summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssagen/abi.go
blob: 84d5b5951c2faa161ec878b2f347f0f1ec2dbcf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssagen

import (
	"fmt"
	"internal/buildcfg"
	"log"
	"os"
	"strings"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
)

// SymABIs records information provided by the assembler about symbol
// definition ABIs and reference ABIs.
type SymABIs struct {
	defs map[string]obj.ABI
	refs map[string]obj.ABISet
}

func NewSymABIs() *SymABIs {
	return &SymABIs{
		defs: make(map[string]obj.ABI),
		refs: make(map[string]obj.ABISet),
	}
}

// canonicalize returns the canonical name used for a linker symbol in
// s's maps. Symbols in this package may be written either as "".X or
// with the package's import path already in the symbol. This rewrites
// both to use the full path, which matches compiler-generated linker
// symbol names.
func (s *SymABIs) canonicalize(linksym string) string {
	// If the symbol is already prefixed with "", rewrite it to start
	// with LocalPkg.Prefix.
	//
	// TODO(mdempsky): Have cmd/asm stop writing out symbols like this.
	if strings.HasPrefix(linksym, `"".`) {
		return types.LocalPkg.Prefix + linksym[2:]
	}
	return linksym
}

// ReadSymABIs reads a symabis file that specifies definitions and
// references of text symbols by ABI.
//
// The symabis format is a set of lines, where each line is a sequence
// of whitespace-separated fields. The first field is a verb and is
// either "def" for defining a symbol ABI or "ref" for referencing a
// symbol using an ABI. For both "def" and "ref", the second field is
// the symbol name and the third field is the ABI name, as one of the
// named cmd/internal/obj.ABI constants.
func (s *SymABIs) ReadSymABIs(file string) {
	data, err := os.ReadFile(file)
	if err != nil {
		log.Fatalf("-symabis: %v", err)
	}

	for lineNum, line := range strings.Split(string(data), "\n") {
		lineNum++ // 1-based
		line = strings.TrimSpace(line)
		if line == "" || strings.HasPrefix(line, "#") {
			continue
		}

		parts := strings.Fields(line)
		switch parts[0] {
		case "def", "ref":
			// Parse line.
			if len(parts) != 3 {
				log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
			}
			sym, abistr := parts[1], parts[2]
			abi, valid := obj.ParseABI(abistr)
			if !valid {
				log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
			}

			sym = s.canonicalize(sym)

			// Record for later.
			if parts[0] == "def" {
				s.defs[sym] = abi
			} else {
				s.refs[sym] |= obj.ABISetOf(abi)
			}
		default:
			log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
		}
	}
}

// GenABIWrappers applies ABI information to Funcs and generates ABI
// wrapper functions where necessary.
func (s *SymABIs) GenABIWrappers() {
	// For cgo exported symbols, we tell the linker to export the
	// definition ABI to C. That also means that we don't want to
	// create ABI wrappers even if there's a linkname.
	//
	// TODO(austin): Maybe we want to create the ABI wrappers, but
	// ensure the linker exports the right ABI definition under
	// the unmangled name?
	cgoExports := make(map[string][]*[]string)
	for i, prag := range typecheck.Target.CgoPragmas {
		switch prag[0] {
		case "cgo_export_static", "cgo_export_dynamic":
			symName := s.canonicalize(prag[1])
			pprag := &typecheck.Target.CgoPragmas[i]
			cgoExports[symName] = append(cgoExports[symName], pprag)
		}
	}

	// Apply ABI defs and refs to Funcs and generate wrappers.
	//
	// This may generate new decls for the wrappers, but we
	// specifically *don't* want to visit those, lest we create
	// wrappers for wrappers.
	for _, fn := range typecheck.Target.Decls {
		if fn.Op() != ir.ODCLFUNC {
			continue
		}
		fn := fn.(*ir.Func)
		nam := fn.Nname
		if ir.IsBlank(nam) {
			continue
		}
		sym := nam.Sym()

		symName := sym.Linkname
		if symName == "" {
			symName = sym.Pkg.Prefix + "." + sym.Name
		}
		symName = s.canonicalize(symName)

		// Apply definitions.
		defABI, hasDefABI := s.defs[symName]
		if hasDefABI {
			if len(fn.Body) != 0 {
				base.ErrorfAt(fn.Pos(), "%v defined in both Go and assembly", fn)
			}
			fn.ABI = defABI
		}

		if fn.Pragma&ir.CgoUnsafeArgs != 0 {
			// CgoUnsafeArgs indicates the function (or its callee) uses
			// offsets to dispatch arguments, which currently using ABI0
			// frame layout. Pin it to ABI0.
			fn.ABI = obj.ABI0
		}

		// If cgo-exported, add the definition ABI to the cgo
		// pragmas.
		cgoExport := cgoExports[symName]
		for _, pprag := range cgoExport {
			// The export pragmas have the form:
			//
			//   cgo_export_* <local> [<remote>]
			//
			// If <remote> is omitted, it's the same as
			// <local>.
			//
			// Expand to
			//
			//   cgo_export_* <local> <remote> <ABI>
			if len(*pprag) == 2 {
				*pprag = append(*pprag, (*pprag)[1])
			}
			// Add the ABI argument.
			*pprag = append(*pprag, fn.ABI.String())
		}

		// Apply references.
		if abis, ok := s.refs[symName]; ok {
			fn.ABIRefs |= abis
		}
		// Assume all functions are referenced at least as
		// ABIInternal, since they may be referenced from
		// other packages.
		fn.ABIRefs.Set(obj.ABIInternal, true)

		// If a symbol is defined in this package (either in
		// Go or assembly) and given a linkname, it may be
		// referenced from another package, so make it
		// callable via any ABI. It's important that we know
		// it's defined in this package since other packages
		// may "pull" symbols using linkname and we don't want
		// to create duplicate ABI wrappers.
		//
		// However, if it's given a linkname for exporting to
		// C, then we don't make ABI wrappers because the cgo
		// tool wants the original definition.
		hasBody := len(fn.Body) != 0
		if sym.Linkname != "" && (hasBody || hasDefABI) && len(cgoExport) == 0 {
			fn.ABIRefs |= obj.ABISetCallable
		}

		// Double check that cgo-exported symbols don't get
		// any wrappers.
		if len(cgoExport) > 0 && fn.ABIRefs&^obj.ABISetOf(fn.ABI) != 0 {
			base.Fatalf("cgo exported function %v cannot have ABI wrappers", fn)
		}

		if !buildcfg.Experiment.RegabiWrappers {
			continue
		}

		forEachWrapperABI(fn, makeABIWrapper)
	}
}

func forEachWrapperABI(fn *ir.Func, cb func(fn *ir.Func, wrapperABI obj.ABI)) {
	need := fn.ABIRefs &^ obj.ABISetOf(fn.ABI)
	if need == 0 {
		return
	}

	for wrapperABI := obj.ABI(0); wrapperABI < obj.ABICount; wrapperABI++ {
		if !need.Get(wrapperABI) {
			continue
		}
		cb(fn, wrapperABI)
	}
}

// makeABIWrapper creates a new function that will be called with
// wrapperABI and calls "f" using f.ABI.
func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
	if base.Debug.ABIWrap != 0 {
		fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %v\n", wrapperABI, f.ABI, f)
	}

	// Q: is this needed?
	savepos := base.Pos
	savedclcontext := typecheck.DeclContext
	savedcurfn := ir.CurFunc

	base.Pos = base.AutogeneratedPos
	typecheck.DeclContext = ir.PEXTERN

	// At the moment we don't support wrapping a method, we'd need machinery
	// below to handle the receiver. Panic if we see this scenario.
	ft := f.Nname.Type()
	if ft.NumRecvs() != 0 {
		base.ErrorfAt(f.Pos(), "makeABIWrapper support for wrapping methods not implemented")
		return
	}

	// Reuse f's types.Sym to create a new ODCLFUNC/function.
	fn := typecheck.DeclFunc(f.Nname.Sym(), nil,
		typecheck.NewFuncParams(ft.Params(), true),
		typecheck.NewFuncParams(ft.Results(), false))
	fn.ABI = wrapperABI

	fn.SetABIWrapper(true)
	fn.SetDupok(true)

	// ABI0-to-ABIInternal wrappers will be mainly loading params from
	// stack into registers (and/or storing stack locations back to
	// registers after the wrapped call); in most cases they won't
	// need to allocate stack space, so it should be OK to mark them
	// as NOSPLIT in these cases. In addition, my assumption is that
	// functions written in assembly are NOSPLIT in most (but not all)
	// cases. In the case of an ABIInternal target that has too many
	// parameters to fit into registers, the wrapper would need to
	// allocate stack space, but this seems like an unlikely scenario.
	// Hence: mark these wrappers NOSPLIT.
	//
	// ABIInternal-to-ABI0 wrappers on the other hand will be taking
	// things in registers and pushing them onto the stack prior to
	// the ABI0 call, meaning that they will always need to allocate
	// stack space. If the compiler marks them as NOSPLIT this seems
	// as though it could lead to situations where the linker's
	// nosplit-overflow analysis would trigger a link failure. On the
	// other hand if they not tagged NOSPLIT then this could cause
	// problems when building the runtime (since there may be calls to
	// asm routine in cases where it's not safe to grow the stack). In
	// most cases the wrapper would be (in effect) inlined, but are
	// there (perhaps) indirect calls from the runtime that could run
	// into trouble here.
	// FIXME: at the moment all.bash does not pass when I leave out
	// NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
	fn.Pragma |= ir.Nosplit

	// Generate call. Use tail call if no params and no returns,
	// but a regular call otherwise.
	//
	// Note: ideally we would be using a tail call in cases where
	// there are params but no returns for ABI0->ABIInternal wrappers,
	// provided that all params fit into registers (e.g. we don't have
	// to allocate any stack space). Doing this will require some
	// extra work in typecheck/walk/ssa, might want to add a new node
	// OTAILCALL or something to this effect.
	tailcall := fn.Type().NumResults() == 0 && fn.Type().NumParams() == 0 && fn.Type().NumRecvs() == 0
	if base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink {
		// cannot tailcall on PPC64 with dynamic linking, as we need
		// to restore R2 after call.
		tailcall = false
	}
	if base.Ctxt.Arch.Name == "amd64" && wrapperABI == obj.ABIInternal {
		// cannot tailcall from ABIInternal to ABI0 on AMD64, as we need
		// to special registers (X15) when returning to ABIInternal.
		tailcall = false
	}

	var tail ir.Node
	call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil)
	call.Args = ir.ParamNames(fn.Type())
	call.IsDDD = fn.Type().IsVariadic()
	tail = call
	if tailcall {
		tail = ir.NewTailCallStmt(base.Pos, call)
	} else if fn.Type().NumResults() > 0 {
		n := ir.NewReturnStmt(base.Pos, nil)
		n.Results = []ir.Node{call}
		tail = n
	}
	fn.Body.Append(tail)

	typecheck.FinishFuncBody()
	if base.Debug.DclStack != 0 {
		types.CheckDclstack()
	}

	typecheck.Func(fn)
	ir.CurFunc = fn
	typecheck.Stmts(fn.Body)

	typecheck.Target.Decls = append(typecheck.Target.Decls, fn)

	// Restore previous context.
	base.Pos = savepos
	typecheck.DeclContext = savedclcontext
	ir.CurFunc = savedcurfn
}