity is O(1) if n2 was never seen before, or O(n) otherwise.
func (po *poset) SetOrderOrEqual(n1, n2 *Value) bool {
	if debugPoset {
		defer po.CheckIntegrity()
	}
	if n1.ID == n2.ID {
		panic("should not call SetOrder with n1==n2")
	}
	return po.setOrder(n1, n2, false)
}

// SetEqual records that n1==n2. Returns false if this is a contradiction
// (that is, if it is already recorded that n1<n2 or n2<n1).
// Complexity is O(1) if n2 was never seen before, or O(n) otherwise.
func (po *poset) SetEqual(n1, n2 *Value) bool {
	if debugPoset {
		defer po.CheckIntegrity()
	}
	if n1.ID == n2.ID {
		panic("should not call Add with n1==n2")
	}

	i1, f1 := po.lookup(n1)
	i2, f2 := po.lookup(n2)

	switch {
	case !f1 && !f2:
		i1 = po.newnode(n1)
		po.roots = append(po.roots, i1)
		po.upush(undoNewRoot, i1, 0)
		po.aliasnewnode(n1, n2)
	case f1 && !f2:
		po.aliasnewnode(n1, n2)
	case !f1 && f2:
		po.aliasnewnode(n2, n1)
	case f1 && f2:
		if i1 == i2 {
			// Already aliased, ignore
			return true
		}

		// If we recorded that n1!=n2, this is a contradiction.
		if po.isnoneq(i1, i2) {
			return false
		}

		// If we already knew that n1<=n2, we can collapse the path to
		// record n1==n2 (and viceversa).
		if po.reaches(i1, i2, false) {
			return po.collapsepath(n1, n2)
		}
		if po.reaches(i2, i1, false) {
			return po.collapsepath(n2, n1)
		}

		r1 := po.findroot(i1)
		r2 := po.findroot(i2)
		if r1 != r2 {
			// Merge the two DAGs so we can record relations between the nodes
			po.mergeroot(r1, r2)
		}

		// Set n2 as alias of n1. This will also update all the references
		// to n2 to become references to n1
		i2s := newBitset(int(po.lastidx) + 1)
		i2s.Set(i2)
		po.aliasnodes(n1, i2s)
	}
	return true
}

// SetNonEqual records that n1!=n2. Returns false if this is a contradiction
// (that is, if it is already recorded that n1==n2).
// Complexity is O(n).
func (po *poset) SetNonEqual(n1, n2 *Value) bool {
	if debugPoset {
		defer po.CheckIntegrity()
	}
	if n1.ID == n2.ID {
		panic("should not call SetNonEqual with n1==n2")
	}

	// Check whether the nodes are already in the poset
	i1, f1 := po.lookup(n1)
	i2, f2 := po.lookup(n2)

	// If either node wasn't present, we just record the new relation
	// and exit.
	if !f1 || !f2 {
		po.setnoneq(n1, n2)
		return true
	}

	// See if we already know this, in which case there's nothing to do.
	if po.isnoneq(i1, i2) {
		return true
	}

	// Check if we're contradicting an existing equality relation
	if po.Equal(n1, n2) {
		return false
	}

	// Record non-equality
	po.setnoneq(n1, n2)

	// If we know that i1<=i2 but not i1<i2, learn that as we
	// now know that they are not equal. Do the same for i2<=i1.
	// Do this check only if both nodes were already in the DAG,
	// otherwise there cannot be an existing relation.
	if po.reaches(i1, i2, false) && !po.reaches(i1, i2, true) {
		po.addchild(i1, i2, true)
	}
	if po.reaches(i2, i1, false) && !po.reaches(i2, i1, true) {
		po.addchild(i2, i1, true)
	}

	return true
}

// Checkpoint saves the current state of the DAG so that it's possible
// to later undo this state.
// Complexity is O(1).
func (po *poset) Checkpoint() {
	po.undo = append(po.undo, posetUndo{typ: undoCheckpoint})
}

// Undo restores the state of the poset to the previous checkpoint.
// Complexity depends on the type of operations that were performed
// since the last checkpoint; each Set* operation creates an undo
// pass which Undo has to revert with a worst-case complexity of O(n).
func (po *poset) Undo() {
	if len(po.undo) == 0 {
		panic("empty undo stack")
	}
	if debugPoset {
		defer po.CheckIntegrity()
	}

	for len(po.undo) > 0 {
		pass := po.undo[len(po.undo)-1]
		po.undo = po.undo[:len(po.undo)-1]

		switch pass.typ {
		case undoCheckpoint:
			return

		case undoSetChl:
			po.setchl(pass.idx, pass.edge)

		case undoSetChr:
			po.setchr(pass.idx, pass.edge)

		case undoNonEqual:
			po.noneq[uint32(pass.ID)].Clear(pass.idx)

		case undoNewNode:
			if pass.idx != po.lastidx {
				panic("invalid newnode index")
			}
			if pass.ID != 0 {
				if po.values[pass.ID] != pass.idx {
					panic("invalid newnode undo pass")
				}
				delete(po.values, pass.ID)
			}
			po.setchl(pass.idx, 0)
			po.setchr(pass.idx, 0)
			po.nodes = po.nodes[:pass.idx]
			po.lastidx--

		case undoNewConstant:
			// FIXME: remove this O(n) loop
			var val int64
			var i uint32
			for val, i = range po.constants {
				if i == pass.idx {
					break
				}
			}
			if i != pass.idx {
				panic("constant not found in undo pass")
			}
			if pass.ID == 0 {
				delete(po.constants, val)
			} else {
				// Restore previous index as constant node
				// (also restoring the invariant on correct bounds)
				oldidx := uint32(pass.ID)
				po.constants[val] = oldidx
			}

		case undoAliasNode:
			ID, prev := pass.ID, pass.idx
			cur := po.values[ID]
			if prev == 0 {
				// Born as an alias, die as an alias
				delete(po.values, ID)
			} else {
				if cur == prev {
					panic("invalid aliasnode undo pass")
				}
				// Give it back previous value
				po.values[ID] = prev
			}

		case undoNewRoot:
			i := pass.idx
			l, r := po.children(i)
			if l|r != 0 {
				panic("non-empty root in undo newroot")
			}
			po.removeroot(i)

		case undoChangeRoot:
			i := pass.idx
			l, r := po.children(i)
			if l|r != 0 {
				panic("non-empty root in undo changeroot")
			}
			po.changeroot(i, pass.edge.Target())

		case undoMergeRoot:
			i := pass.idx
			l, r := po.children(i)
			po.changeroot(i, l.Target())
			po.roots = append(po.roots, r.Target())

		default:
			panic(pass.typ)
		}
	}

	if debugPoset && po.CheckEmpty() != nil {
		panic("poset not empty at the end of undo")
	}
}