1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package walk
import (
"fmt"
"go/constant"
"go/token"
"strings"
"cmd/compile/internal/base"
"cmd/compile/internal/escape"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
)
// Rewrite append(src, x, y, z) so that any side effects in
// x, y, z (including runtime panics) are evaluated in
// initialization statements before the append.
// For normal code generation, stop there and leave the
// rest to ssagen.
//
// For race detector, expand append(src, a [, b]* ) to
//
// init {
// s := src
// const argc = len(args) - 1
// newLen := s.len + argc
// if uint(newLen) <= uint(s.cap) {
// s = s[:newLen]
// } else {
// s = growslice(s.ptr, newLen, s.cap, argc, elemType)
// }
// s[s.len - argc] = a
// s[s.len - argc + 1] = b
// ...
// }
// s
func walkAppend(n *ir.CallExpr, init *ir.Nodes, dst ir.Node) ir.Node {
if !ir.SameSafeExpr(dst, n.Args[0]) {
n.Args[0] = safeExpr(n.Args[0], init)
n.Args[0] = walkExpr(n.Args[0], init)
}
walkExprListSafe(n.Args[1:], init)
nsrc := n.Args[0]
// walkExprListSafe will leave OINDEX (s[n]) alone if both s
// and n are name or literal, but those may index the slice we're
// modifying here. Fix explicitly.
// Using cheapExpr also makes sure that the evaluation
// of all arguments (and especially any panics) happen
// before we begin to modify the slice in a visible way.
ls := n.Args[1:]
for i, n := range ls {
n = cheapExpr(n, init)
if !types.Identical(n.Type(), nsrc.Type().Elem()) {
n = typecheck.AssignConv(n, nsrc.Type().Elem(), "append")
n = walkExpr(n, init)
}
ls[i] = n
}
argc := len(n.Args) - 1
if argc < 1 {
return nsrc
}
// General case, with no function calls left as arguments.
// Leave for ssagen, except that instrumentation requires the old form.
if !base.Flag.Cfg.Instrumenting || base.Flag.CompilingRuntime {
return n
}
var l []ir.Node
// s = slice to append to
s := typecheck.Temp(nsrc.Type())
l = append(l, ir.NewAssignStmt(base.Pos, s, nsrc))
// num = number of things to append
num := ir.NewInt(int64(argc))
// newLen := s.len + num
newLen := typecheck.Temp(types.Types[types.TINT])
l = append(l, ir.NewAssignStmt(base.Pos, newLen, ir.NewBinaryExpr(base.Pos, ir.OADD, ir.NewUnaryExpr(base.Pos, ir.OLEN, s), num)))
// if uint(newLen) <= uint(s.cap)
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLE, typecheck.Conv(newLen, types.Types[types.TUINT]), typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OCAP, s), types.Types[types.TUINT]))
nif.Likely = true
// then { s = s[:n] }
slice := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, nil, newLen, nil)
slice.SetBounded(true)
nif.Body = []ir.Node{
ir.NewAssignStmt(base.Pos, s, slice),
}
fn := typecheck.LookupRuntime("growslice") // growslice(ptr *T, newLen, oldCap, num int, <type>) (ret []T)
fn = typecheck.SubstArgTypes(fn, s.Type().Elem(), s.Type().Elem())
// else { s = growslice(s.ptr, n, s.cap, a, T) }
nif.Else = []ir.Node{
ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(),
ir.NewUnaryExpr(base.Pos, ir.OSPTR, s),
newLen,
ir.NewUnaryExpr(base.Pos, ir.OCAP, s),
num,
reflectdata.TypePtr(s.Type().Elem()))),
}
l = append(l, nif)
ls = n.Args[1:]
for i, n := range ls {
// s[s.len-argc+i] = arg
ix := ir.NewIndexExpr(base.Pos, s, ir.NewBinaryExpr(base.Pos, ir.OSUB, newLen, ir.NewInt(int64(argc-i))))
ix.SetBounded(true)
l = append(l, ir.NewAssignStmt(base.Pos, ix, n))
}
typecheck.Stmts(l)
walkStmtList(l)
init.Append(l...)
return s
}
// walkClose walks an OCLOSE node.
func walkClose(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
// cannot use chanfn - closechan takes any, not chan any
fn := typecheck.LookupRuntime("closechan")
fn = typecheck.SubstArgTypes(fn, n.X.Type())
return mkcall1(fn, nil, init, n.X)
}
// Lower copy(a, b) to a memmove call or a runtime call.
//
// init {
// n := len(a)
// if n > len(b) { n = len(b) }
// if a.ptr != b.ptr { memmove(a.ptr, b.ptr, n*sizeof(elem(a))) }
// }
// n;
//
// Also works if b is a string.
func walkCopy(n *ir.BinaryExpr, init *ir.Nodes, runtimecall bool) ir.Node {
if n.X.Type().Elem().HasPointers() {
ir.CurFunc.SetWBPos(n.Pos())
fn := writebarrierfn("typedslicecopy", n.X.Type().Elem(), n.Y.Type().Elem())
n.X = cheapExpr(n.X, init)
ptrL, lenL := backingArrayPtrLen(n.X)
n.Y = cheapExpr(n.Y, init)
ptrR, lenR := backingArrayPtrLen(n.Y)
return mkcall1(fn, n.Type(), init, reflectdata.CopyElemRType(base.Pos, n), ptrL, lenL, ptrR, lenR)
}
if runtimecall {
// rely on runtime to instrument:
// copy(n.Left, n.Right)
// n.Right can be a slice or string.
n.X = cheapExpr(n.X, init)
ptrL, lenL := backingArrayPtrLen(n.X)
n.Y = cheapExpr(n.Y, init)
ptrR, lenR := backingArrayPtrLen(n.Y)
fn := typecheck.LookupRuntime("slicecopy")
fn = typecheck.SubstArgTypes(fn, ptrL.Type().Elem(), ptrR.Type().Elem())
return mkcall1(fn, n.Type(), init, ptrL, lenL, ptrR, lenR, ir.NewInt(n.X.Type().Elem().Size()))
}
n.X = walkExpr(n.X, init)
n.Y = walkExpr(n.Y, init)
nl := typecheck.Temp(n.X.Type())
nr := typecheck.Temp(n.Y.Type())
var l []ir.Node
l = append(l, ir.NewAssignStmt(base.Pos, nl, n.X))
l = append(l, ir.NewAssignStmt(base.Pos, nr, n.Y))
nfrm := ir.NewUnaryExpr(base.Pos, ir.OSPTR, nr)
nto := ir.NewUnaryExpr(base.Pos, ir.OSPTR, nl)
nlen := typecheck.Temp(types.Types[types.TINT])
// n = len(to)
l = append(l, ir.NewAssignStmt(base.Pos, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nl)))
// if n > len(frm) { n = len(frm) }
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OGT, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nr))
nif.Body.Append(ir.NewAssignStmt(base.Pos, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nr)))
l = append(l, nif)
// if to.ptr != frm.ptr { memmove( ... ) }
ne := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.ONE, nto, nfrm), nil, nil)
ne.Likely = true
l = append(l, ne)
fn := typecheck.LookupRuntime("memmove")
fn = typecheck.SubstArgTypes(fn, nl.Type().Elem(), nl.Type().Elem())
nwid := ir.Node(typecheck.Temp(types.Types[types.TUINTPTR]))
setwid := ir.NewAssignStmt(base.Pos, nwid, typecheck.Conv(nlen, types.Types[types.TUINTPTR]))
ne.Body.Append(setwid)
nwid = ir.NewBinaryExpr(base.Pos, ir.OMUL, nwid, ir.NewInt(nl.Type().Elem().Size()))
call := mkcall1(fn, nil, init, nto, nfrm, nwid)
ne.Body.Append(call)
typecheck.Stmts(l)
walkStmtList(l)
init.Append(l...)
return nlen
}
// walkDelete walks an ODELETE node.
func walkDelete(init *ir.Nodes, n *ir.CallExpr) ir.Node {
init.Append(ir.TakeInit(n)...)
map_ := n.Args[0]
key := n.Args[1]
map_ = walkExpr(map_, init)
key = walkExpr(key, init)
t := map_.Type()
fast := mapfast(t)
key = mapKeyArg(fast, n, key, false)
return mkcall1(mapfndel(mapdelete[fast], t), nil, init, reflectdata.DeleteMapRType(base.Pos, n), map_, key)
}
// walkLenCap walks an OLEN or OCAP node.
func walkLenCap(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
if isRuneCount(n) {
// Replace len([]rune(string)) with runtime.countrunes(string).
return mkcall("countrunes", n.Type(), init, typecheck.Conv(n.X.(*ir.ConvExpr).X, types.Types[types.TSTRING]))
}
n.X = walkExpr(n.X, init)
// replace len(*[10]int) with 10.
// delayed until now to preserve side effects.
t := n.X.Type()
if t.IsPtr() {
t = t.Elem()
}
if t.IsArray() {
safeExpr(n.X, init)
con := typecheck.OrigInt(n, t.NumElem())
con.SetTypecheck(1)
return con
}
return n
}
// walkMakeChan walks an OMAKECHAN node.
func walkMakeChan(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
// When size fits into int, use makechan instead of
// makechan64, which is faster and shorter on 32 bit platforms.
size := n.Len
fnname := "makechan64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL size is positive and fits in an int.
// The case of size overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makechan during runtime.
if size.Type().IsKind(types.TIDEAL) || size.Type().Size() <= types.Types[types.TUINT].Size() {
fnname = "makechan"
argtype = types.Types[types.TINT]
}
return mkcall1(chanfn(fnname, 1, n.Type()), n.Type(), init, reflectdata.MakeChanRType(base.Pos, n), typecheck.Conv(size, argtype))
}
// walkMakeMap walks an OMAKEMAP node.
func walkMakeMap(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
t := n.Type()
hmapType := reflectdata.MapType(t)
hint := n.Len
// var h *hmap
var h ir.Node
if n.Esc() == ir.EscNone {
// Allocate hmap on stack.
// var hv hmap
// h = &hv
h = stackTempAddr(init, hmapType)
// Allocate one bucket pointed to by hmap.buckets on stack if hint
// is not larger than BUCKETSIZE. In case hint is larger than
// BUCKETSIZE runtime.makemap will allocate the buckets on the heap.
// Maximum key and elem size is 128 bytes, larger objects
// are stored with an indirection. So max bucket size is 2048+eps.
if !ir.IsConst(hint, constant.Int) ||
constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(reflectdata.BUCKETSIZE)) {
// In case hint is larger than BUCKETSIZE runtime.makemap
// will allocate the buckets on the heap, see #20184
//
// if hint <= BUCKETSIZE {
// var bv bmap
// b = &bv
// h.buckets = b
// }
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLE, hint, ir.NewInt(reflectdata.BUCKETSIZE)), nil, nil)
nif.Likely = true
// var bv bmap
// b = &bv
b := stackTempAddr(&nif.Body, reflectdata.MapBucketType(t))
// h.buckets = b
bsym := hmapType.Field(5).Sym // hmap.buckets see reflect.go:hmap
na := ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, h, bsym), b)
nif.Body.Append(na)
appendWalkStmt(init, nif)
}
}
if ir.IsConst(hint, constant.Int) && constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(reflectdata.BUCKETSIZE)) {
// Handling make(map[any]any) and
// make(map[any]any, hint) where hint <= BUCKETSIZE
// special allows for faster map initialization and
// improves binary size by using calls with fewer arguments.
// For hint <= BUCKETSIZE overLoadFactor(hint, 0) is false
// and no buckets will be allocated by makemap. Therefore,
// no buckets need to be allocated in this code path.
if n.Esc() == ir.EscNone {
// Only need to initialize h.hash0 since
// hmap h has been allocated on the stack already.
// h.hash0 = fastrand()
rand := mkcall("fastrand", types.Types[types.TUINT32], init)
hashsym := hmapType.Field(4).Sym // hmap.hash0 see reflect.go:hmap
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, h, hashsym), rand))
return typecheck.ConvNop(h, t)
}
// Call runtime.makehmap to allocate an
// hmap on the heap and initialize hmap's hash0 field.
fn := typecheck.LookupRuntime("makemap_small")
fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem())
return mkcall1(fn, n.Type(), init)
}
if n.Esc() != ir.EscNone {
h = typecheck.NodNil()
}
// Map initialization with a variable or large hint is
// more complicated. We therefore generate a call to
// runtime.makemap to initialize hmap and allocate the
// map buckets.
// When hint fits into int, use makemap instead of
// makemap64, which is faster and shorter on 32 bit platforms.
fnname := "makemap64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL hint is positive and fits in an int.
// See checkmake call in TMAP case of OMAKE case in OpSwitch in typecheck1 function.
// The case of hint overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makemap during runtime.
if hint.Type().IsKind(types.TIDEAL) || hint.Type().Size() <= types.Types[types.TUINT].Size() {
fnname = "makemap"
argtype = types.Types[types.TINT]
}
fn := typecheck.LookupRuntime(fnname)
fn = typecheck.SubstArgTypes(fn, hmapType, t.Key(), t.Elem())
return mkcall1(fn, n.Type(), init, reflectdata.MakeMapRType(base.Pos, n), typecheck.Conv(hint, argtype), h)
}
// walkMakeSlice walks an OMAKESLICE node.
func walkMakeSlice(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
l := n.Len
r := n.Cap
if r == nil {
r = safeExpr(l, init)
l = r
}
t := n.Type()
if t.Elem().NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem())
}
if n.Esc() == ir.EscNone {
if why := escape.HeapAllocReason(n); why != "" {
base.Fatalf("%v has EscNone, but %v", n, why)
}
// var arr [r]T
// n = arr[:l]
i := typecheck.IndexConst(r)
if i < 0 {
base.Fatalf("walkExpr: invalid index %v", r)
}
// cap is constrained to [0,2^31) or [0,2^63) depending on whether
// we're in 32-bit or 64-bit systems. So it's safe to do:
//
// if uint64(len) > cap {
// if len < 0 { panicmakeslicelen() }
// panicmakeslicecap()
// }
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(l, types.Types[types.TUINT64]), ir.NewInt(i)), nil, nil)
niflen := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLT, l, ir.NewInt(0)), nil, nil)
niflen.Body = []ir.Node{mkcall("panicmakeslicelen", nil, init)}
nif.Body.Append(niflen, mkcall("panicmakeslicecap", nil, init))
init.Append(typecheck.Stmt(nif))
t = types.NewArray(t.Elem(), i) // [r]T
var_ := typecheck.Temp(t)
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, var_, nil)) // zero temp
r := ir.NewSliceExpr(base.Pos, ir.OSLICE, var_, nil, l, nil) // arr[:l]
// The conv is necessary in case n.Type is named.
return walkExpr(typecheck.Expr(typecheck.Conv(r, n.Type())), init)
}
// n escapes; set up a call to makeslice.
// When len and cap can fit into int, use makeslice instead of
// makeslice64, which is faster and shorter on 32 bit platforms.
len, cap := l, r
fnname := "makeslice64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL len/cap are positive and fit in an int.
// The case of len or cap overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makeslice during runtime.
if (len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size()) &&
(cap.Type().IsKind(types.TIDEAL) || cap.Type().Size() <= types.Types[types.TUINT].Size()) {
fnname = "makeslice"
argtype = types.Types[types.TINT]
}
fn := typecheck.LookupRuntime(fnname)
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.MakeSliceElemRType(base.Pos, n), typecheck.Conv(len, argtype), typecheck.Conv(cap, argtype))
ptr.MarkNonNil()
len = typecheck.Conv(len, types.Types[types.TINT])
cap = typecheck.Conv(cap, types.Types[types.TINT])
sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, len, cap)
return walkExpr(typecheck.Expr(sh), init)
}
// walkMakeSliceCopy walks an OMAKESLICECOPY node.
func walkMakeSliceCopy(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
if n.Esc() == ir.EscNone {
base.Fatalf("OMAKESLICECOPY with EscNone: %v", n)
}
t := n.Type()
if t.Elem().NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem())
}
length := typecheck.Conv(n.Len, types.Types[types.TINT])
copylen := ir.NewUnaryExpr(base.Pos, ir.OLEN, n.Cap)
copyptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, n.Cap)
if !t.Elem().HasPointers() && n.Bounded() {
// When len(to)==len(from) and elements have no pointers:
// replace make+copy with runtime.mallocgc+runtime.memmove.
// We do not check for overflow of len(to)*elem.Width here
// since len(from) is an existing checked slice capacity
// with same elem.Width for the from slice.
size := ir.NewBinaryExpr(base.Pos, ir.OMUL, typecheck.Conv(length, types.Types[types.TUINTPTR]), typecheck.Conv(ir.NewInt(t.Elem().Size()), types.Types[types.TUINTPTR]))
// instantiate mallocgc(size uintptr, typ *byte, needszero bool) unsafe.Pointer
fn := typecheck.LookupRuntime("mallocgc")
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, size, typecheck.NodNil(), ir.NewBool(false))
ptr.MarkNonNil()
sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, length, length)
s := typecheck.Temp(t)
r := typecheck.Stmt(ir.NewAssignStmt(base.Pos, s, sh))
r = walkExpr(r, init)
init.Append(r)
// instantiate memmove(to *any, frm *any, size uintptr)
fn = typecheck.LookupRuntime("memmove")
fn = typecheck.SubstArgTypes(fn, t.Elem(), t.Elem())
ncopy := mkcall1(fn, nil, init, ir.NewUnaryExpr(base.Pos, ir.OSPTR, s), copyptr, size)
init.Append(walkExpr(typecheck.Stmt(ncopy), init))
return s
}
// Replace make+copy with runtime.makeslicecopy.
// instantiate makeslicecopy(typ *byte, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer
fn := typecheck.LookupRuntime("makeslicecopy")
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.MakeSliceElemRType(base.Pos, n), length, copylen, typecheck.Conv(copyptr, types.Types[types.TUNSAFEPTR]))
ptr.MarkNonNil()
sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, length, length)
return walkExpr(typecheck.Expr(sh), init)
}
// walkNew walks an ONEW node.
func walkNew(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
t := n.Type().Elem()
if t.NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", n.Type().Elem())
}
if n.Esc() == ir.EscNone {
if t.Size() > ir.MaxImplicitStackVarSize {
base.Fatalf("large ONEW with EscNone: %v", n)
}
return stackTempAddr(init, t)
}
types.CalcSize(t)
n.MarkNonNil()
return n
}
// generate code for print.
func walkPrint(nn *ir.CallExpr, init *ir.Nodes) ir.Node {
// Hoist all the argument evaluation up before the lock.
walkExprListCheap(nn.Args, init)
// For println, add " " between elements and "\n" at the end.
if nn.Op() == ir.OPRINTN {
s := nn.Args
t := make([]ir.Node, 0, len(s)*2)
for i, n := range s {
if i != 0 {
t = append(t, ir.NewString(" "))
}
t = append(t, n)
}
t = append(t, ir.NewString("\n"))
nn.Args = t
}
// Collapse runs of constant strings.
s := nn.Args
t := make([]ir.Node, 0, len(s))
for i := 0; i < len(s); {
var strs []string
for i < len(s) && ir.IsConst(s[i], constant.String) {
strs = append(strs, ir.StringVal(s[i]))
i++
}
if len(strs) > 0 {
t = append(t, ir.NewString(strings.Join(strs, "")))
}
if i < len(s) {
t = append(t, s[i])
i++
}
}
nn.Args = t
calls := []ir.Node{mkcall("printlock", nil, init)}
for i, n := range nn.Args {
if n.Op() == ir.OLITERAL {
if n.Type() == types.UntypedRune {
n = typecheck.DefaultLit(n, types.RuneType)
}
switch n.Val().Kind() {
case constant.Int:
n = typecheck.DefaultLit(n, types.Types[types.TINT64])
case constant.Float:
n = typecheck.DefaultLit(n, types.Types[types.TFLOAT64])
}
}
if n.Op() != ir.OLITERAL && n.Type() != nil && n.Type().Kind() == types.TIDEAL {
n = typecheck.DefaultLit(n, types.Types[types.TINT64])
}
n = typecheck.DefaultLit(n, nil)
nn.Args[i] = n
if n.Type() == nil || n.Type().Kind() == types.TFORW {
continue
}
var on *ir.Name
switch n.Type().Kind() {
case types.TINTER:
if n.Type().IsEmptyInterface() {
on = typecheck.LookupRuntime("printeface")
} else {
on = typecheck.LookupRuntime("printiface")
}
on = typecheck.SubstArgTypes(on, n.Type()) // any-1
case types.TPTR:
if n.Type().Elem().NotInHeap() {
on = typecheck.LookupRuntime("printuintptr")
n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
n.SetType(types.Types[types.TUNSAFEPTR])
n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
n.SetType(types.Types[types.TUINTPTR])
break
}
fallthrough
case types.TCHAN, types.TMAP, types.TFUNC, types.TUNSAFEPTR:
on = typecheck.LookupRuntime("printpointer")
on = typecheck.SubstArgTypes(on, n.Type()) // any-1
case types.TSLICE:
on = typecheck.LookupRuntime("printslice")
on = typecheck.SubstArgTypes(on, n.Type()) // any-1
case types.TUINT, types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64, types.TUINTPTR:
if types.IsRuntimePkg(n.Type().Sym().Pkg) && n.Type().Sym().Name == "hex" {
on = typecheck.LookupRuntime("printhex")
} else {
on = typecheck.LookupRuntime("printuint")
}
case types.TINT, types.TINT8, types.TINT16, types.TINT32, types.TINT64:
on = typecheck.LookupRuntime("printint")
case types.TFLOAT32, types.TFLOAT64:
on = typecheck.LookupRuntime("printfloat")
case types.TCOMPLEX64, types.TCOMPLEX128:
on = typecheck.LookupRuntime("printcomplex")
case types.TBOOL:
on = typecheck.LookupRuntime("printbool")
case types.TSTRING:
cs := ""
if ir.IsConst(n, constant.String) {
cs = ir.StringVal(n)
}
switch cs {
case " ":
on = typecheck.LookupRuntime("printsp")
case "\n":
on = typecheck.LookupRuntime("printnl")
default:
on = typecheck.LookupRuntime("printstring")
}
default:
badtype(ir.OPRINT, n.Type(), nil)
continue
}
r := ir.NewCallExpr(base.Pos, ir.OCALL, on, nil)
if params := on.Type().Params().FieldSlice(); len(params) > 0 {
t := params[0].Type
n = typecheck.Conv(n, t)
r.Args.Append(n)
}
calls = append(calls, r)
}
calls = append(calls, mkcall("printunlock", nil, init))
typecheck.Stmts(calls)
walkExprList(calls, init)
r := ir.NewBlockStmt(base.Pos, nil)
r.List = calls
return walkStmt(typecheck.Stmt(r))
}
// walkRecover walks an ORECOVERFP node.
func walkRecoverFP(nn *ir.CallExpr, init *ir.Nodes) ir.Node {
return mkcall("gorecover", nn.Type(), init, walkExpr(nn.Args[0], init))
}
// walkUnsafeData walks an OUNSAFESLICEDATA or OUNSAFESTRINGDATA expression.
func walkUnsafeData(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
slice := walkExpr(n.X, init)
res := typecheck.Expr(ir.NewUnaryExpr(n.Pos(), ir.OSPTR, slice))
res.SetType(n.Type())
return walkExpr(res, init)
}
func walkUnsafeSlice(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
ptr := safeExpr(n.X, init)
len := safeExpr(n.Y, init)
sliceType := n.Type()
lenType := types.Types[types.TINT64]
unsafePtr := typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR])
// If checkptr enabled, call runtime.unsafeslicecheckptr to check ptr and len.
// for simplicity, unsafeslicecheckptr always uses int64.
// Type checking guarantees that TIDEAL len/cap are positive and fit in an int.
// The case of len or cap overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in unsafeslice during runtime.
if ir.ShouldCheckPtr(ir.CurFunc, 1) {
fnname := "unsafeslicecheckptr"
fn := typecheck.LookupRuntime(fnname)
init.Append(mkcall1(fn, nil, init, reflectdata.UnsafeSliceElemRType(base.Pos, n), unsafePtr, typecheck.Conv(len, lenType)))
} else {
// Otherwise, open code unsafe.Slice to prevent runtime call overhead.
// Keep this code in sync with runtime.unsafeslice{,64}
if len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size() {
lenType = types.Types[types.TINT]
} else {
// len64 := int64(len)
// if int64(int(len64)) != len64 {
// panicunsafeslicelen()
// }
len64 := typecheck.Conv(len, lenType)
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, typecheck.Conv(typecheck.Conv(len64, types.Types[types.TINT]), lenType), len64)
nif.Body.Append(mkcall("panicunsafeslicelen", nil, &nif.Body))
appendWalkStmt(init, nif)
}
// if len < 0 { panicunsafeslicelen() }
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, typecheck.Conv(len, lenType), ir.NewInt(0))
nif.Body.Append(mkcall("panicunsafeslicelen", nil, &nif.Body))
appendWalkStmt(init, nif)
if sliceType.Elem().Size() == 0 {
// if ptr == nil && len > 0 {
// panicunsafesliceptrnil()
// }
nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
isNil := ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
gtZero := ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(len, lenType), ir.NewInt(0))
nifPtr.Cond =
ir.NewLogicalExpr(base.Pos, ir.OANDAND, isNil, gtZero)
nifPtr.Body.Append(mkcall("panicunsafeslicenilptr", nil, &nifPtr.Body))
appendWalkStmt(init, nifPtr)
h := ir.NewSliceHeaderExpr(n.Pos(), sliceType,
typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
typecheck.Conv(len, types.Types[types.TINT]),
typecheck.Conv(len, types.Types[types.TINT]))
return walkExpr(typecheck.Expr(h), init)
}
// mem, overflow := runtime.mulUintptr(et.size, len)
mem := typecheck.Temp(types.Types[types.TUINTPTR])
overflow := typecheck.Temp(types.Types[types.TBOOL])
fn := typecheck.LookupRuntime("mulUintptr")
call := mkcall1(fn, fn.Type().Results(), init, ir.NewInt(sliceType.Elem().Size()), typecheck.Conv(typecheck.Conv(len, lenType), types.Types[types.TUINTPTR]))
appendWalkStmt(init, ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{mem, overflow}, []ir.Node{call}))
// if overflow || mem > -uintptr(ptr) {
// if ptr == nil {
// panicunsafesliceptrnil()
// }
// panicunsafeslicelen()
// }
nif = ir.NewIfStmt(base.Pos, nil, nil, nil)
memCond := ir.NewBinaryExpr(base.Pos, ir.OGT, mem, ir.NewUnaryExpr(base.Pos, ir.ONEG, typecheck.Conv(unsafePtr, types.Types[types.TUINTPTR])))
nif.Cond = ir.NewLogicalExpr(base.Pos, ir.OOROR, overflow, memCond)
nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
nifPtr.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
nifPtr.Body.Append(mkcall("panicunsafeslicenilptr", nil, &nifPtr.Body))
nif.Body.Append(nifPtr, mkcall("panicunsafeslicelen", nil, &nif.Body))
appendWalkStmt(init, nif)
}
h := ir.NewSliceHeaderExpr(n.Pos(), sliceType,
typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
typecheck.Conv(len, types.Types[types.TINT]),
typecheck.Conv(len, types.Types[types.TINT]))
return walkExpr(typecheck.Expr(h), init)
}
func walkUnsafeString(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
ptr := safeExpr(n.X, init)
len := safeExpr(n.Y, init)
lenType := types.Types[types.TINT64]
unsafePtr := typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR])
// If checkptr enabled, call runtime.unsafestringcheckptr to check ptr and len.
// for simplicity, unsafestringcheckptr always uses int64.
// Type checking guarantees that TIDEAL len are positive and fit in an int.
if ir.ShouldCheckPtr(ir.CurFunc, 1) {
fnname := "unsafestringcheckptr"
fn := typecheck.LookupRuntime(fnname)
init.Append(mkcall1(fn, nil, init, unsafePtr, typecheck.Conv(len, lenType)))
} else {
// Otherwise, open code unsafe.String to prevent runtime call overhead.
// Keep this code in sync with runtime.unsafestring{,64}
if len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size() {
lenType = types.Types[types.TINT]
} else {
// len64 := int64(len)
// if int64(int(len64)) != len64 {
// panicunsafestringlen()
// }
len64 := typecheck.Conv(len, lenType)
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, typecheck.Conv(typecheck.Conv(len64, types.Types[types.TINT]), lenType), len64)
nif.Body.Append(mkcall("panicunsafestringlen", nil, &nif.Body))
appendWalkStmt(init, nif)
}
// if len < 0 { panicunsafestringlen() }
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, typecheck.Conv(len, lenType), ir.NewInt(0))
nif.Body.Append(mkcall("panicunsafestringlen", nil, &nif.Body))
appendWalkStmt(init, nif)
// if uintpr(len) > -uintptr(ptr) {
// if ptr == nil {
// panicunsafestringnilptr()
// }
// panicunsafeslicelen()
// }
nifLen := ir.NewIfStmt(base.Pos, nil, nil, nil)
nifLen.Cond = ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(len, types.Types[types.TUINTPTR]), ir.NewUnaryExpr(base.Pos, ir.ONEG, typecheck.Conv(unsafePtr, types.Types[types.TUINTPTR])))
nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
nifPtr.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
nifPtr.Body.Append(mkcall("panicunsafestringnilptr", nil, &nifPtr.Body))
nifLen.Body.Append(nifPtr, mkcall("panicunsafestringlen", nil, &nifLen.Body))
appendWalkStmt(init, nifLen)
}
h := ir.NewStringHeaderExpr(n.Pos(),
typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
typecheck.Conv(len, types.Types[types.TINT]),
)
return walkExpr(typecheck.Expr(h), init)
}
func badtype(op ir.Op, tl, tr *types.Type) {
var s string
if tl != nil {
s += fmt.Sprintf("\n\t%v", tl)
}
if tr != nil {
s += fmt.Sprintf("\n\t%v", tr)
}
// common mistake: *struct and *interface.
if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
s += "\n\t(*struct vs *interface)"
} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
s += "\n\t(*interface vs *struct)"
}
}
base.Errorf("illegal types for operand: %v%s", op, s)
}
func writebarrierfn(name string, l *types.Type, r *types.Type) ir.Node {
fn := typecheck.LookupRuntime(name)
fn = typecheck.SubstArgTypes(fn, l, r)
return fn
}
// isRuneCount reports whether n is of the form len([]rune(string)).
// These are optimized into a call to runtime.countrunes.
func isRuneCount(n ir.Node) bool {
return base.Flag.N == 0 && !base.Flag.Cfg.Instrumenting && n.Op() == ir.OLEN && n.(*ir.UnaryExpr).X.Op() == ir.OSTR2RUNES
}
|