1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/compile/internal/types"
"container/heap"
"sort"
)
const (
ScorePhi = iota // towards top of block
ScoreArg
ScoreNilCheck
ScoreReadTuple
ScoreVarDef
ScoreCarryChainTail
ScoreMemory
ScoreReadFlags
ScoreDefault
ScoreFlags
ScoreControl // towards bottom of block
)
type ValHeap struct {
a []*Value
score []int8
}
func (h ValHeap) Len() int { return len(h.a) }
func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
func (h *ValHeap) Push(x interface{}) {
// Push and Pop use pointer receivers because they modify the slice's length,
// not just its contents.
v := x.(*Value)
h.a = append(h.a, v)
}
func (h *ValHeap) Pop() interface{} {
old := h.a
n := len(old)
x := old[n-1]
h.a = old[0 : n-1]
return x
}
func (h ValHeap) Less(i, j int) bool {
x := h.a[i]
y := h.a[j]
sx := h.score[x.ID]
sy := h.score[y.ID]
if c := sx - sy; c != 0 {
return c > 0 // higher score comes later.
}
if x.Pos != y.Pos { // Favor in-order line stepping
return x.Pos.After(y.Pos)
}
if x.Op != OpPhi {
if c := len(x.Args) - len(y.Args); c != 0 {
return c < 0 // smaller args comes later
}
}
if c := x.Uses - y.Uses; c != 0 {
return c < 0 // smaller uses come later
}
// These comparisons are fairly arbitrary.
// The goal here is stability in the face
// of unrelated changes elsewhere in the compiler.
if c := x.AuxInt - y.AuxInt; c != 0 {
return c > 0
}
if cmp := x.Type.Compare(y.Type); cmp != types.CMPeq {
return cmp == types.CMPgt
}
return x.ID > y.ID
}
func (op Op) isLoweredGetClosurePtr() bool {
switch op {
case OpAMD64LoweredGetClosurePtr, OpPPC64LoweredGetClosurePtr, OpARMLoweredGetClosurePtr, OpARM64LoweredGetClosurePtr,
Op386LoweredGetClosurePtr, OpMIPS64LoweredGetClosurePtr, OpLOONG64LoweredGetClosurePtr, OpS390XLoweredGetClosurePtr, OpMIPSLoweredGetClosurePtr,
OpRISCV64LoweredGetClosurePtr, OpWasmLoweredGetClosurePtr:
return true
}
return false
}
// Schedule the Values in each Block. After this phase returns, the
// order of b.Values matters and is the order in which those values
// will appear in the assembly output. For now it generates a
// reasonable valid schedule using a priority queue. TODO(khr):
// schedule smarter.
func schedule(f *Func) {
// For each value, the number of times it is used in the block
// by values that have not been scheduled yet.
uses := f.Cache.allocInt32Slice(f.NumValues())
defer f.Cache.freeInt32Slice(uses)
// reusable priority queue
priq := new(ValHeap)
// "priority" for a value
score := f.Cache.allocInt8Slice(f.NumValues())
defer f.Cache.freeInt8Slice(score)
// scheduling order. We queue values in this list in reverse order.
// A constant bound allows this to be stack-allocated. 64 is
// enough to cover almost every schedule call.
order := make([]*Value, 0, 64)
// maps mem values to the next live memory value
nextMem := f.Cache.allocValueSlice(f.NumValues())
defer f.Cache.freeValueSlice(nextMem)
// additional pretend arguments for each Value. Used to enforce load/store ordering.
additionalArgs := make([][]*Value, f.NumValues())
for _, b := range f.Blocks {
// Compute score. Larger numbers are scheduled closer to the end of the block.
for _, v := range b.Values {
switch {
case v.Op.isLoweredGetClosurePtr():
// We also score GetLoweredClosurePtr as early as possible to ensure that the
// context register is not stomped. GetLoweredClosurePtr should only appear
// in the entry block where there are no phi functions, so there is no
// conflict or ambiguity here.
if b != f.Entry {
f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
}
score[v.ID] = ScorePhi
case v.Op == OpAMD64LoweredNilCheck || v.Op == OpPPC64LoweredNilCheck ||
v.Op == OpARMLoweredNilCheck || v.Op == OpARM64LoweredNilCheck ||
v.Op == Op386LoweredNilCheck || v.Op == OpMIPS64LoweredNilCheck ||
v.Op == OpS390XLoweredNilCheck || v.Op == OpMIPSLoweredNilCheck ||
v.Op == OpRISCV64LoweredNilCheck || v.Op == OpWasmLoweredNilCheck ||
v.Op == OpLOONG64LoweredNilCheck:
// Nil checks must come before loads from the same address.
score[v.ID] = ScoreNilCheck
case v.Op == OpPhi:
// We want all the phis first.
score[v.ID] = ScorePhi
case v.Op == OpVarDef:
// We want all the vardefs next.
score[v.ID] = ScoreVarDef
case v.Op == OpArgIntReg || v.Op == OpArgFloatReg:
// In-register args must be scheduled as early as possible to ensure that the
// context register is not stomped. They should only appear in the entry block.
if b != f.Entry {
f.Fatalf("%s appeared outside of entry block, b=%s", v.Op, b.String())
}
score[v.ID] = ScorePhi
case v.Op == OpArg:
// We want all the args as early as possible, for better debugging.
score[v.ID] = ScoreArg
case v.Type.IsMemory():
// Schedule stores as early as possible. This tends to
// reduce register pressure. It also helps make sure
// VARDEF ops are scheduled before the corresponding LEA.
score[v.ID] = ScoreMemory
case v.Op == OpSelect0 || v.Op == OpSelect1 || v.Op == OpSelectN:
if (v.Op == OpSelect1 || v.Op == OpSelect0) && (v.Args[0].isCarry() || v.Type.IsFlags()) {
// When the Select pseudo op is being used for a carry or flag from
// a tuple then score it as ScoreFlags so it happens later. This
// prevents the bit from being clobbered before it is used.
score[v.ID] = ScoreFlags
} else {
score[v.ID] = ScoreReadTuple
}
case v.isCarry():
if w := v.getCarryInput(); w != nil && w.Block == b {
// The producing op is not the final user of the carry bit. Its
// current score is one of unscored, Flags, or CarryChainTail.
// These occur if the producer has not been scored, another user
// of the producers carry flag was scored (there are >1 users of
// the carry out flag), or it was visited earlier and already
// scored CarryChainTail (and prove w is not a tail).
score[w.ID] = ScoreFlags
}
// Verify v has not been scored. If v has not been visited, v may be
// the final (tail) operation in a carry chain. If v is not, v will be
// rescored above when v's carry-using op is scored. When scoring is done,
// only tail operations will retain the CarryChainTail score.
if score[v.ID] != ScoreFlags {
// Score the tail of carry chain operations to a lower (earlier in the
// block) priority. This creates a priority inversion which allows only
// one chain to be scheduled, if possible.
score[v.ID] = ScoreCarryChainTail
}
case v.isFlagOp():
// Schedule flag register generation as late as possible.
// This makes sure that we only have one live flags
// value at a time.
score[v.ID] = ScoreFlags
default:
score[v.ID] = ScoreDefault
// If we're reading flags, schedule earlier to keep flag lifetime short.
for _, a := range v.Args {
if a.isFlagOp() {
score[v.ID] = ScoreReadFlags
}
}
}
}
}
for _, b := range f.Blocks {
// Find store chain for block.
// Store chains for different blocks overwrite each other, so
// the calculated store chain is good only for this block.
for _, v := range b.Values {
if v.Op != OpPhi && v.Type.IsMemory() {
for _, w := range v.Args {
if w.Type.IsMemory() {
nextMem[w.ID] = v
}
}
}
}
// Compute uses.
for _, v := range b.Values {
if v.Op == OpPhi {
// If a value is used by a phi, it does not induce
// a scheduling edge because that use is from the
// previous iteration.
continue
}
for _, w := range v.Args {
if w.Block == b {
uses[w.ID]++
}
// Any load must come before the following store.
if !v.Type.IsMemory() && w.Type.IsMemory() {
// v is a load.
s := nextMem[w.ID]
if s == nil || s.Block != b {
continue
}
additionalArgs[s.ID] = append(additionalArgs[s.ID], v)
uses[v.ID]++
}
}
}
for _, c := range b.ControlValues() {
// Force the control values to be scheduled at the end,
// unless they are phi values (which must be first).
// OpArg also goes first -- if it is stack it register allocates
// to a LoadReg, if it is register it is from the beginning anyway.
if score[c.ID] == ScorePhi || score[c.ID] == ScoreArg {
continue
}
score[c.ID] = ScoreControl
// Schedule values dependent on the control values at the end.
// This reduces the number of register spills. We don't find
// all values that depend on the controls, just values with a
// direct dependency. This is cheaper and in testing there
// was no difference in the number of spills.
for _, v := range b.Values {
if v.Op != OpPhi {
for _, a := range v.Args {
if a == c {
score[v.ID] = ScoreControl
}
}
}
}
}
// To put things into a priority queue
// The values that should come last are least.
priq.score = score
priq.a = priq.a[:0]
// Initialize priority queue with schedulable values.
for _, v := range b.Values {
if uses[v.ID] == 0 {
heap.Push(priq, v)
}
}
// Schedule highest priority value, update use counts, repeat.
order = order[:0]
tuples := make(map[ID][]*Value)
for priq.Len() > 0 {
// Find highest priority schedulable value.
// Note that schedule is assembled backwards.
v := heap.Pop(priq).(*Value)
if f.pass.debug > 1 && score[v.ID] == ScoreCarryChainTail && v.isCarry() {
// Add some debugging noise if the chain of carrying ops will not
// likely be scheduled without potential carry flag clobbers.
if !isCarryChainReady(v, uses) {
f.Warnl(v.Pos, "carry chain ending with %v not ready", v)
}
}
// Add it to the schedule.
// Do not emit tuple-reading ops until we're ready to emit the tuple-generating op.
//TODO: maybe remove ReadTuple score above, if it does not help on performance
switch {
case v.Op == OpSelect0:
if tuples[v.Args[0].ID] == nil {
tuples[v.Args[0].ID] = make([]*Value, 2)
}
tuples[v.Args[0].ID][0] = v
case v.Op == OpSelect1:
if tuples[v.Args[0].ID] == nil {
tuples[v.Args[0].ID] = make([]*Value, 2)
}
tuples[v.Args[0].ID][1] = v
case v.Op == OpSelectN:
if tuples[v.Args[0].ID] == nil {
tuples[v.Args[0].ID] = make([]*Value, v.Args[0].Type.NumFields())
}
tuples[v.Args[0].ID][v.AuxInt] = v
case v.Type.IsResults() && tuples[v.ID] != nil:
tup := tuples[v.ID]
for i := len(tup) - 1; i >= 0; i-- {
if tup[i] != nil {
order = append(order, tup[i])
}
}
delete(tuples, v.ID)
order = append(order, v)
case v.Type.IsTuple() && tuples[v.ID] != nil:
if tuples[v.ID][1] != nil {
order = append(order, tuples[v.ID][1])
}
if tuples[v.ID][0] != nil {
order = append(order, tuples[v.ID][0])
}
delete(tuples, v.ID)
fallthrough
default:
order = append(order, v)
}
// Update use counts of arguments.
for _, w := range v.Args {
if w.Block != b {
continue
}
uses[w.ID]--
if uses[w.ID] == 0 {
// All uses scheduled, w is now schedulable.
heap.Push(priq, w)
}
}
for _, w := range additionalArgs[v.ID] {
uses[w.ID]--
if uses[w.ID] == 0 {
// All uses scheduled, w is now schedulable.
heap.Push(priq, w)
}
}
}
if len(order) != len(b.Values) {
f.Fatalf("schedule does not include all values in block %s", b)
}
for i := 0; i < len(b.Values); i++ {
b.Values[i] = order[len(b.Values)-1-i]
}
}
f.scheduled = true
}
// storeOrder orders values with respect to stores. That is,
// if v transitively depends on store s, v is ordered after s,
// otherwise v is ordered before s.
// Specifically, values are ordered like
//
// store1
// NilCheck that depends on store1
// other values that depends on store1
// store2
// NilCheck that depends on store2
// other values that depends on store2
// ...
//
// The order of non-store and non-NilCheck values are undefined
// (not necessarily dependency order). This should be cheaper
// than a full scheduling as done above.
// Note that simple dependency order won't work: there is no
// dependency between NilChecks and values like IsNonNil.
// Auxiliary data structures are passed in as arguments, so
// that they can be allocated in the caller and be reused.
// This function takes care of reset them.
func storeOrder(values []*Value, sset *sparseSet, storeNumber []int32) []*Value {
if len(values) == 0 {
return values
}
f := values[0].Block.Func
// find all stores
// Members of values that are store values.
// A constant bound allows this to be stack-allocated. 64 is
// enough to cover almost every storeOrder call.
stores := make([]*Value, 0, 64)
hasNilCheck := false
sset.clear() // sset is the set of stores that are used in other values
for _, v := range values {
if v.Type.IsMemory() {
stores = append(stores, v)
if v.Op == OpInitMem || v.Op == OpPhi {
continue
}
sset.add(v.MemoryArg().ID) // record that v's memory arg is used
}
if v.Op == OpNilCheck {
hasNilCheck = true
}
}
if len(stores) == 0 || !hasNilCheck && f.pass.name == "nilcheckelim" {
// there is no store, the order does not matter
return values
}
// find last store, which is the one that is not used by other stores
var last *Value
for _, v := range stores {
if !sset.contains(v.ID) {
if last != nil {
f.Fatalf("two stores live simultaneously: %v and %v", v, last)
}
last = v
}
}
// We assign a store number to each value. Store number is the
// index of the latest store that this value transitively depends.
// The i-th store in the current block gets store number 3*i. A nil
// check that depends on the i-th store gets store number 3*i+1.
// Other values that depends on the i-th store gets store number 3*i+2.
// Special case: 0 -- unassigned, 1 or 2 -- the latest store it depends
// is in the previous block (or no store at all, e.g. value is Const).
// First we assign the number to all stores by walking back the store chain,
// then assign the number to other values in DFS order.
count := make([]int32, 3*(len(stores)+1))
sset.clear() // reuse sparse set to ensure that a value is pushed to stack only once
for n, w := len(stores), last; n > 0; n-- {
storeNumber[w.ID] = int32(3 * n)
count[3*n]++
sset.add(w.ID)
if w.Op == OpInitMem || w.Op == OpPhi {
if n != 1 {
f.Fatalf("store order is wrong: there are stores before %v", w)
}
break
}
w = w.MemoryArg()
}
var stack []*Value
for _, v := range values {
if sset.contains(v.ID) {
// in sset means v is a store, or already pushed to stack, or already assigned a store number
continue
}
stack = append(stack, v)
sset.add(v.ID)
for len(stack) > 0 {
w := stack[len(stack)-1]
if storeNumber[w.ID] != 0 {
stack = stack[:len(stack)-1]
continue
}
if w.Op == OpPhi {
// Phi value doesn't depend on store in the current block.
// Do this early to avoid dependency cycle.
storeNumber[w.ID] = 2
count[2]++
stack = stack[:len(stack)-1]
continue
}
max := int32(0) // latest store dependency
argsdone := true
for _, a := range w.Args {
if a.Block != w.Block {
continue
}
if !sset.contains(a.ID) {
stack = append(stack, a)
sset.add(a.ID)
argsdone = false
break
}
if storeNumber[a.ID]/3 > max {
max = storeNumber[a.ID] / 3
}
}
if !argsdone {
continue
}
n := 3*max + 2
if w.Op == OpNilCheck {
n = 3*max + 1
}
storeNumber[w.ID] = n
count[n]++
stack = stack[:len(stack)-1]
}
}
// convert count to prefix sum of counts: count'[i] = sum_{j<=i} count[i]
for i := range count {
if i == 0 {
continue
}
count[i] += count[i-1]
}
if count[len(count)-1] != int32(len(values)) {
f.Fatalf("storeOrder: value is missing, total count = %d, values = %v", count[len(count)-1], values)
}
// place values in count-indexed bins, which are in the desired store order
order := make([]*Value, len(values))
for _, v := range values {
s := storeNumber[v.ID]
order[count[s-1]] = v
count[s-1]++
}
// Order nil checks in source order. We want the first in source order to trigger.
// If two are on the same line, we don't really care which happens first.
// See issue 18169.
if hasNilCheck {
start := -1
for i, v := range order {
if v.Op == OpNilCheck {
if start == -1 {
start = i
}
} else {
if start != -1 {
sort.Sort(bySourcePos(order[start:i]))
start = -1
}
}
}
if start != -1 {
sort.Sort(bySourcePos(order[start:]))
}
}
return order
}
// isFlagOp reports if v is an OP with the flag type.
func (v *Value) isFlagOp() bool {
return v.Type.IsFlags() || v.Type.IsTuple() && v.Type.FieldType(1).IsFlags()
}
// isCarryChainReady reports whether all dependent carry ops can be scheduled after this.
func isCarryChainReady(v *Value, uses []int32) bool {
// A chain can be scheduled in it's entirety if
// the use count of each dependent op is 1. If none,
// schedule the first.
j := 1 // The first op uses[k.ID] == 0. Dependent ops are always >= 1.
for k := v; k != nil; k = k.getCarryInput() {
j += int(uses[k.ID]) - 1
}
return j == 0
}
// isCarryInput reports whether v accepts a carry value as input.
func (v *Value) isCarryInput() bool {
return v.getCarryInput() != nil
}
// isCarryOutput reports whether v generates a carry as output.
func (v *Value) isCarryOutput() bool {
// special cases for PPC64 which put their carry values in XER instead of flags
switch v.Block.Func.Config.arch {
case "ppc64", "ppc64le":
switch v.Op {
case OpPPC64SUBC, OpPPC64ADDC, OpPPC64SUBCconst, OpPPC64ADDCconst:
return true
}
return false
}
return v.isFlagOp() && v.Op != OpSelect1
}
// isCarryCreator reports whether op is an operation which produces a carry bit value,
// but does not consume it.
func (v *Value) isCarryCreator() bool {
return v.isCarryOutput() && !v.isCarryInput()
}
// isCarry reports whether op consumes or creates a carry a bit value.
func (v *Value) isCarry() bool {
return v.isCarryOutput() || v.isCarryInput()
}
// getCarryInput returns the producing *Value of the carry bit of this op, or nil if none.
func (v *Value) getCarryInput() *Value {
// special cases for PPC64 which put their carry values in XER instead of flags
switch v.Block.Func.Config.arch {
case "ppc64", "ppc64le":
switch v.Op {
case OpPPC64SUBE, OpPPC64ADDE, OpPPC64SUBZEzero, OpPPC64ADDZEzero:
// PPC64 carry dependencies are conveyed through their final argument.
// Likewise, there is always an OpSelect1 between them.
return v.Args[len(v.Args)-1].Args[0]
}
return nil
}
for _, a := range v.Args {
if !a.isFlagOp() {
continue
}
if a.Op == OpSelect1 {
a = a.Args[0]
}
return a
}
return nil
}
type bySourcePos []*Value
func (s bySourcePos) Len() int { return len(s) }
func (s bySourcePos) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s bySourcePos) Less(i, j int) bool { return s[i].Pos.Before(s[j].Pos) }
|