summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/sparsetree.go
blob: 6f2bd040375a83c129f69d8a021b13e4a55803f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"fmt"
	"strings"
)

type SparseTreeNode struct {
	child   *Block
	sibling *Block
	parent  *Block

	// Every block has 6 numbers associated with it:
	// entry-1, entry, entry+1, exit-1, and exit, exit+1.
	// entry and exit are conceptually the top of the block (phi functions)
	// entry+1 and exit-1 are conceptually the bottom of the block (ordinary defs)
	// entry-1 and exit+1 are conceptually "just before" the block (conditions flowing in)
	//
	// This simplifies life if we wish to query information about x
	// when x is both an input to and output of a block.
	entry, exit int32
}

func (s *SparseTreeNode) String() string {
	return fmt.Sprintf("[%d,%d]", s.entry, s.exit)
}

func (s *SparseTreeNode) Entry() int32 {
	return s.entry
}

func (s *SparseTreeNode) Exit() int32 {
	return s.exit
}

const (
	// When used to lookup up definitions in a sparse tree,
	// these adjustments to a block's entry (+adjust) and
	// exit (-adjust) numbers allow a distinction to be made
	// between assignments (typically branch-dependent
	// conditionals) occurring "before" the block (e.g., as inputs
	// to the block and its phi functions), "within" the block,
	// and "after" the block.
	AdjustBefore = -1 // defined before phi
	AdjustWithin = 0  // defined by phi
	AdjustAfter  = 1  // defined within block
)

// A SparseTree is a tree of Blocks.
// It allows rapid ancestor queries,
// such as whether one block dominates another.
type SparseTree []SparseTreeNode

// newSparseTree creates a SparseTree from a block-to-parent map (array indexed by Block.ID).
func newSparseTree(f *Func, parentOf []*Block) SparseTree {
	t := make(SparseTree, f.NumBlocks())
	for _, b := range f.Blocks {
		n := &t[b.ID]
		if p := parentOf[b.ID]; p != nil {
			n.parent = p
			n.sibling = t[p.ID].child
			t[p.ID].child = b
		}
	}
	t.numberBlock(f.Entry, 1)
	return t
}

// newSparseOrderedTree creates a SparseTree from a block-to-parent map (array indexed by Block.ID)
// children will appear in the reverse of their order in reverseOrder
// in particular, if reverseOrder is a dfs-reversePostOrder, then the root-to-children
// walk of the tree will yield a pre-order.
func newSparseOrderedTree(f *Func, parentOf, reverseOrder []*Block) SparseTree {
	t := make(SparseTree, f.NumBlocks())
	for _, b := range reverseOrder {
		n := &t[b.ID]
		if p := parentOf[b.ID]; p != nil {
			n.parent = p
			n.sibling = t[p.ID].child
			t[p.ID].child = b
		}
	}
	t.numberBlock(f.Entry, 1)
	return t
}

// treestructure provides a string description of the dominator
// tree and flow structure of block b and all blocks that it
// dominates.
func (t SparseTree) treestructure(b *Block) string {
	return t.treestructure1(b, 0)
}
func (t SparseTree) treestructure1(b *Block, i int) string {
	s := "\n" + strings.Repeat("\t", i) + b.String() + "->["
	for i, e := range b.Succs {
		if i > 0 {
			s += ","
		}
		s += e.b.String()
	}
	s += "]"
	if c0 := t[b.ID].child; c0 != nil {
		s += "("
		for c := c0; c != nil; c = t[c.ID].sibling {
			if c != c0 {
				s += " "
			}
			s += t.treestructure1(c, i+1)
		}
		s += ")"
	}
	return s
}

// numberBlock assigns entry and exit numbers for b and b's
// children in an in-order walk from a gappy sequence, where n
// is the first number not yet assigned or reserved. N should
// be larger than zero. For each entry and exit number, the
// values one larger and smaller are reserved to indicate
// "strictly above" and "strictly below". numberBlock returns
// the smallest number not yet assigned or reserved (i.e., the
// exit number of the last block visited, plus two, because
// last.exit+1 is a reserved value.)
//
// examples:
//
// single node tree Root, call with n=1
//         entry=2 Root exit=5; returns 7
//
// two node tree, Root->Child, call with n=1
//         entry=2 Root exit=11; returns 13
//         entry=5 Child exit=8
//
// three node tree, Root->(Left, Right), call with n=1
//         entry=2 Root exit=17; returns 19
// entry=5 Left exit=8;  entry=11 Right exit=14
//
// This is the in-order sequence of assigned and reserved numbers
// for the last example:
//   root     left     left      right       right       root
//  1 2e 3 | 4 5e 6 | 7 8x 9 | 10 11e 12 | 13 14x 15 | 16 17x 18

func (t SparseTree) numberBlock(b *Block, n int32) int32 {
	// reserve n for entry-1, assign n+1 to entry
	n++
	t[b.ID].entry = n
	// reserve n+1 for entry+1, n+2 is next free number
	n += 2
	for c := t[b.ID].child; c != nil; c = t[c.ID].sibling {
		n = t.numberBlock(c, n) // preserves n = next free number
	}
	// reserve n for exit-1, assign n+1 to exit
	n++
	t[b.ID].exit = n
	// reserve n+1 for exit+1, n+2 is next free number, returned.
	return n + 2
}

// Sibling returns a sibling of x in the dominator tree (i.e.,
// a node with the same immediate dominator) or nil if there
// are no remaining siblings in the arbitrary but repeatable
// order chosen. Because the Child-Sibling order is used
// to assign entry and exit numbers in the treewalk, those
// numbers are also consistent with this order (i.e.,
// Sibling(x) has entry number larger than x's exit number).
func (t SparseTree) Sibling(x *Block) *Block {
	return t[x.ID].sibling
}

// Child returns a child of x in the dominator tree, or
// nil if there are none. The choice of first child is
// arbitrary but repeatable.
func (t SparseTree) Child(x *Block) *Block {
	return t[x.ID].child
}

// Parent returns the parent of x in the dominator tree, or
// nil if x is the function's entry.
func (t SparseTree) Parent(x *Block) *Block {
	return t[x.ID].parent
}

// IsAncestorEq reports whether x is an ancestor of or equal to y.
func (t SparseTree) IsAncestorEq(x, y *Block) bool {
	if x == y {
		return true
	}
	xx := &t[x.ID]
	yy := &t[y.ID]
	return xx.entry <= yy.entry && yy.exit <= xx.exit
}

// isAncestor reports whether x is a strict ancestor of y.
func (t SparseTree) isAncestor(x, y *Block) bool {
	if x == y {
		return false
	}
	xx := &t[x.ID]
	yy := &t[y.ID]
	return xx.entry < yy.entry && yy.exit < xx.exit
}

// domorder returns a value for dominator-oriented sorting.
// Block domination does not provide a total ordering,
// but domorder two has useful properties.
//  1. If domorder(x) > domorder(y) then x does not dominate y.
//  2. If domorder(x) < domorder(y) and domorder(y) < domorder(z) and x does not dominate y,
//     then x does not dominate z.
//
// Property (1) means that blocks sorted by domorder always have a maximal dominant block first.
// Property (2) allows searches for dominated blocks to exit early.
func (t SparseTree) domorder(x *Block) int32 {
	// Here is an argument that entry(x) provides the properties documented above.
	//
	// Entry and exit values are assigned in a depth-first dominator tree walk.
	// For all blocks x and y, one of the following holds:
	//
	// (x-dom-y) x dominates y => entry(x) < entry(y) < exit(y) < exit(x)
	// (y-dom-x) y dominates x => entry(y) < entry(x) < exit(x) < exit(y)
	// (x-then-y) neither x nor y dominates the other and x walked before y => entry(x) < exit(x) < entry(y) < exit(y)
	// (y-then-x) neither x nor y dominates the other and y walked before y => entry(y) < exit(y) < entry(x) < exit(x)
	//
	// entry(x) > entry(y) eliminates case x-dom-y. This provides property (1) above.
	//
	// For property (2), assume entry(x) < entry(y) and entry(y) < entry(z) and x does not dominate y.
	// entry(x) < entry(y) allows cases x-dom-y and x-then-y.
	// But by supposition, x does not dominate y. So we have x-then-y.
	//
	// For contradiction, assume x dominates z.
	// Then entry(x) < entry(z) < exit(z) < exit(x).
	// But we know x-then-y, so entry(x) < exit(x) < entry(y) < exit(y).
	// Combining those, entry(x) < entry(z) < exit(z) < exit(x) < entry(y) < exit(y).
	// By supposition, entry(y) < entry(z), which allows cases y-dom-z and y-then-z.
	// y-dom-z requires entry(y) < entry(z), but we have entry(z) < entry(y).
	// y-then-z requires exit(y) < entry(z), but we have entry(z) < exit(y).
	// We have a contradiction, so x does not dominate z, as required.
	return t[x.ID].entry
}