summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/regalloc.go
blob: 294c522a90a87073100c63c1612367598b133621 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Register allocation.
//
// We use a version of a linear scan register allocator. We treat the
// whole function as a single long basic block and run through
// it using a greedy register allocator. Then all merge edges
// (those targeting a block with len(Preds)>1) are processed to
// shuffle data into the place that the target of the edge expects.
//
// The greedy allocator moves values into registers just before they
// are used, spills registers only when necessary, and spills the
// value whose next use is farthest in the future.
//
// The register allocator requires that a block is not scheduled until
// at least one of its predecessors have been scheduled. The most recent
// such predecessor provides the starting register state for a block.
//
// It also requires that there are no critical edges (critical =
// comes from a block with >1 successor and goes to a block with >1
// predecessor).  This makes it easy to add fixup code on merge edges -
// the source of a merge edge has only one successor, so we can add
// fixup code to the end of that block.

// Spilling
//
// During the normal course of the allocator, we might throw a still-live
// value out of all registers. When that value is subsequently used, we must
// load it from a slot on the stack. We must also issue an instruction to
// initialize that stack location with a copy of v.
//
// pre-regalloc:
//   (1) v = Op ...
//   (2) x = Op ...
//   (3) ... = Op v ...
//
// post-regalloc:
//   (1) v = Op ...    : AX // computes v, store result in AX
//       s = StoreReg v     // spill v to a stack slot
//   (2) x = Op ...    : AX // some other op uses AX
//       c = LoadReg s : CX // restore v from stack slot
//   (3) ... = Op c ...     // use the restored value
//
// Allocation occurs normally until we reach (3) and we realize we have
// a use of v and it isn't in any register. At that point, we allocate
// a spill (a StoreReg) for v. We can't determine the correct place for
// the spill at this point, so we allocate the spill as blockless initially.
// The restore is then generated to load v back into a register so it can
// be used. Subsequent uses of v will use the restored value c instead.
//
// What remains is the question of where to schedule the spill.
// During allocation, we keep track of the dominator of all restores of v.
// The spill of v must dominate that block. The spill must also be issued at
// a point where v is still in a register.
//
// To find the right place, start at b, the block which dominates all restores.
//  - If b is v.Block, then issue the spill right after v.
//    It is known to be in a register at that point, and dominates any restores.
//  - Otherwise, if v is in a register at the start of b,
//    put the spill of v at the start of b.
//  - Otherwise, set b = immediate dominator of b, and repeat.
//
// Phi values are special, as always. We define two kinds of phis, those
// where the merge happens in a register (a "register" phi) and those where
// the merge happens in a stack location (a "stack" phi).
//
// A register phi must have the phi and all of its inputs allocated to the
// same register. Register phis are spilled similarly to regular ops.
//
// A stack phi must have the phi and all of its inputs allocated to the same
// stack location. Stack phis start out life already spilled - each phi
// input must be a store (using StoreReg) at the end of the corresponding
// predecessor block.
//     b1: y = ... : AX        b2: z = ... : BX
//         y2 = StoreReg y         z2 = StoreReg z
//         goto b3                 goto b3
//     b3: x = phi(y2, z2)
// The stack allocator knows that StoreReg args of stack-allocated phis
// must be allocated to the same stack slot as the phi that uses them.
// x is now a spilled value and a restore must appear before its first use.

// TODO

// Use an affinity graph to mark two values which should use the
// same register. This affinity graph will be used to prefer certain
// registers for allocation. This affinity helps eliminate moves that
// are required for phi implementations and helps generate allocations
// for 2-register architectures.

// Note: regalloc generates a not-quite-SSA output. If we have:
//
//             b1: x = ... : AX
//                 x2 = StoreReg x
//                 ... AX gets reused for something else ...
//                 if ... goto b3 else b4
//
//   b3: x3 = LoadReg x2 : BX       b4: x4 = LoadReg x2 : CX
//       ... use x3 ...                 ... use x4 ...
//
//             b2: ... use x3 ...
//
// If b3 is the primary predecessor of b2, then we use x3 in b2 and
// add a x4:CX->BX copy at the end of b4.
// But the definition of x3 doesn't dominate b2.  We should really
// insert an extra phi at the start of b2 (x5=phi(x3,x4):BX) to keep
// SSA form. For now, we ignore this problem as remaining in strict
// SSA form isn't needed after regalloc. We'll just leave the use
// of x3 not dominated by the definition of x3, and the CX->BX copy
// will have no use (so don't run deadcode after regalloc!).
// TODO: maybe we should introduce these extra phis?

package ssa

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"cmd/internal/sys"
	"fmt"
	"internal/buildcfg"
	"math/bits"
	"unsafe"
)

const (
	moveSpills = iota
	logSpills
	regDebug
	stackDebug
)

// distance is a measure of how far into the future values are used.
// distance is measured in units of instructions.
const (
	likelyDistance   = 1
	normalDistance   = 10
	unlikelyDistance = 100
)

// regalloc performs register allocation on f. It sets f.RegAlloc
// to the resulting allocation.
func regalloc(f *Func) {
	var s regAllocState
	s.init(f)
	s.regalloc(f)
	s.close()
}

type register uint8

const noRegister register = 255

// For bulk initializing
var noRegisters [32]register = [32]register{
	noRegister, noRegister, noRegister, noRegister, noRegister, noRegister, noRegister, noRegister,
	noRegister, noRegister, noRegister, noRegister, noRegister, noRegister, noRegister, noRegister,
	noRegister, noRegister, noRegister, noRegister, noRegister, noRegister, noRegister, noRegister,
	noRegister, noRegister, noRegister, noRegister, noRegister, noRegister, noRegister, noRegister,
}

// A regMask encodes a set of machine registers.
// TODO: regMask -> regSet?
type regMask uint64

func (m regMask) String() string {
	s := ""
	for r := register(0); m != 0; r++ {
		if m>>r&1 == 0 {
			continue
		}
		m &^= regMask(1) << r
		if s != "" {
			s += " "
		}
		s += fmt.Sprintf("r%d", r)
	}
	return s
}

func (s *regAllocState) RegMaskString(m regMask) string {
	str := ""
	for r := register(0); m != 0; r++ {
		if m>>r&1 == 0 {
			continue
		}
		m &^= regMask(1) << r
		if str != "" {
			str += " "
		}
		str += s.registers[r].String()
	}
	return str
}

// countRegs returns the number of set bits in the register mask.
func countRegs(r regMask) int {
	return bits.OnesCount64(uint64(r))
}

// pickReg picks an arbitrary register from the register mask.
func pickReg(r regMask) register {
	if r == 0 {
		panic("can't pick a register from an empty set")
	}
	// pick the lowest one
	return register(bits.TrailingZeros64(uint64(r)))
}

type use struct {
	dist int32    // distance from start of the block to a use of a value
	pos  src.XPos // source position of the use
	next *use     // linked list of uses of a value in nondecreasing dist order
}

// A valState records the register allocation state for a (pre-regalloc) value.
type valState struct {
	regs              regMask // the set of registers holding a Value (usually just one)
	uses              *use    // list of uses in this block
	spill             *Value  // spilled copy of the Value (if any)
	restoreMin        int32   // minimum of all restores' blocks' sdom.entry
	restoreMax        int32   // maximum of all restores' blocks' sdom.exit
	needReg           bool    // cached value of !v.Type.IsMemory() && !v.Type.IsVoid() && !.v.Type.IsFlags()
	rematerializeable bool    // cached value of v.rematerializeable()
}

type regState struct {
	v *Value // Original (preregalloc) Value stored in this register.
	c *Value // A Value equal to v which is currently in a register.  Might be v or a copy of it.
	// If a register is unused, v==c==nil
}

type regAllocState struct {
	f *Func

	sdom        SparseTree
	registers   []Register
	numRegs     register
	SPReg       register
	SBReg       register
	GReg        register
	allocatable regMask

	// live values at the end of each block.  live[b.ID] is a list of value IDs
	// which are live at the end of b, together with a count of how many instructions
	// forward to the next use.
	live [][]liveInfo
	// desired register assignments at the end of each block.
	// Note that this is a static map computed before allocation occurs. Dynamic
	// register desires (from partially completed allocations) will trump
	// this information.
	desired []desiredState

	// current state of each (preregalloc) Value
	values []valState

	// ID of SP, SB values
	sp, sb ID

	// For each Value, map from its value ID back to the
	// preregalloc Value it was derived from.
	orig []*Value

	// current state of each register
	regs []regState

	// registers that contain values which can't be kicked out
	nospill regMask

	// mask of registers currently in use
	used regMask

	// mask of registers used in the current instruction
	tmpused regMask

	// current block we're working on
	curBlock *Block

	// cache of use records
	freeUseRecords *use

	// endRegs[blockid] is the register state at the end of each block.
	// encoded as a set of endReg records.
	endRegs [][]endReg

	// startRegs[blockid] is the register state at the start of merge blocks.
	// saved state does not include the state of phi ops in the block.
	startRegs [][]startReg

	// spillLive[blockid] is the set of live spills at the end of each block
	spillLive [][]ID

	// a set of copies we generated to move things around, and
	// whether it is used in shuffle. Unused copies will be deleted.
	copies map[*Value]bool

	loopnest *loopnest

	// choose a good order in which to visit blocks for allocation purposes.
	visitOrder []*Block

	// blockOrder[b.ID] corresponds to the index of block b in visitOrder.
	blockOrder []int32

	// whether to insert instructions that clobber dead registers at call sites
	doClobber bool
}

type endReg struct {
	r register
	v *Value // pre-regalloc value held in this register (TODO: can we use ID here?)
	c *Value // cached version of the value
}

type startReg struct {
	r   register
	v   *Value   // pre-regalloc value needed in this register
	c   *Value   // cached version of the value
	pos src.XPos // source position of use of this register
}

// freeReg frees up register r. Any current user of r is kicked out.
func (s *regAllocState) freeReg(r register) {
	v := s.regs[r].v
	if v == nil {
		s.f.Fatalf("tried to free an already free register %d\n", r)
	}

	// Mark r as unused.
	if s.f.pass.debug > regDebug {
		fmt.Printf("freeReg %s (dump %s/%s)\n", &s.registers[r], v, s.regs[r].c)
	}
	s.regs[r] = regState{}
	s.values[v.ID].regs &^= regMask(1) << r
	s.used &^= regMask(1) << r
}

// freeRegs frees up all registers listed in m.
func (s *regAllocState) freeRegs(m regMask) {
	for m&s.used != 0 {
		s.freeReg(pickReg(m & s.used))
	}
}

// clobberRegs inserts instructions that clobber registers listed in m.
func (s *regAllocState) clobberRegs(m regMask) {
	m &= s.allocatable & s.f.Config.gpRegMask // only integer register can contain pointers, only clobber them
	for m != 0 {
		r := pickReg(m)
		m &^= 1 << r
		x := s.curBlock.NewValue0(src.NoXPos, OpClobberReg, types.TypeVoid)
		s.f.setHome(x, &s.registers[r])
	}
}

// setOrig records that c's original value is the same as
// v's original value.
func (s *regAllocState) setOrig(c *Value, v *Value) {
	if int(c.ID) >= cap(s.orig) {
		x := s.f.Cache.allocValueSlice(int(c.ID) + 1)
		copy(x, s.orig)
		s.f.Cache.freeValueSlice(s.orig)
		s.orig = x
	}
	for int(c.ID) >= len(s.orig) {
		s.orig = append(s.orig, nil)
	}
	if s.orig[c.ID] != nil {
		s.f.Fatalf("orig value set twice %s %s", c, v)
	}
	s.orig[c.ID] = s.orig[v.ID]
}

// assignReg assigns register r to hold c, a copy of v.
// r must be unused.
func (s *regAllocState) assignReg(r register, v *Value, c *Value) {
	if s.f.pass.debug > regDebug {
		fmt.Printf("assignReg %s %s/%s\n", &s.registers[r], v, c)
	}
	if s.regs[r].v != nil {
		s.f.Fatalf("tried to assign register %d to %s/%s but it is already used by %s", r, v, c, s.regs[r].v)
	}

	// Update state.
	s.regs[r] = regState{v, c}
	s.values[v.ID].regs |= regMask(1) << r
	s.used |= regMask(1) << r
	s.f.setHome(c, &s.registers[r])
}

// allocReg chooses a register from the set of registers in mask.
// If there is no unused register, a Value will be kicked out of
// a register to make room.
func (s *regAllocState) allocReg(mask regMask, v *Value) register {
	if v.OnWasmStack {
		return noRegister
	}

	mask &= s.allocatable
	mask &^= s.nospill
	if mask == 0 {
		s.f.Fatalf("no register available for %s", v.LongString())
	}

	// Pick an unused register if one is available.
	if mask&^s.used != 0 {
		return pickReg(mask &^ s.used)
	}

	// Pick a value to spill. Spill the value with the
	// farthest-in-the-future use.
	// TODO: Prefer registers with already spilled Values?
	// TODO: Modify preference using affinity graph.
	// TODO: if a single value is in multiple registers, spill one of them
	// before spilling a value in just a single register.

	// Find a register to spill. We spill the register containing the value
	// whose next use is as far in the future as possible.
	// https://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm
	var r register
	maxuse := int32(-1)
	for t := register(0); t < s.numRegs; t++ {
		if mask>>t&1 == 0 {
			continue
		}
		v := s.regs[t].v
		if n := s.values[v.ID].uses.dist; n > maxuse {
			// v's next use is farther in the future than any value
			// we've seen so far. A new best spill candidate.
			r = t
			maxuse = n
		}
	}
	if maxuse == -1 {
		s.f.Fatalf("couldn't find register to spill")
	}

	if s.f.Config.ctxt.Arch.Arch == sys.ArchWasm {
		// TODO(neelance): In theory this should never happen, because all wasm registers are equal.
		// So if there is still a free register, the allocation should have picked that one in the first place instead of
		// trying to kick some other value out. In practice, this case does happen and it breaks the stack optimization.
		s.freeReg(r)
		return r
	}

	// Try to move it around before kicking out, if there is a free register.
	// We generate a Copy and record it. It will be deleted if never used.
	v2 := s.regs[r].v
	m := s.compatRegs(v2.Type) &^ s.used &^ s.tmpused &^ (regMask(1) << r)
	if m != 0 && !s.values[v2.ID].rematerializeable && countRegs(s.values[v2.ID].regs) == 1 {
		r2 := pickReg(m)
		c := s.curBlock.NewValue1(v2.Pos, OpCopy, v2.Type, s.regs[r].c)
		s.copies[c] = false
		if s.f.pass.debug > regDebug {
			fmt.Printf("copy %s to %s : %s\n", v2, c, &s.registers[r2])
		}
		s.setOrig(c, v2)
		s.assignReg(r2, v2, c)
	}
	s.freeReg(r)
	return r
}

// makeSpill returns a Value which represents the spilled value of v.
// b is the block in which the spill is used.
func (s *regAllocState) makeSpill(v *Value, b *Block) *Value {
	vi := &s.values[v.ID]
	if vi.spill != nil {
		// Final block not known - keep track of subtree where restores reside.
		vi.restoreMin = min32(vi.restoreMin, s.sdom[b.ID].entry)
		vi.restoreMax = max32(vi.restoreMax, s.sdom[b.ID].exit)
		return vi.spill
	}
	// Make a spill for v. We don't know where we want
	// to put it yet, so we leave it blockless for now.
	spill := s.f.newValueNoBlock(OpStoreReg, v.Type, v.Pos)
	// We also don't know what the spill's arg will be.
	// Leave it argless for now.
	s.setOrig(spill, v)
	vi.spill = spill
	vi.restoreMin = s.sdom[b.ID].entry
	vi.restoreMax = s.sdom[b.ID].exit
	return spill
}

// allocValToReg allocates v to a register selected from regMask and
// returns the register copy of v. Any previous user is kicked out and spilled
// (if necessary). Load code is added at the current pc. If nospill is set the
// allocated register is marked nospill so the assignment cannot be
// undone until the caller allows it by clearing nospill. Returns a
// *Value which is either v or a copy of v allocated to the chosen register.
func (s *regAllocState) allocValToReg(v *Value, mask regMask, nospill bool, pos src.XPos) *Value {
	if s.f.Config.ctxt.Arch.Arch == sys.ArchWasm && v.rematerializeable() {
		c := v.copyIntoWithXPos(s.curBlock, pos)
		c.OnWasmStack = true
		s.setOrig(c, v)
		return c
	}
	if v.OnWasmStack {
		return v
	}

	vi := &s.values[v.ID]
	pos = pos.WithNotStmt()
	// Check if v is already in a requested register.
	if mask&vi.regs != 0 {
		r := pickReg(mask & vi.regs)
		if s.regs[r].v != v || s.regs[r].c == nil {
			panic("bad register state")
		}
		if nospill {
			s.nospill |= regMask(1) << r
		}
		return s.regs[r].c
	}

	var r register
	// If nospill is set, the value is used immediately, so it can live on the WebAssembly stack.
	onWasmStack := nospill && s.f.Config.ctxt.Arch.Arch == sys.ArchWasm
	if !onWasmStack {
		// Allocate a register.
		r = s.allocReg(mask, v)
	}

	// Allocate v to the new register.
	var c *Value
	if vi.regs != 0 {
		// Copy from a register that v is already in.
		r2 := pickReg(vi.regs)
		if s.regs[r2].v != v {
			panic("bad register state")
		}
		c = s.curBlock.NewValue1(pos, OpCopy, v.Type, s.regs[r2].c)
	} else if v.rematerializeable() {
		// Rematerialize instead of loading from the spill location.
		c = v.copyIntoWithXPos(s.curBlock, pos)
	} else {
		// Load v from its spill location.
		spill := s.makeSpill(v, s.curBlock)
		if s.f.pass.debug > logSpills {
			s.f.Warnl(vi.spill.Pos, "load spill for %v from %v", v, spill)
		}
		c = s.curBlock.NewValue1(pos, OpLoadReg, v.Type, spill)
	}

	s.setOrig(c, v)

	if onWasmStack {
		c.OnWasmStack = true
		return c
	}

	s.assignReg(r, v, c)
	if c.Op == OpLoadReg && s.isGReg(r) {
		s.f.Fatalf("allocValToReg.OpLoadReg targeting g: " + c.LongString())
	}
	if nospill {
		s.nospill |= regMask(1) << r
	}
	return c
}

// isLeaf reports whether f performs any calls.
func isLeaf(f *Func) bool {
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if v.Op.IsCall() && !v.Op.IsTailCall() {
				// tail call is not counted as it does not save the return PC or need a frame
				return false
			}
		}
	}
	return true
}

func (s *regAllocState) init(f *Func) {
	s.f = f
	s.f.RegAlloc = s.f.Cache.locs[:0]
	s.registers = f.Config.registers
	if nr := len(s.registers); nr == 0 || nr > int(noRegister) || nr > int(unsafe.Sizeof(regMask(0))*8) {
		s.f.Fatalf("bad number of registers: %d", nr)
	} else {
		s.numRegs = register(nr)
	}
	// Locate SP, SB, and g registers.
	s.SPReg = noRegister
	s.SBReg = noRegister
	s.GReg = noRegister
	for r := register(0); r < s.numRegs; r++ {
		switch s.registers[r].String() {
		case "SP":
			s.SPReg = r
		case "SB":
			s.SBReg = r
		case "g":
			s.GReg = r
		}
	}
	// Make sure we found all required registers.
	switch noRegister {
	case s.SPReg:
		s.f.Fatalf("no SP register found")
	case s.SBReg:
		s.f.Fatalf("no SB register found")
	case s.GReg:
		if f.Config.hasGReg {
			s.f.Fatalf("no g register found")
		}
	}

	// Figure out which registers we're allowed to use.
	s.allocatable = s.f.Config.gpRegMask | s.f.Config.fpRegMask | s.f.Config.specialRegMask
	s.allocatable &^= 1 << s.SPReg
	s.allocatable &^= 1 << s.SBReg
	if s.f.Config.hasGReg {
		s.allocatable &^= 1 << s.GReg
	}
	if buildcfg.FramePointerEnabled && s.f.Config.FPReg >= 0 {
		s.allocatable &^= 1 << uint(s.f.Config.FPReg)
	}
	if s.f.Config.LinkReg != -1 {
		if isLeaf(f) {
			// Leaf functions don't save/restore the link register.
			s.allocatable &^= 1 << uint(s.f.Config.LinkReg)
		}
	}
	if s.f.Config.ctxt.Flag_dynlink {
		switch s.f.Config.arch {
		case "386":
			// nothing to do.
			// Note that for Flag_shared (position independent code)
			// we do need to be careful, but that carefulness is hidden
			// in the rewrite rules so we always have a free register
			// available for global load/stores. See _gen/386.rules (search for Flag_shared).
		case "amd64":
			s.allocatable &^= 1 << 15 // R15
		case "arm":
			s.allocatable &^= 1 << 9 // R9
		case "arm64":
			// nothing to do
		case "ppc64le": // R2 already reserved.
			// nothing to do
		case "riscv64": // X3 (aka GP) and X4 (aka TP) already reserved.
			// nothing to do
		case "s390x":
			s.allocatable &^= 1 << 11 // R11
		default:
			s.f.fe.Fatalf(src.NoXPos, "arch %s not implemented", s.f.Config.arch)
		}
	}

	// Linear scan register allocation can be influenced by the order in which blocks appear.
	// Decouple the register allocation order from the generated block order.
	// This also creates an opportunity for experiments to find a better order.
	s.visitOrder = layoutRegallocOrder(f)

	// Compute block order. This array allows us to distinguish forward edges
	// from backward edges and compute how far they go.
	s.blockOrder = make([]int32, f.NumBlocks())
	for i, b := range s.visitOrder {
		s.blockOrder[b.ID] = int32(i)
	}

	s.regs = make([]regState, s.numRegs)
	nv := f.NumValues()
	if cap(s.f.Cache.regallocValues) >= nv {
		s.f.Cache.regallocValues = s.f.Cache.regallocValues[:nv]
	} else {
		s.f.Cache.regallocValues = make([]valState, nv)
	}
	s.values = s.f.Cache.regallocValues
	s.orig = s.f.Cache.allocValueSlice(nv)
	s.copies = make(map[*Value]bool)
	for _, b := range s.visitOrder {
		for _, v := range b.Values {
			if !v.Type.IsMemory() && !v.Type.IsVoid() && !v.Type.IsFlags() && !v.Type.IsTuple() {
				s.values[v.ID].needReg = true
				s.values[v.ID].rematerializeable = v.rematerializeable()
				s.orig[v.ID] = v
			}
			// Note: needReg is false for values returning Tuple types.
			// Instead, we mark the corresponding Selects as needReg.
		}
	}
	s.computeLive()

	s.endRegs = make([][]endReg, f.NumBlocks())
	s.startRegs = make([][]startReg, f.NumBlocks())
	s.spillLive = make([][]ID, f.NumBlocks())
	s.sdom = f.Sdom()

	// wasm: Mark instructions that can be optimized to have their values only on the WebAssembly stack.
	if f.Config.ctxt.Arch.Arch == sys.ArchWasm {
		canLiveOnStack := f.newSparseSet(f.NumValues())
		defer f.retSparseSet(canLiveOnStack)
		for _, b := range f.Blocks {
			// New block. Clear candidate set.
			canLiveOnStack.clear()
			for _, c := range b.ControlValues() {
				if c.Uses == 1 && !opcodeTable[c.Op].generic {
					canLiveOnStack.add(c.ID)
				}
			}
			// Walking backwards.
			for i := len(b.Values) - 1; i >= 0; i-- {
				v := b.Values[i]
				if canLiveOnStack.contains(v.ID) {
					v.OnWasmStack = true
				} else {
					// Value can not live on stack. Values are not allowed to be reordered, so clear candidate set.
					canLiveOnStack.clear()
				}
				for _, arg := range v.Args {
					// Value can live on the stack if:
					// - it is only used once
					// - it is used in the same basic block
					// - it is not a "mem" value
					// - it is a WebAssembly op
					if arg.Uses == 1 && arg.Block == v.Block && !arg.Type.IsMemory() && !opcodeTable[arg.Op].generic {
						canLiveOnStack.add(arg.ID)
					}
				}
			}
		}
	}

	// The clobberdeadreg experiment inserts code to clobber dead registers
	// at call sites.
	// Ignore huge functions to avoid doing too much work.
	if base.Flag.ClobberDeadReg && len(s.f.Blocks) <= 10000 {
		// TODO: honor GOCLOBBERDEADHASH, or maybe GOSSAHASH.
		s.doClobber = true
	}
}

func (s *regAllocState) close() {
	s.f.Cache.freeValueSlice(s.orig)
}

// Adds a use record for id at distance dist from the start of the block.
// All calls to addUse must happen with nonincreasing dist.
func (s *regAllocState) addUse(id ID, dist int32, pos src.XPos) {
	r := s.freeUseRecords
	if r != nil {
		s.freeUseRecords = r.next
	} else {
		r = &use{}
	}
	r.dist = dist
	r.pos = pos
	r.next = s.values[id].uses
	s.values[id].uses = r
	if r.next != nil && dist > r.next.dist {
		s.f.Fatalf("uses added in wrong order")
	}
}

// advanceUses advances the uses of v's args from the state before v to the state after v.
// Any values which have no more uses are deallocated from registers.
func (s *regAllocState) advanceUses(v *Value) {
	for _, a := range v.Args {
		if !s.values[a.ID].needReg {
			continue
		}
		ai := &s.values[a.ID]
		r := ai.uses
		ai.uses = r.next
		if r.next == nil {
			// Value is dead, free all registers that hold it.
			s.freeRegs(ai.regs)
		}
		r.next = s.freeUseRecords
		s.freeUseRecords = r
	}
}

// liveAfterCurrentInstruction reports whether v is live after
// the current instruction is completed.  v must be used by the
// current instruction.
func (s *regAllocState) liveAfterCurrentInstruction(v *Value) bool {
	u := s.values[v.ID].uses
	if u == nil {
		panic(fmt.Errorf("u is nil, v = %s, s.values[v.ID] = %v", v.LongString(), s.values[v.ID]))
	}
	d := u.dist
	for u != nil && u.dist == d {
		u = u.next
	}
	return u != nil && u.dist > d
}

// Sets the state of the registers to that encoded in regs.
func (s *regAllocState) setState(regs []endReg) {
	s.freeRegs(s.used)
	for _, x := range regs {
		s.assignReg(x.r, x.v, x.c)
	}
}

// compatRegs returns the set of registers which can store a type t.
func (s *regAllocState) compatRegs(t *types.Type) regMask {
	var m regMask
	if t.IsTuple() || t.IsFlags() {
		return 0
	}
	if t.IsFloat() || t == types.TypeInt128 {
		if t.Kind() == types.TFLOAT32 && s.f.Config.fp32RegMask != 0 {
			m = s.f.Config.fp32RegMask
		} else if t.Kind() == types.TFLOAT64 && s.f.Config.fp64RegMask != 0 {
			m = s.f.Config.fp64RegMask
		} else {
			m = s.f.Config.fpRegMask
		}
	} else {
		m = s.f.Config.gpRegMask
	}
	return m & s.allocatable
}

// regspec returns the regInfo for operation op.
func (s *regAllocState) regspec(v *Value) regInfo {
	op := v.Op
	if op == OpConvert {
		// OpConvert is a generic op, so it doesn't have a
		// register set in the static table. It can use any
		// allocatable integer register.
		m := s.allocatable & s.f.Config.gpRegMask
		return regInfo{inputs: []inputInfo{{regs: m}}, outputs: []outputInfo{{regs: m}}}
	}
	if op == OpArgIntReg {
		reg := v.Block.Func.Config.intParamRegs[v.AuxInt8()]
		return regInfo{outputs: []outputInfo{{regs: 1 << uint(reg)}}}
	}
	if op == OpArgFloatReg {
		reg := v.Block.Func.Config.floatParamRegs[v.AuxInt8()]
		return regInfo{outputs: []outputInfo{{regs: 1 << uint(reg)}}}
	}
	if op.IsCall() {
		if ac, ok := v.Aux.(*AuxCall); ok && ac.reg != nil {
			return *ac.Reg(&opcodeTable[op].reg, s.f.Config)
		}
	}
	if op == OpMakeResult && s.f.OwnAux.reg != nil {
		return *s.f.OwnAux.ResultReg(s.f.Config)
	}
	return opcodeTable[op].reg
}

func (s *regAllocState) isGReg(r register) bool {
	return s.f.Config.hasGReg && s.GReg == r
}

// Dummy value used to represent the value being held in a temporary register.
var tmpVal Value

func (s *regAllocState) regalloc(f *Func) {
	regValLiveSet := f.newSparseSet(f.NumValues()) // set of values that may be live in register
	defer f.retSparseSet(regValLiveSet)
	var oldSched []*Value
	var phis []*Value
	var phiRegs []register
	var args []*Value

	// Data structure used for computing desired registers.
	var desired desiredState

	// Desired registers for inputs & outputs for each instruction in the block.
	type dentry struct {
		out [4]register    // desired output registers
		in  [3][4]register // desired input registers (for inputs 0,1, and 2)
	}
	var dinfo []dentry

	if f.Entry != f.Blocks[0] {
		f.Fatalf("entry block must be first")
	}

	for _, b := range s.visitOrder {
		if s.f.pass.debug > regDebug {
			fmt.Printf("Begin processing block %v\n", b)
		}
		s.curBlock = b

		// Initialize regValLiveSet and uses fields for this block.
		// Walk backwards through the block doing liveness analysis.
		regValLiveSet.clear()
		for _, e := range s.live[b.ID] {
			s.addUse(e.ID, int32(len(b.Values))+e.dist, e.pos) // pseudo-uses from beyond end of block
			regValLiveSet.add(e.ID)
		}
		for _, v := range b.ControlValues() {
			if s.values[v.ID].needReg {
				s.addUse(v.ID, int32(len(b.Values)), b.Pos) // pseudo-use by control values
				regValLiveSet.add(v.ID)
			}
		}
		for i := len(b.Values) - 1; i >= 0; i-- {
			v := b.Values[i]
			regValLiveSet.remove(v.ID)
			if v.Op == OpPhi {
				// Remove v from the live set, but don't add
				// any inputs. This is the state the len(b.Preds)>1
				// case below desires; it wants to process phis specially.
				continue
			}
			if opcodeTable[v.Op].call {
				// Function call clobbers all the registers but SP and SB.
				regValLiveSet.clear()
				if s.sp != 0 && s.values[s.sp].uses != nil {
					regValLiveSet.add(s.sp)
				}
				if s.sb != 0 && s.values[s.sb].uses != nil {
					regValLiveSet.add(s.sb)
				}
			}
			for _, a := range v.Args {
				if !s.values[a.ID].needReg {
					continue
				}
				s.addUse(a.ID, int32(i), v.Pos)
				regValLiveSet.add(a.ID)
			}
		}
		if s.f.pass.debug > regDebug {
			fmt.Printf("use distances for %s\n", b)
			for i := range s.values {
				vi := &s.values[i]
				u := vi.uses
				if u == nil {
					continue
				}
				fmt.Printf("  v%d:", i)
				for u != nil {
					fmt.Printf(" %d", u.dist)
					u = u.next
				}
				fmt.Println()
			}
		}

		// Make a copy of the block schedule so we can generate a new one in place.
		// We make a separate copy for phis and regular values.
		nphi := 0
		for _, v := range b.Values {
			if v.Op != OpPhi {
				break
			}
			nphi++
		}
		phis = append(phis[:0], b.Values[:nphi]...)
		oldSched = append(oldSched[:0], b.Values[nphi:]...)
		b.Values = b.Values[:0]

		// Initialize start state of block.
		if b == f.Entry {
			// Regalloc state is empty to start.
			if nphi > 0 {
				f.Fatalf("phis in entry block")
			}
		} else if len(b.Preds) == 1 {
			// Start regalloc state with the end state of the previous block.
			s.setState(s.endRegs[b.Preds[0].b.ID])
			if nphi > 0 {
				f.Fatalf("phis in single-predecessor block")
			}
			// Drop any values which are no longer live.
			// This may happen because at the end of p, a value may be
			// live but only used by some other successor of p.
			for r := register(0); r < s.numRegs; r++ {
				v := s.regs[r].v
				if v != nil && !regValLiveSet.contains(v.ID) {
					s.freeReg(r)
				}
			}
		} else {
			// This is the complicated case. We have more than one predecessor,
			// which means we may have Phi ops.

			// Start with the final register state of the predecessor with least spill values.
			// This is based on the following points:
			// 1, The less spill value indicates that the register pressure of this path is smaller,
			//    so the values of this block are more likely to be allocated to registers.
			// 2, Avoid the predecessor that contains the function call, because the predecessor that
			//    contains the function call usually generates a lot of spills and lose the previous
			//    allocation state.
			// TODO: Improve this part. At least the size of endRegs of the predecessor also has
			// an impact on the code size and compiler speed. But it is not easy to find a simple
			// and efficient method that combines multiple factors.
			idx := -1
			for i, p := range b.Preds {
				// If the predecessor has not been visited yet, skip it because its end state
				// (redRegs and spillLive) has not been computed yet.
				pb := p.b
				if s.blockOrder[pb.ID] >= s.blockOrder[b.ID] {
					continue
				}
				if idx == -1 {
					idx = i
					continue
				}
				pSel := b.Preds[idx].b
				if len(s.spillLive[pb.ID]) < len(s.spillLive[pSel.ID]) {
					idx = i
				} else if len(s.spillLive[pb.ID]) == len(s.spillLive[pSel.ID]) {
					// Use a bit of likely information. After critical pass, pb and pSel must
					// be plain blocks, so check edge pb->pb.Preds instead of edge pb->b.
					// TODO: improve the prediction of the likely predecessor. The following
					// method is only suitable for the simplest cases. For complex cases,
					// the prediction may be inaccurate, but this does not affect the
					// correctness of the program.
					// According to the layout algorithm, the predecessor with the
					// smaller blockOrder is the true branch, and the test results show
					// that it is better to choose the predecessor with a smaller
					// blockOrder than no choice.
					if pb.likelyBranch() && !pSel.likelyBranch() || s.blockOrder[pb.ID] < s.blockOrder[pSel.ID] {
						idx = i
					}
				}
			}
			if idx < 0 {
				f.Fatalf("bad visitOrder, no predecessor of %s has been visited before it", b)
			}
			p := b.Preds[idx].b
			s.setState(s.endRegs[p.ID])

			if s.f.pass.debug > regDebug {
				fmt.Printf("starting merge block %s with end state of %s:\n", b, p)
				for _, x := range s.endRegs[p.ID] {
					fmt.Printf("  %s: orig:%s cache:%s\n", &s.registers[x.r], x.v, x.c)
				}
			}

			// Decide on registers for phi ops. Use the registers determined
			// by the primary predecessor if we can.
			// TODO: pick best of (already processed) predecessors?
			// Majority vote? Deepest nesting level?
			phiRegs = phiRegs[:0]
			var phiUsed regMask

			for _, v := range phis {
				if !s.values[v.ID].needReg {
					phiRegs = append(phiRegs, noRegister)
					continue
				}
				a := v.Args[idx]
				// Some instructions target not-allocatable registers.
				// They're not suitable for further (phi-function) allocation.
				m := s.values[a.ID].regs &^ phiUsed & s.allocatable
				if m != 0 {
					r := pickReg(m)
					phiUsed |= regMask(1) << r
					phiRegs = append(phiRegs, r)
				} else {
					phiRegs = append(phiRegs, noRegister)
				}
			}

			// Second pass - deallocate all in-register phi inputs.
			for i, v := range phis {
				if !s.values[v.ID].needReg {
					continue
				}
				a := v.Args[idx]
				r := phiRegs[i]
				if r == noRegister {
					continue
				}
				if regValLiveSet.contains(a.ID) {
					// Input value is still live (it is used by something other than Phi).
					// Try to move it around before kicking out, if there is a free register.
					// We generate a Copy in the predecessor block and record it. It will be
					// deleted later if never used.
					//
					// Pick a free register. At this point some registers used in the predecessor
					// block may have been deallocated. Those are the ones used for Phis. Exclude
					// them (and they are not going to be helpful anyway).
					m := s.compatRegs(a.Type) &^ s.used &^ phiUsed
					if m != 0 && !s.values[a.ID].rematerializeable && countRegs(s.values[a.ID].regs) == 1 {
						r2 := pickReg(m)
						c := p.NewValue1(a.Pos, OpCopy, a.Type, s.regs[r].c)
						s.copies[c] = false
						if s.f.pass.debug > regDebug {
							fmt.Printf("copy %s to %s : %s\n", a, c, &s.registers[r2])
						}
						s.setOrig(c, a)
						s.assignReg(r2, a, c)
						s.endRegs[p.ID] = append(s.endRegs[p.ID], endReg{r2, a, c})
					}
				}
				s.freeReg(r)
			}

			// Copy phi ops into new schedule.
			b.Values = append(b.Values, phis...)

			// Third pass - pick registers for phis whose input
			// was not in a register in the primary predecessor.
			for i, v := range phis {
				if !s.values[v.ID].needReg {
					continue
				}
				if phiRegs[i] != noRegister {
					continue
				}
				m := s.compatRegs(v.Type) &^ phiUsed &^ s.used
				// If one of the other inputs of v is in a register, and the register is available,
				// select this register, which can save some unnecessary copies.
				for i, pe := range b.Preds {
					if i == idx {
						continue
					}
					ri := noRegister
					for _, er := range s.endRegs[pe.b.ID] {
						if er.v == s.orig[v.Args[i].ID] {
							ri = er.r
							break
						}
					}
					if ri != noRegister && m>>ri&1 != 0 {
						m = regMask(1) << ri
						break
					}
				}
				if m != 0 {
					r := pickReg(m)
					phiRegs[i] = r
					phiUsed |= regMask(1) << r
				}
			}

			// Set registers for phis. Add phi spill code.
			for i, v := range phis {
				if !s.values[v.ID].needReg {
					continue
				}
				r := phiRegs[i]
				if r == noRegister {
					// stack-based phi
					// Spills will be inserted in all the predecessors below.
					s.values[v.ID].spill = v // v starts life spilled
					continue
				}
				// register-based phi
				s.assignReg(r, v, v)
			}

			// Deallocate any values which are no longer live. Phis are excluded.
			for r := register(0); r < s.numRegs; r++ {
				if phiUsed>>r&1 != 0 {
					continue
				}
				v := s.regs[r].v
				if v != nil && !regValLiveSet.contains(v.ID) {
					s.freeReg(r)
				}
			}

			// Save the starting state for use by merge edges.
			// We append to a stack allocated variable that we'll
			// later copy into s.startRegs in one fell swoop, to save
			// on allocations.
			regList := make([]startReg, 0, 32)
			for r := register(0); r < s.numRegs; r++ {
				v := s.regs[r].v
				if v == nil {
					continue
				}
				if phiUsed>>r&1 != 0 {
					// Skip registers that phis used, we'll handle those
					// specially during merge edge processing.
					continue
				}
				regList = append(regList, startReg{r, v, s.regs[r].c, s.values[v.ID].uses.pos})
			}
			s.startRegs[b.ID] = make([]startReg, len(regList))
			copy(s.startRegs[b.ID], regList)

			if s.f.pass.debug > regDebug {
				fmt.Printf("after phis\n")
				for _, x := range s.startRegs[b.ID] {
					fmt.Printf("  %s: v%d\n", &s.registers[x.r], x.v.ID)
				}
			}
		}

		// Allocate space to record the desired registers for each value.
		if l := len(oldSched); cap(dinfo) < l {
			dinfo = make([]dentry, l)
		} else {
			dinfo = dinfo[:l]
			for i := range dinfo {
				dinfo[i] = dentry{}
			}
		}

		// Load static desired register info at the end of the block.
		desired.copy(&s.desired[b.ID])

		// Check actual assigned registers at the start of the next block(s).
		// Dynamically assigned registers will trump the static
		// desired registers computed during liveness analysis.
		// Note that we do this phase after startRegs is set above, so that
		// we get the right behavior for a block which branches to itself.
		for _, e := range b.Succs {
			succ := e.b
			// TODO: prioritize likely successor?
			for _, x := range s.startRegs[succ.ID] {
				desired.add(x.v.ID, x.r)
			}
			// Process phi ops in succ.
			pidx := e.i
			for _, v := range succ.Values {
				if v.Op != OpPhi {
					break
				}
				if !s.values[v.ID].needReg {
					continue
				}
				rp, ok := s.f.getHome(v.ID).(*Register)
				if !ok {
					// If v is not assigned a register, pick a register assigned to one of v's inputs.
					// Hopefully v will get assigned that register later.
					// If the inputs have allocated register information, add it to desired,
					// which may reduce spill or copy operations when the register is available.
					for _, a := range v.Args {
						rp, ok = s.f.getHome(a.ID).(*Register)
						if ok {
							break
						}
					}
					if !ok {
						continue
					}
				}
				desired.add(v.Args[pidx].ID, register(rp.num))
			}
		}
		// Walk values backwards computing desired register info.
		// See computeLive for more comments.
		for i := len(oldSched) - 1; i >= 0; i-- {
			v := oldSched[i]
			prefs := desired.remove(v.ID)
			regspec := s.regspec(v)
			desired.clobber(regspec.clobbers)
			for _, j := range regspec.inputs {
				if countRegs(j.regs) != 1 {
					continue
				}
				desired.clobber(j.regs)
				desired.add(v.Args[j.idx].ID, pickReg(j.regs))
			}
			if opcodeTable[v.Op].resultInArg0 || v.Op == OpAMD64ADDQconst || v.Op == OpAMD64ADDLconst || v.Op == OpSelect0 {
				if opcodeTable[v.Op].commutative {
					desired.addList(v.Args[1].ID, prefs)
				}
				desired.addList(v.Args[0].ID, prefs)
			}
			// Save desired registers for this value.
			dinfo[i].out = prefs
			for j, a := range v.Args {
				if j >= len(dinfo[i].in) {
					break
				}
				dinfo[i].in[j] = desired.get(a.ID)
			}
		}

		// Process all the non-phi values.
		for idx, v := range oldSched {
			tmpReg := noRegister
			if s.f.pass.debug > regDebug {
				fmt.Printf("  processing %s\n", v.LongString())
			}
			regspec := s.regspec(v)
			if v.Op == OpPhi {
				f.Fatalf("phi %s not at start of block", v)
			}
			if v.Op == OpSP {
				s.assignReg(s.SPReg, v, v)
				b.Values = append(b.Values, v)
				s.advanceUses(v)
				s.sp = v.ID
				continue
			}
			if v.Op == OpSB {
				s.assignReg(s.SBReg, v, v)
				b.Values = append(b.Values, v)
				s.advanceUses(v)
				s.sb = v.ID
				continue
			}
			if v.Op == OpSelect0 || v.Op == OpSelect1 || v.Op == OpSelectN {
				if s.values[v.ID].needReg {
					if v.Op == OpSelectN {
						s.assignReg(register(s.f.getHome(v.Args[0].ID).(LocResults)[int(v.AuxInt)].(*Register).num), v, v)
					} else {
						var i = 0
						if v.Op == OpSelect1 {
							i = 1
						}
						s.assignReg(register(s.f.getHome(v.Args[0].ID).(LocPair)[i].(*Register).num), v, v)
					}
				}
				b.Values = append(b.Values, v)
				s.advanceUses(v)
				continue
			}
			if v.Op == OpGetG && s.f.Config.hasGReg {
				// use hardware g register
				if s.regs[s.GReg].v != nil {
					s.freeReg(s.GReg) // kick out the old value
				}
				s.assignReg(s.GReg, v, v)
				b.Values = append(b.Values, v)
				s.advanceUses(v)
				continue
			}
			if v.Op == OpArg {
				// Args are "pre-spilled" values. We don't allocate
				// any register here. We just set up the spill pointer to
				// point at itself and any later user will restore it to use it.
				s.values[v.ID].spill = v
				b.Values = append(b.Values, v)
				s.advanceUses(v)
				continue
			}
			if v.Op == OpKeepAlive {
				// Make sure the argument to v is still live here.
				s.advanceUses(v)
				a := v.Args[0]
				vi := &s.values[a.ID]
				if vi.regs == 0 && !vi.rematerializeable {
					// Use the spill location.
					// This forces later liveness analysis to make the
					// value live at this point.
					v.SetArg(0, s.makeSpill(a, b))
				} else if _, ok := a.Aux.(*ir.Name); ok && vi.rematerializeable {
					// Rematerializeable value with a gc.Node. This is the address of
					// a stack object (e.g. an LEAQ). Keep the object live.
					// Change it to VarLive, which is what plive expects for locals.
					v.Op = OpVarLive
					v.SetArgs1(v.Args[1])
					v.Aux = a.Aux
				} else {
					// In-register and rematerializeable values are already live.
					// These are typically rematerializeable constants like nil,
					// or values of a variable that were modified since the last call.
					v.Op = OpCopy
					v.SetArgs1(v.Args[1])
				}
				b.Values = append(b.Values, v)
				continue
			}
			if len(regspec.inputs) == 0 && len(regspec.outputs) == 0 {
				// No register allocation required (or none specified yet)
				if s.doClobber && v.Op.IsCall() {
					s.clobberRegs(regspec.clobbers)
				}
				s.freeRegs(regspec.clobbers)
				b.Values = append(b.Values, v)
				s.advanceUses(v)
				continue
			}

			if s.values[v.ID].rematerializeable {
				// Value is rematerializeable, don't issue it here.
				// It will get issued just before each use (see
				// allocValueToReg).
				for _, a := range v.Args {
					a.Uses--
				}
				s.advanceUses(v)
				continue
			}

			if s.f.pass.debug > regDebug {
				fmt.Printf("value %s\n", v.LongString())
				fmt.Printf("  out:")
				for _, r := range dinfo[idx].out {
					if r != noRegister {
						fmt.Printf(" %s", &s.registers[r])
					}
				}
				fmt.Println()
				for i := 0; i < len(v.Args) && i < 3; i++ {
					fmt.Printf("  in%d:", i)
					for _, r := range dinfo[idx].in[i] {
						if r != noRegister {
							fmt.Printf(" %s", &s.registers[r])
						}
					}
					fmt.Println()
				}
			}

			// Move arguments to registers.
			// First, if an arg must be in a specific register and it is already
			// in place, keep it.
			args = append(args[:0], make([]*Value, len(v.Args))...)
			for i, a := range v.Args {
				if !s.values[a.ID].needReg {
					args[i] = a
				}
			}
			for _, i := range regspec.inputs {
				mask := i.regs
				if countRegs(mask) == 1 && mask&s.values[v.Args[i.idx].ID].regs != 0 {
					args[i.idx] = s.allocValToReg(v.Args[i.idx], mask, true, v.Pos)
				}
			}
			// Then, if an arg must be in a specific register and that
			// register is free, allocate that one. Otherwise when processing
			// another input we may kick a value into the free register, which
			// then will be kicked out again.
			// This is a common case for passing-in-register arguments for
			// function calls.
			for {
				freed := false
				for _, i := range regspec.inputs {
					if args[i.idx] != nil {
						continue // already allocated
					}
					mask := i.regs
					if countRegs(mask) == 1 && mask&^s.used != 0 {
						args[i.idx] = s.allocValToReg(v.Args[i.idx], mask, true, v.Pos)
						// If the input is in other registers that will be clobbered by v,
						// or the input is dead, free the registers. This may make room
						// for other inputs.
						oldregs := s.values[v.Args[i.idx].ID].regs
						if oldregs&^regspec.clobbers == 0 || !s.liveAfterCurrentInstruction(v.Args[i.idx]) {
							s.freeRegs(oldregs &^ mask &^ s.nospill)
							freed = true
						}
					}
				}
				if !freed {
					break
				}
			}
			// Last, allocate remaining ones, in an ordering defined
			// by the register specification (most constrained first).
			for _, i := range regspec.inputs {
				if args[i.idx] != nil {
					continue // already allocated
				}
				mask := i.regs
				if mask&s.values[v.Args[i.idx].ID].regs == 0 {
					// Need a new register for the input.
					mask &= s.allocatable
					mask &^= s.nospill
					// Used desired register if available.
					if i.idx < 3 {
						for _, r := range dinfo[idx].in[i.idx] {
							if r != noRegister && (mask&^s.used)>>r&1 != 0 {
								// Desired register is allowed and unused.
								mask = regMask(1) << r
								break
							}
						}
					}
					// Avoid registers we're saving for other values.
					if mask&^desired.avoid != 0 {
						mask &^= desired.avoid
					}
				}
				args[i.idx] = s.allocValToReg(v.Args[i.idx], mask, true, v.Pos)
			}

			// If the output clobbers the input register, make sure we have
			// at least two copies of the input register so we don't
			// have to reload the value from the spill location.
			if opcodeTable[v.Op].resultInArg0 {
				var m regMask
				if !s.liveAfterCurrentInstruction(v.Args[0]) {
					// arg0 is dead.  We can clobber its register.
					goto ok
				}
				if opcodeTable[v.Op].commutative && !s.liveAfterCurrentInstruction(v.Args[1]) {
					args[0], args[1] = args[1], args[0]
					goto ok
				}
				if s.values[v.Args[0].ID].rematerializeable {
					// We can rematerialize the input, don't worry about clobbering it.
					goto ok
				}
				if opcodeTable[v.Op].commutative && s.values[v.Args[1].ID].rematerializeable {
					args[0], args[1] = args[1], args[0]
					goto ok
				}
				if countRegs(s.values[v.Args[0].ID].regs) >= 2 {
					// we have at least 2 copies of arg0.  We can afford to clobber one.
					goto ok
				}
				if opcodeTable[v.Op].commutative && countRegs(s.values[v.Args[1].ID].regs) >= 2 {
					args[0], args[1] = args[1], args[0]
					goto ok
				}

				// We can't overwrite arg0 (or arg1, if commutative).  So we
				// need to make a copy of an input so we have a register we can modify.

				// Possible new registers to copy into.
				m = s.compatRegs(v.Args[0].Type) &^ s.used
				if m == 0 {
					// No free registers.  In this case we'll just clobber
					// an input and future uses of that input must use a restore.
					// TODO(khr): We should really do this like allocReg does it,
					// spilling the value with the most distant next use.
					goto ok
				}

				// Try to move an input to the desired output, if allowed.
				for _, r := range dinfo[idx].out {
					if r != noRegister && (m&regspec.outputs[0].regs)>>r&1 != 0 {
						m = regMask(1) << r
						args[0] = s.allocValToReg(v.Args[0], m, true, v.Pos)
						// Note: we update args[0] so the instruction will
						// use the register copy we just made.
						goto ok
					}
				}
				// Try to copy input to its desired location & use its old
				// location as the result register.
				for _, r := range dinfo[idx].in[0] {
					if r != noRegister && m>>r&1 != 0 {
						m = regMask(1) << r
						c := s.allocValToReg(v.Args[0], m, true, v.Pos)
						s.copies[c] = false
						// Note: no update to args[0] so the instruction will
						// use the original copy.
						goto ok
					}
				}
				if opcodeTable[v.Op].commutative {
					for _, r := range dinfo[idx].in[1] {
						if r != noRegister && m>>r&1 != 0 {
							m = regMask(1) << r
							c := s.allocValToReg(v.Args[1], m, true, v.Pos)
							s.copies[c] = false
							args[0], args[1] = args[1], args[0]
							goto ok
						}
					}
				}
				// Avoid future fixed uses if we can.
				if m&^desired.avoid != 0 {
					m &^= desired.avoid
				}
				// Save input 0 to a new register so we can clobber it.
				c := s.allocValToReg(v.Args[0], m, true, v.Pos)
				s.copies[c] = false
			}

		ok:
			// Pick a temporary register if needed.
			// It should be distinct from all the input registers, so we
			// allocate it after all the input registers, but before
			// the input registers are freed via advanceUses below.
			// (Not all instructions need that distinct part, but it is conservative.)
			if opcodeTable[v.Op].needIntTemp {
				m := s.allocatable & s.f.Config.gpRegMask
				if m&^desired.avoid&^s.nospill != 0 {
					m &^= desired.avoid
				}
				tmpReg = s.allocReg(m, &tmpVal)
				s.nospill |= regMask(1) << tmpReg
			}

			// Now that all args are in regs, we're ready to issue the value itself.
			// Before we pick a register for the output value, allow input registers
			// to be deallocated. We do this here so that the output can use the
			// same register as a dying input.
			if !opcodeTable[v.Op].resultNotInArgs {
				s.tmpused = s.nospill
				s.nospill = 0
				s.advanceUses(v) // frees any registers holding args that are no longer live
			}

			// Dump any registers which will be clobbered
			if s.doClobber && v.Op.IsCall() {
				// clobber registers that are marked as clobber in regmask, but
				// don't clobber inputs.
				s.clobberRegs(regspec.clobbers &^ s.tmpused &^ s.nospill)
			}
			s.freeRegs(regspec.clobbers)
			s.tmpused |= regspec.clobbers

			// Pick registers for outputs.
			{
				outRegs := noRegisters // TODO if this is costly, hoist and clear incrementally below.
				maxOutIdx := -1
				var used regMask
				if tmpReg != noRegister {
					// Ensure output registers are distinct from the temporary register.
					// (Not all instructions need that distinct part, but it is conservative.)
					used |= regMask(1) << tmpReg
				}
				for _, out := range regspec.outputs {
					mask := out.regs & s.allocatable &^ used
					if mask == 0 {
						continue
					}
					if opcodeTable[v.Op].resultInArg0 && out.idx == 0 {
						if !opcodeTable[v.Op].commutative {
							// Output must use the same register as input 0.
							r := register(s.f.getHome(args[0].ID).(*Register).num)
							if mask>>r&1 == 0 {
								s.f.Fatalf("resultInArg0 value's input %v cannot be an output of %s", s.f.getHome(args[0].ID).(*Register), v.LongString())
							}
							mask = regMask(1) << r
						} else {
							// Output must use the same register as input 0 or 1.
							r0 := register(s.f.getHome(args[0].ID).(*Register).num)
							r1 := register(s.f.getHome(args[1].ID).(*Register).num)
							// Check r0 and r1 for desired output register.
							found := false
							for _, r := range dinfo[idx].out {
								if (r == r0 || r == r1) && (mask&^s.used)>>r&1 != 0 {
									mask = regMask(1) << r
									found = true
									if r == r1 {
										args[0], args[1] = args[1], args[0]
									}
									break
								}
							}
							if !found {
								// Neither are desired, pick r0.
								mask = regMask(1) << r0
							}
						}
					}
					if out.idx == 0 { // desired registers only apply to the first element of a tuple result
						for _, r := range dinfo[idx].out {
							if r != noRegister && (mask&^s.used)>>r&1 != 0 {
								// Desired register is allowed and unused.
								mask = regMask(1) << r
								break
							}
						}
					}
					// Avoid registers we're saving for other values.
					if mask&^desired.avoid&^s.nospill != 0 {
						mask &^= desired.avoid
					}
					r := s.allocReg(mask, v)
					if out.idx > maxOutIdx {
						maxOutIdx = out.idx
					}
					outRegs[out.idx] = r
					used |= regMask(1) << r
					s.tmpused |= regMask(1) << r
				}
				// Record register choices
				if v.Type.IsTuple() {
					var outLocs LocPair
					if r := outRegs[0]; r != noRegister {
						outLocs[0] = &s.registers[r]
					}
					if r := outRegs[1]; r != noRegister {
						outLocs[1] = &s.registers[r]
					}
					s.f.setHome(v, outLocs)
					// Note that subsequent SelectX instructions will do the assignReg calls.
				} else if v.Type.IsResults() {
					// preallocate outLocs to the right size, which is maxOutIdx+1
					outLocs := make(LocResults, maxOutIdx+1, maxOutIdx+1)
					for i := 0; i <= maxOutIdx; i++ {
						if r := outRegs[i]; r != noRegister {
							outLocs[i] = &s.registers[r]
						}
					}
					s.f.setHome(v, outLocs)
				} else {
					if r := outRegs[0]; r != noRegister {
						s.assignReg(r, v, v)
					}
				}
				if tmpReg != noRegister {
					// Remember the temp register allocation, if any.
					if s.f.tempRegs == nil {
						s.f.tempRegs = map[ID]*Register{}
					}
					s.f.tempRegs[v.ID] = &s.registers[tmpReg]
				}
			}

			// deallocate dead args, if we have not done so
			if opcodeTable[v.Op].resultNotInArgs {
				s.nospill = 0
				s.advanceUses(v) // frees any registers holding args that are no longer live
			}
			s.tmpused = 0

			// Issue the Value itself.
			for i, a := range args {
				v.SetArg(i, a) // use register version of arguments
			}
			b.Values = append(b.Values, v)
		}

		// Copy the control values - we need this so we can reduce the
		// uses property of these values later.
		controls := append(make([]*Value, 0, 2), b.ControlValues()...)

		// Load control values into registers.
		for i, v := range b.ControlValues() {
			if !s.values[v.ID].needReg {
				continue
			}
			if s.f.pass.debug > regDebug {
				fmt.Printf("  processing control %s\n", v.LongString())
			}
			// We assume that a control input can be passed in any
			// type-compatible register. If this turns out not to be true,
			// we'll need to introduce a regspec for a block's control value.
			b.ReplaceControl(i, s.allocValToReg(v, s.compatRegs(v.Type), false, b.Pos))
		}

		// Reduce the uses of the control values once registers have been loaded.
		// This loop is equivalent to the advanceUses method.
		for _, v := range controls {
			vi := &s.values[v.ID]
			if !vi.needReg {
				continue
			}
			// Remove this use from the uses list.
			u := vi.uses
			vi.uses = u.next
			if u.next == nil {
				s.freeRegs(vi.regs) // value is dead
			}
			u.next = s.freeUseRecords
			s.freeUseRecords = u
		}

		// If we are approaching a merge point and we are the primary
		// predecessor of it, find live values that we use soon after
		// the merge point and promote them to registers now.
		if len(b.Succs) == 1 {
			if s.f.Config.hasGReg && s.regs[s.GReg].v != nil {
				s.freeReg(s.GReg) // Spill value in G register before any merge.
			}
			// For this to be worthwhile, the loop must have no calls in it.
			top := b.Succs[0].b
			loop := s.loopnest.b2l[top.ID]
			if loop == nil || loop.header != top || loop.containsUnavoidableCall {
				goto badloop
			}

			// TODO: sort by distance, pick the closest ones?
			for _, live := range s.live[b.ID] {
				if live.dist >= unlikelyDistance {
					// Don't preload anything live after the loop.
					continue
				}
				vid := live.ID
				vi := &s.values[vid]
				if vi.regs != 0 {
					continue
				}
				if vi.rematerializeable {
					continue
				}
				v := s.orig[vid]
				m := s.compatRegs(v.Type) &^ s.used
				// Used desired register if available.
			outerloop:
				for _, e := range desired.entries {
					if e.ID != v.ID {
						continue
					}
					for _, r := range e.regs {
						if r != noRegister && m>>r&1 != 0 {
							m = regMask(1) << r
							break outerloop
						}
					}
				}
				if m&^desired.avoid != 0 {
					m &^= desired.avoid
				}
				if m != 0 {
					s.allocValToReg(v, m, false, b.Pos)
				}
			}
		}
	badloop:
		;

		// Save end-of-block register state.
		// First count how many, this cuts allocations in half.
		k := 0
		for r := register(0); r < s.numRegs; r++ {
			v := s.regs[r].v
			if v == nil {
				continue
			}
			k++
		}
		regList := make([]endReg, 0, k)
		for r := register(0); r < s.numRegs; r++ {
			v := s.regs[r].v
			if v == nil {
				continue
			}
			regList = append(regList, endReg{r, v, s.regs[r].c})
		}
		s.endRegs[b.ID] = regList

		if checkEnabled {
			regValLiveSet.clear()
			for _, x := range s.live[b.ID] {
				regValLiveSet.add(x.ID)
			}
			for r := register(0); r < s.numRegs; r++ {
				v := s.regs[r].v
				if v == nil {
					continue
				}
				if !regValLiveSet.contains(v.ID) {
					s.f.Fatalf("val %s is in reg but not live at end of %s", v, b)
				}
			}
		}

		// If a value is live at the end of the block and
		// isn't in a register, generate a use for the spill location.
		// We need to remember this information so that
		// the liveness analysis in stackalloc is correct.
		for _, e := range s.live[b.ID] {
			vi := &s.values[e.ID]
			if vi.regs != 0 {
				// in a register, we'll use that source for the merge.
				continue
			}
			if vi.rematerializeable {
				// we'll rematerialize during the merge.
				continue
			}
			if s.f.pass.debug > regDebug {
				fmt.Printf("live-at-end spill for %s at %s\n", s.orig[e.ID], b)
			}
			spill := s.makeSpill(s.orig[e.ID], b)
			s.spillLive[b.ID] = append(s.spillLive[b.ID], spill.ID)
		}

		// Clear any final uses.
		// All that is left should be the pseudo-uses added for values which
		// are live at the end of b.
		for _, e := range s.live[b.ID] {
			u := s.values[e.ID].uses
			if u == nil {
				f.Fatalf("live at end, no uses v%d", e.ID)
			}
			if u.next != nil {
				f.Fatalf("live at end, too many uses v%d", e.ID)
			}
			s.values[e.ID].uses = nil
			u.next = s.freeUseRecords
			s.freeUseRecords = u
		}
	}

	// Decide where the spills we generated will go.
	s.placeSpills()

	// Anything that didn't get a register gets a stack location here.
	// (StoreReg, stack-based phis, inputs, ...)
	stacklive := stackalloc(s.f, s.spillLive)

	// Fix up all merge edges.
	s.shuffle(stacklive)

	// Erase any copies we never used.
	// Also, an unused copy might be the only use of another copy,
	// so continue erasing until we reach a fixed point.
	for {
		progress := false
		for c, used := range s.copies {
			if !used && c.Uses == 0 {
				if s.f.pass.debug > regDebug {
					fmt.Printf("delete copied value %s\n", c.LongString())
				}
				c.resetArgs()
				f.freeValue(c)
				delete(s.copies, c)
				progress = true
			}
		}
		if !progress {
			break
		}
	}

	for _, b := range s.visitOrder {
		i := 0
		for _, v := range b.Values {
			if v.Op == OpInvalid {
				continue
			}
			b.Values[i] = v
			i++
		}
		b.Values = b.Values[:i]
	}
}

func (s *regAllocState) placeSpills() {
	mustBeFirst := func(op Op) bool {
		return op.isLoweredGetClosurePtr() || op == OpPhi || op == OpArgIntReg || op == OpArgFloatReg
	}

	// Start maps block IDs to the list of spills
	// that go at the start of the block (but after any phis).
	start := map[ID][]*Value{}
	// After maps value IDs to the list of spills
	// that go immediately after that value ID.
	after := map[ID][]*Value{}

	for i := range s.values {
		vi := s.values[i]
		spill := vi.spill
		if spill == nil {
			continue
		}
		if spill.Block != nil {
			// Some spills are already fully set up,
			// like OpArgs and stack-based phis.
			continue
		}
		v := s.orig[i]

		// Walk down the dominator tree looking for a good place to
		// put the spill of v.  At the start "best" is the best place
		// we have found so far.
		// TODO: find a way to make this O(1) without arbitrary cutoffs.
		if v == nil {
			panic(fmt.Errorf("nil v, s.orig[%d], vi = %v, spill = %s", i, vi, spill.LongString()))
		}
		best := v.Block
		bestArg := v
		var bestDepth int16
		if l := s.loopnest.b2l[best.ID]; l != nil {
			bestDepth = l.depth
		}
		b := best
		const maxSpillSearch = 100
		for i := 0; i < maxSpillSearch; i++ {
			// Find the child of b in the dominator tree which
			// dominates all restores.
			p := b
			b = nil
			for c := s.sdom.Child(p); c != nil && i < maxSpillSearch; c, i = s.sdom.Sibling(c), i+1 {
				if s.sdom[c.ID].entry <= vi.restoreMin && s.sdom[c.ID].exit >= vi.restoreMax {
					// c also dominates all restores.  Walk down into c.
					b = c
					break
				}
			}
			if b == nil {
				// Ran out of blocks which dominate all restores.
				break
			}

			var depth int16
			if l := s.loopnest.b2l[b.ID]; l != nil {
				depth = l.depth
			}
			if depth > bestDepth {
				// Don't push the spill into a deeper loop.
				continue
			}

			// If v is in a register at the start of b, we can
			// place the spill here (after the phis).
			if len(b.Preds) == 1 {
				for _, e := range s.endRegs[b.Preds[0].b.ID] {
					if e.v == v {
						// Found a better spot for the spill.
						best = b
						bestArg = e.c
						bestDepth = depth
						break
					}
				}
			} else {
				for _, e := range s.startRegs[b.ID] {
					if e.v == v {
						// Found a better spot for the spill.
						best = b
						bestArg = e.c
						bestDepth = depth
						break
					}
				}
			}
		}

		// Put the spill in the best block we found.
		spill.Block = best
		spill.AddArg(bestArg)
		if best == v.Block && !mustBeFirst(v.Op) {
			// Place immediately after v.
			after[v.ID] = append(after[v.ID], spill)
		} else {
			// Place at the start of best block.
			start[best.ID] = append(start[best.ID], spill)
		}
	}

	// Insert spill instructions into the block schedules.
	var oldSched []*Value
	for _, b := range s.visitOrder {
		nfirst := 0
		for _, v := range b.Values {
			if !mustBeFirst(v.Op) {
				break
			}
			nfirst++
		}
		oldSched = append(oldSched[:0], b.Values[nfirst:]...)
		b.Values = b.Values[:nfirst]
		b.Values = append(b.Values, start[b.ID]...)
		for _, v := range oldSched {
			b.Values = append(b.Values, v)
			b.Values = append(b.Values, after[v.ID]...)
		}
	}
}

// shuffle fixes up all the merge edges (those going into blocks of indegree > 1).
func (s *regAllocState) shuffle(stacklive [][]ID) {
	var e edgeState
	e.s = s
	e.cache = map[ID][]*Value{}
	e.contents = map[Location]contentRecord{}
	if s.f.pass.debug > regDebug {
		fmt.Printf("shuffle %s\n", s.f.Name)
		fmt.Println(s.f.String())
	}

	for _, b := range s.visitOrder {
		if len(b.Preds) <= 1 {
			continue
		}
		e.b = b
		for i, edge := range b.Preds {
			p := edge.b
			e.p = p
			e.setup(i, s.endRegs[p.ID], s.startRegs[b.ID], stacklive[p.ID])
			e.process()
		}
	}

	if s.f.pass.debug > regDebug {
		fmt.Printf("post shuffle %s\n", s.f.Name)
		fmt.Println(s.f.String())
	}
}

type edgeState struct {
	s    *regAllocState
	p, b *Block // edge goes from p->b.

	// for each pre-regalloc value, a list of equivalent cached values
	cache      map[ID][]*Value
	cachedVals []ID // (superset of) keys of the above map, for deterministic iteration

	// map from location to the value it contains
	contents map[Location]contentRecord

	// desired destination locations
	destinations []dstRecord
	extra        []dstRecord

	usedRegs              regMask // registers currently holding something
	uniqueRegs            regMask // registers holding the only copy of a value
	finalRegs             regMask // registers holding final target
	rematerializeableRegs regMask // registers that hold rematerializeable values
}

type contentRecord struct {
	vid   ID       // pre-regalloc value
	c     *Value   // cached value
	final bool     // this is a satisfied destination
	pos   src.XPos // source position of use of the value
}

type dstRecord struct {
	loc    Location // register or stack slot
	vid    ID       // pre-regalloc value it should contain
	splice **Value  // place to store reference to the generating instruction
	pos    src.XPos // source position of use of this location
}

// setup initializes the edge state for shuffling.
func (e *edgeState) setup(idx int, srcReg []endReg, dstReg []startReg, stacklive []ID) {
	if e.s.f.pass.debug > regDebug {
		fmt.Printf("edge %s->%s\n", e.p, e.b)
	}

	// Clear state.
	for _, vid := range e.cachedVals {
		delete(e.cache, vid)
	}
	e.cachedVals = e.cachedVals[:0]
	for k := range e.contents {
		delete(e.contents, k)
	}
	e.usedRegs = 0
	e.uniqueRegs = 0
	e.finalRegs = 0
	e.rematerializeableRegs = 0

	// Live registers can be sources.
	for _, x := range srcReg {
		e.set(&e.s.registers[x.r], x.v.ID, x.c, false, src.NoXPos) // don't care the position of the source
	}
	// So can all of the spill locations.
	for _, spillID := range stacklive {
		v := e.s.orig[spillID]
		spill := e.s.values[v.ID].spill
		if !e.s.sdom.IsAncestorEq(spill.Block, e.p) {
			// Spills were placed that only dominate the uses found
			// during the first regalloc pass. The edge fixup code
			// can't use a spill location if the spill doesn't dominate
			// the edge.
			// We are guaranteed that if the spill doesn't dominate this edge,
			// then the value is available in a register (because we called
			// makeSpill for every value not in a register at the start
			// of an edge).
			continue
		}
		e.set(e.s.f.getHome(spillID), v.ID, spill, false, src.NoXPos) // don't care the position of the source
	}

	// Figure out all the destinations we need.
	dsts := e.destinations[:0]
	for _, x := range dstReg {
		dsts = append(dsts, dstRecord{&e.s.registers[x.r], x.v.ID, nil, x.pos})
	}
	// Phis need their args to end up in a specific location.
	for _, v := range e.b.Values {
		if v.Op != OpPhi {
			break
		}
		loc := e.s.f.getHome(v.ID)
		if loc == nil {
			continue
		}
		dsts = append(dsts, dstRecord{loc, v.Args[idx].ID, &v.Args[idx], v.Pos})
	}
	e.destinations = dsts

	if e.s.f.pass.debug > regDebug {
		for _, vid := range e.cachedVals {
			a := e.cache[vid]
			for _, c := range a {
				fmt.Printf("src %s: v%d cache=%s\n", e.s.f.getHome(c.ID), vid, c)
			}
		}
		for _, d := range e.destinations {
			fmt.Printf("dst %s: v%d\n", d.loc, d.vid)
		}
	}
}

// process generates code to move all the values to the right destination locations.
func (e *edgeState) process() {
	dsts := e.destinations

	// Process the destinations until they are all satisfied.
	for len(dsts) > 0 {
		i := 0
		for _, d := range dsts {
			if !e.processDest(d.loc, d.vid, d.splice, d.pos) {
				// Failed - save for next iteration.
				dsts[i] = d
				i++
			}
		}
		if i < len(dsts) {
			// Made some progress. Go around again.
			dsts = dsts[:i]

			// Append any extras destinations we generated.
			dsts = append(dsts, e.extra...)
			e.extra = e.extra[:0]
			continue
		}

		// We made no progress. That means that any
		// remaining unsatisfied moves are in simple cycles.
		// For example, A -> B -> C -> D -> A.
		//   A ----> B
		//   ^       |
		//   |       |
		//   |       v
		//   D <---- C

		// To break the cycle, we pick an unused register, say R,
		// and put a copy of B there.
		//   A ----> B
		//   ^       |
		//   |       |
		//   |       v
		//   D <---- C <---- R=copyofB
		// When we resume the outer loop, the A->B move can now proceed,
		// and eventually the whole cycle completes.

		// Copy any cycle location to a temp register. This duplicates
		// one of the cycle entries, allowing the just duplicated value
		// to be overwritten and the cycle to proceed.
		d := dsts[0]
		loc := d.loc
		vid := e.contents[loc].vid
		c := e.contents[loc].c
		r := e.findRegFor(c.Type)
		if e.s.f.pass.debug > regDebug {
			fmt.Printf("breaking cycle with v%d in %s:%s\n", vid, loc, c)
		}
		e.erase(r)
		pos := d.pos.WithNotStmt()
		if _, isReg := loc.(*Register); isReg {
			c = e.p.NewValue1(pos, OpCopy, c.Type, c)
		} else {
			c = e.p.NewValue1(pos, OpLoadReg, c.Type, c)
		}
		e.set(r, vid, c, false, pos)
		if c.Op == OpLoadReg && e.s.isGReg(register(r.(*Register).num)) {
			e.s.f.Fatalf("process.OpLoadReg targeting g: " + c.LongString())
		}
	}
}

// processDest generates code to put value vid into location loc. Returns true
// if progress was made.
func (e *edgeState) processDest(loc Location, vid ID, splice **Value, pos src.XPos) bool {
	pos = pos.WithNotStmt()
	occupant := e.contents[loc]
	if occupant.vid == vid {
		// Value is already in the correct place.
		e.contents[loc] = contentRecord{vid, occupant.c, true, pos}
		if splice != nil {
			(*splice).Uses--
			*splice = occupant.c
			occupant.c.Uses++
		}
		// Note: if splice==nil then c will appear dead. This is
		// non-SSA formed code, so be careful after this pass not to run
		// deadcode elimination.
		if _, ok := e.s.copies[occupant.c]; ok {
			// The copy at occupant.c was used to avoid spill.
			e.s.copies[occupant.c] = true
		}
		return true
	}

	// Check if we're allowed to clobber the destination location.
	if len(e.cache[occupant.vid]) == 1 && !e.s.values[occupant.vid].rematerializeable {
		// We can't overwrite the last copy
		// of a value that needs to survive.
		return false
	}

	// Copy from a source of v, register preferred.
	v := e.s.orig[vid]
	var c *Value
	var src Location
	if e.s.f.pass.debug > regDebug {
		fmt.Printf("moving v%d to %s\n", vid, loc)
		fmt.Printf("sources of v%d:", vid)
	}
	for _, w := range e.cache[vid] {
		h := e.s.f.getHome(w.ID)
		if e.s.f.pass.debug > regDebug {
			fmt.Printf(" %s:%s", h, w)
		}
		_, isreg := h.(*Register)
		if src == nil || isreg {
			c = w
			src = h
		}
	}
	if e.s.f.pass.debug > regDebug {
		if src != nil {
			fmt.Printf(" [use %s]\n", src)
		} else {
			fmt.Printf(" [no source]\n")
		}
	}
	_, dstReg := loc.(*Register)

	// Pre-clobber destination. This avoids the
	// following situation:
	//   - v is currently held in R0 and stacktmp0.
	//   - We want to copy stacktmp1 to stacktmp0.
	//   - We choose R0 as the temporary register.
	// During the copy, both R0 and stacktmp0 are
	// clobbered, losing both copies of v. Oops!
	// Erasing the destination early means R0 will not
	// be chosen as the temp register, as it will then
	// be the last copy of v.
	e.erase(loc)
	var x *Value
	if c == nil || e.s.values[vid].rematerializeable {
		if !e.s.values[vid].rematerializeable {
			e.s.f.Fatalf("can't find source for %s->%s: %s\n", e.p, e.b, v.LongString())
		}
		if dstReg {
			x = v.copyInto(e.p)
		} else {
			// Rematerialize into stack slot. Need a free
			// register to accomplish this.
			r := e.findRegFor(v.Type)
			e.erase(r)
			x = v.copyIntoWithXPos(e.p, pos)
			e.set(r, vid, x, false, pos)
			// Make sure we spill with the size of the slot, not the
			// size of x (which might be wider due to our dropping
			// of narrowing conversions).
			x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, x)
		}
	} else {
		// Emit move from src to dst.
		_, srcReg := src.(*Register)
		if srcReg {
			if dstReg {
				x = e.p.NewValue1(pos, OpCopy, c.Type, c)
			} else {
				x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, c)
			}
		} else {
			if dstReg {
				x = e.p.NewValue1(pos, OpLoadReg, c.Type, c)
			} else {
				// mem->mem. Use temp register.
				r := e.findRegFor(c.Type)
				e.erase(r)
				t := e.p.NewValue1(pos, OpLoadReg, c.Type, c)
				e.set(r, vid, t, false, pos)
				x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, t)
			}
		}
	}
	e.set(loc, vid, x, true, pos)
	if x.Op == OpLoadReg && e.s.isGReg(register(loc.(*Register).num)) {
		e.s.f.Fatalf("processDest.OpLoadReg targeting g: " + x.LongString())
	}
	if splice != nil {
		(*splice).Uses--
		*splice = x
		x.Uses++
	}
	return true
}

// set changes the contents of location loc to hold the given value and its cached representative.
func (e *edgeState) set(loc Location, vid ID, c *Value, final bool, pos src.XPos) {
	e.s.f.setHome(c, loc)
	e.contents[loc] = contentRecord{vid, c, final, pos}
	a := e.cache[vid]
	if len(a) == 0 {
		e.cachedVals = append(e.cachedVals, vid)
	}
	a = append(a, c)
	e.cache[vid] = a
	if r, ok := loc.(*Register); ok {
		if e.usedRegs&(regMask(1)<<uint(r.num)) != 0 {
			e.s.f.Fatalf("%v is already set (v%d/%v)", r, vid, c)
		}
		e.usedRegs |= regMask(1) << uint(r.num)
		if final {
			e.finalRegs |= regMask(1) << uint(r.num)
		}
		if len(a) == 1 {
			e.uniqueRegs |= regMask(1) << uint(r.num)
		}
		if len(a) == 2 {
			if t, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
				e.uniqueRegs &^= regMask(1) << uint(t.num)
			}
		}
		if e.s.values[vid].rematerializeable {
			e.rematerializeableRegs |= regMask(1) << uint(r.num)
		}
	}
	if e.s.f.pass.debug > regDebug {
		fmt.Printf("%s\n", c.LongString())
		fmt.Printf("v%d now available in %s:%s\n", vid, loc, c)
	}
}

// erase removes any user of loc.
func (e *edgeState) erase(loc Location) {
	cr := e.contents[loc]
	if cr.c == nil {
		return
	}
	vid := cr.vid

	if cr.final {
		// Add a destination to move this value back into place.
		// Make sure it gets added to the tail of the destination queue
		// so we make progress on other moves first.
		e.extra = append(e.extra, dstRecord{loc, cr.vid, nil, cr.pos})
	}

	// Remove c from the list of cached values.
	a := e.cache[vid]
	for i, c := range a {
		if e.s.f.getHome(c.ID) == loc {
			if e.s.f.pass.debug > regDebug {
				fmt.Printf("v%d no longer available in %s:%s\n", vid, loc, c)
			}
			a[i], a = a[len(a)-1], a[:len(a)-1]
			break
		}
	}
	e.cache[vid] = a

	// Update register masks.
	if r, ok := loc.(*Register); ok {
		e.usedRegs &^= regMask(1) << uint(r.num)
		if cr.final {
			e.finalRegs &^= regMask(1) << uint(r.num)
		}
		e.rematerializeableRegs &^= regMask(1) << uint(r.num)
	}
	if len(a) == 1 {
		if r, ok := e.s.f.getHome(a[0].ID).(*Register); ok {
			e.uniqueRegs |= regMask(1) << uint(r.num)
		}
	}
}

// findRegFor finds a register we can use to make a temp copy of type typ.
func (e *edgeState) findRegFor(typ *types.Type) Location {
	// Which registers are possibilities.
	types := &e.s.f.Config.Types
	m := e.s.compatRegs(typ)

	// Pick a register. In priority order:
	// 1) an unused register
	// 2) a non-unique register not holding a final value
	// 3) a non-unique register
	// 4) a register holding a rematerializeable value
	x := m &^ e.usedRegs
	if x != 0 {
		return &e.s.registers[pickReg(x)]
	}
	x = m &^ e.uniqueRegs &^ e.finalRegs
	if x != 0 {
		return &e.s.registers[pickReg(x)]
	}
	x = m &^ e.uniqueRegs
	if x != 0 {
		return &e.s.registers[pickReg(x)]
	}
	x = m & e.rematerializeableRegs
	if x != 0 {
		return &e.s.registers[pickReg(x)]
	}

	// No register is available.
	// Pick a register to spill.
	for _, vid := range e.cachedVals {
		a := e.cache[vid]
		for _, c := range a {
			if r, ok := e.s.f.getHome(c.ID).(*Register); ok && m>>uint(r.num)&1 != 0 {
				if !c.rematerializeable() {
					x := e.p.NewValue1(c.Pos, OpStoreReg, c.Type, c)
					// Allocate a temp location to spill a register to.
					// The type of the slot is immaterial - it will not be live across
					// any safepoint. Just use a type big enough to hold any register.
					t := LocalSlot{N: e.s.f.fe.Auto(c.Pos, types.Int64), Type: types.Int64}
					// TODO: reuse these slots. They'll need to be erased first.
					e.set(t, vid, x, false, c.Pos)
					if e.s.f.pass.debug > regDebug {
						fmt.Printf("  SPILL %s->%s %s\n", r, t, x.LongString())
					}
				}
				// r will now be overwritten by the caller. At some point
				// later, the newly saved value will be moved back to its
				// final destination in processDest.
				return r
			}
		}
	}

	fmt.Printf("m:%d unique:%d final:%d rematerializable:%d\n", m, e.uniqueRegs, e.finalRegs, e.rematerializeableRegs)
	for _, vid := range e.cachedVals {
		a := e.cache[vid]
		for _, c := range a {
			fmt.Printf("v%d: %s %s\n", vid, c, e.s.f.getHome(c.ID))
		}
	}
	e.s.f.Fatalf("can't find empty register on edge %s->%s", e.p, e.b)
	return nil
}

// rematerializeable reports whether the register allocator should recompute
// a value instead of spilling/restoring it.
func (v *Value) rematerializeable() bool {
	if !opcodeTable[v.Op].rematerializeable {
		return false
	}
	for _, a := range v.Args {
		// SP and SB (generated by OpSP and OpSB) are always available.
		if a.Op != OpSP && a.Op != OpSB {
			return false
		}
	}
	return true
}

type liveInfo struct {
	ID   ID       // ID of value
	dist int32    // # of instructions before next use
	pos  src.XPos // source position of next use
}

// computeLive computes a map from block ID to a list of value IDs live at the end
// of that block. Together with the value ID is a count of how many instructions
// to the next use of that value. The resulting map is stored in s.live.
// computeLive also computes the desired register information at the end of each block.
// This desired register information is stored in s.desired.
// TODO: this could be quadratic if lots of variables are live across lots of
// basic blocks. Figure out a way to make this function (or, more precisely, the user
// of this function) require only linear size & time.
func (s *regAllocState) computeLive() {
	f := s.f
	s.live = make([][]liveInfo, f.NumBlocks())
	s.desired = make([]desiredState, f.NumBlocks())
	var phis []*Value

	live := f.newSparseMapPos(f.NumValues())
	defer f.retSparseMapPos(live)
	t := f.newSparseMapPos(f.NumValues())
	defer f.retSparseMapPos(t)

	// Keep track of which value we want in each register.
	var desired desiredState

	// Instead of iterating over f.Blocks, iterate over their postordering.
	// Liveness information flows backward, so starting at the end
	// increases the probability that we will stabilize quickly.
	// TODO: Do a better job yet. Here's one possibility:
	// Calculate the dominator tree and locate all strongly connected components.
	// If a value is live in one block of an SCC, it is live in all.
	// Walk the dominator tree from end to beginning, just once, treating SCC
	// components as single blocks, duplicated calculated liveness information
	// out to all of them.
	po := f.postorder()
	s.loopnest = f.loopnest()
	s.loopnest.calculateDepths()
	for {
		changed := false

		for _, b := range po {
			// Start with known live values at the end of the block.
			// Add len(b.Values) to adjust from end-of-block distance
			// to beginning-of-block distance.
			live.clear()
			for _, e := range s.live[b.ID] {
				live.set(e.ID, e.dist+int32(len(b.Values)), e.pos)
			}

			// Mark control values as live
			for _, c := range b.ControlValues() {
				if s.values[c.ID].needReg {
					live.set(c.ID, int32(len(b.Values)), b.Pos)
				}
			}

			// Propagate backwards to the start of the block
			// Assumes Values have been scheduled.
			phis = phis[:0]
			for i := len(b.Values) - 1; i >= 0; i-- {
				v := b.Values[i]
				live.remove(v.ID)
				if v.Op == OpPhi {
					// save phi ops for later
					phis = append(phis, v)
					continue
				}
				if opcodeTable[v.Op].call {
					c := live.contents()
					for i := range c {
						c[i].val += unlikelyDistance
					}
				}
				for _, a := range v.Args {
					if s.values[a.ID].needReg {
						live.set(a.ID, int32(i), v.Pos)
					}
				}
			}
			// Propagate desired registers backwards.
			desired.copy(&s.desired[b.ID])
			for i := len(b.Values) - 1; i >= 0; i-- {
				v := b.Values[i]
				prefs := desired.remove(v.ID)
				if v.Op == OpPhi {
					// TODO: if v is a phi, save desired register for phi inputs.
					// For now, we just drop it and don't propagate
					// desired registers back though phi nodes.
					continue
				}
				regspec := s.regspec(v)
				// Cancel desired registers if they get clobbered.
				desired.clobber(regspec.clobbers)
				// Update desired registers if there are any fixed register inputs.
				for _, j := range regspec.inputs {
					if countRegs(j.regs) != 1 {
						continue
					}
					desired.clobber(j.regs)
					desired.add(v.Args[j.idx].ID, pickReg(j.regs))
				}
				// Set desired register of input 0 if this is a 2-operand instruction.
				if opcodeTable[v.Op].resultInArg0 || v.Op == OpAMD64ADDQconst || v.Op == OpAMD64ADDLconst || v.Op == OpSelect0 {
					// ADDQconst is added here because we want to treat it as resultInArg0 for
					// the purposes of desired registers, even though it is not an absolute requirement.
					// This is because we'd rather implement it as ADDQ instead of LEAQ.
					// Same for ADDLconst
					// Select0 is added here to propagate the desired register to the tuple-generating instruction.
					if opcodeTable[v.Op].commutative {
						desired.addList(v.Args[1].ID, prefs)
					}
					desired.addList(v.Args[0].ID, prefs)
				}
			}

			// For each predecessor of b, expand its list of live-at-end values.
			// invariant: live contains the values live at the start of b (excluding phi inputs)
			for i, e := range b.Preds {
				p := e.b
				// Compute additional distance for the edge.
				// Note: delta must be at least 1 to distinguish the control
				// value use from the first user in a successor block.
				delta := int32(normalDistance)
				if len(p.Succs) == 2 {
					if p.Succs[0].b == b && p.Likely == BranchLikely ||
						p.Succs[1].b == b && p.Likely == BranchUnlikely {
						delta = likelyDistance
					}
					if p.Succs[0].b == b && p.Likely == BranchUnlikely ||
						p.Succs[1].b == b && p.Likely == BranchLikely {
						delta = unlikelyDistance
					}
				}

				// Update any desired registers at the end of p.
				s.desired[p.ID].merge(&desired)

				// Start t off with the previously known live values at the end of p.
				t.clear()
				for _, e := range s.live[p.ID] {
					t.set(e.ID, e.dist, e.pos)
				}
				update := false

				// Add new live values from scanning this block.
				for _, e := range live.contents() {
					d := e.val + delta
					if !t.contains(e.key) || d < t.get(e.key) {
						update = true
						t.set(e.key, d, e.pos)
					}
				}
				// Also add the correct arg from the saved phi values.
				// All phis are at distance delta (we consider them
				// simultaneously happening at the start of the block).
				for _, v := range phis {
					id := v.Args[i].ID
					if s.values[id].needReg && (!t.contains(id) || delta < t.get(id)) {
						update = true
						t.set(id, delta, v.Pos)
					}
				}

				if !update {
					continue
				}
				// The live set has changed, update it.
				l := s.live[p.ID][:0]
				if cap(l) < t.size() {
					l = make([]liveInfo, 0, t.size())
				}
				for _, e := range t.contents() {
					l = append(l, liveInfo{e.key, e.val, e.pos})
				}
				s.live[p.ID] = l
				changed = true
			}
		}

		if !changed {
			break
		}
	}
	if f.pass.debug > regDebug {
		fmt.Println("live values at end of each block")
		for _, b := range f.Blocks {
			fmt.Printf("  %s:", b)
			for _, x := range s.live[b.ID] {
				fmt.Printf(" v%d(%d)", x.ID, x.dist)
				for _, e := range s.desired[b.ID].entries {
					if e.ID != x.ID {
						continue
					}
					fmt.Printf("[")
					first := true
					for _, r := range e.regs {
						if r == noRegister {
							continue
						}
						if !first {
							fmt.Printf(",")
						}
						fmt.Print(&s.registers[r])
						first = false
					}
					fmt.Printf("]")
				}
			}
			if avoid := s.desired[b.ID].avoid; avoid != 0 {
				fmt.Printf(" avoid=%v", s.RegMaskString(avoid))
			}
			fmt.Println()
		}
	}
}

// A desiredState represents desired register assignments.
type desiredState struct {
	// Desired assignments will be small, so we just use a list
	// of valueID+registers entries.
	entries []desiredStateEntry
	// Registers that other values want to be in.  This value will
	// contain at least the union of the regs fields of entries, but
	// may contain additional entries for values that were once in
	// this data structure but are no longer.
	avoid regMask
}
type desiredStateEntry struct {
	// (pre-regalloc) value
	ID ID
	// Registers it would like to be in, in priority order.
	// Unused slots are filled with noRegister.
	// For opcodes that return tuples, we track desired registers only
	// for the first element of the tuple.
	regs [4]register
}

func (d *desiredState) clear() {
	d.entries = d.entries[:0]
	d.avoid = 0
}

// get returns a list of desired registers for value vid.
func (d *desiredState) get(vid ID) [4]register {
	for _, e := range d.entries {
		if e.ID == vid {
			return e.regs
		}
	}
	return [4]register{noRegister, noRegister, noRegister, noRegister}
}

// add records that we'd like value vid to be in register r.
func (d *desiredState) add(vid ID, r register) {
	d.avoid |= regMask(1) << r
	for i := range d.entries {
		e := &d.entries[i]
		if e.ID != vid {
			continue
		}
		if e.regs[0] == r {
			// Already known and highest priority
			return
		}
		for j := 1; j < len(e.regs); j++ {
			if e.regs[j] == r {
				// Move from lower priority to top priority
				copy(e.regs[1:], e.regs[:j])
				e.regs[0] = r
				return
			}
		}
		copy(e.regs[1:], e.regs[:])
		e.regs[0] = r
		return
	}
	d.entries = append(d.entries, desiredStateEntry{vid, [4]register{r, noRegister, noRegister, noRegister}})
}

func (d *desiredState) addList(vid ID, regs [4]register) {
	// regs is in priority order, so iterate in reverse order.
	for i := len(regs) - 1; i >= 0; i-- {
		r := regs[i]
		if r != noRegister {
			d.add(vid, r)
		}
	}
}

// clobber erases any desired registers in the set m.
func (d *desiredState) clobber(m regMask) {
	for i := 0; i < len(d.entries); {
		e := &d.entries[i]
		j := 0
		for _, r := range e.regs {
			if r != noRegister && m>>r&1 == 0 {
				e.regs[j] = r
				j++
			}
		}
		if j == 0 {
			// No more desired registers for this value.
			d.entries[i] = d.entries[len(d.entries)-1]
			d.entries = d.entries[:len(d.entries)-1]
			continue
		}
		for ; j < len(e.regs); j++ {
			e.regs[j] = noRegister
		}
		i++
	}
	d.avoid &^= m
}

// copy copies a desired state from another desiredState x.
func (d *desiredState) copy(x *desiredState) {
	d.entries = append(d.entries[:0], x.entries...)
	d.avoid = x.avoid
}

// remove removes the desired registers for vid and returns them.
func (d *desiredState) remove(vid ID) [4]register {
	for i := range d.entries {
		if d.entries[i].ID == vid {
			regs := d.entries[i].regs
			d.entries[i] = d.entries[len(d.entries)-1]
			d.entries = d.entries[:len(d.entries)-1]
			return regs
		}
	}
	return [4]register{noRegister, noRegister, noRegister, noRegister}
}

// merge merges another desired state x into d.
func (d *desiredState) merge(x *desiredState) {
	d.avoid |= x.avoid
	// There should only be a few desired registers, so
	// linear insert is ok.
	for _, e := range x.entries {
		d.addList(e.ID, e.regs)
	}
}

func min32(x, y int32) int32 {
	if x < y {
		return x
	}
	return y
}
func max32(x, y int32) int32 {
	if x > y {
		return x
	}
	return y
}