summaryrefslogtreecommitdiffstats
path: root/src/cmd/link/internal/ld/data.go
blob: afba7d3b3c5193e89237a9c8818954a5edcdd92d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
// Derived from Inferno utils/6l/obj.c and utils/6l/span.c
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/obj.c
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/span.c
//
//	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
//	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
//	Portions Copyright © 1997-1999 Vita Nuova Limited
//	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
//	Portions Copyright © 2004,2006 Bruce Ellis
//	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
//	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
//	Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

package ld

import (
	"bytes"
	"cmd/internal/gcprog"
	"cmd/internal/objabi"
	"cmd/internal/sys"
	"cmd/link/internal/loader"
	"cmd/link/internal/loadpe"
	"cmd/link/internal/sym"
	"compress/zlib"
	"debug/elf"
	"encoding/binary"
	"fmt"
	"log"
	"os"
	"sort"
	"strconv"
	"strings"
	"sync"
	"sync/atomic"
)

// isRuntimeDepPkg reports whether pkg is the runtime package or its dependency.
func isRuntimeDepPkg(pkg string) bool {
	switch pkg {
	case "runtime",
		"sync/atomic",      // runtime may call to sync/atomic, due to go:linkname
		"internal/abi",     // used by reflectcall (and maybe more)
		"internal/bytealg", // for IndexByte
		"internal/cpu":     // for cpu features
		return true
	}
	return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test")
}

// Estimate the max size needed to hold any new trampolines created for this function. This
// is used to determine when the section can be split if it becomes too large, to ensure that
// the trampolines are in the same section as the function that uses them.
func maxSizeTrampolines(ctxt *Link, ldr *loader.Loader, s loader.Sym, isTramp bool) uint64 {
	// If thearch.Trampoline is nil, then trampoline support is not available on this arch.
	// A trampoline does not need any dependent trampolines.
	if thearch.Trampoline == nil || isTramp {
		return 0
	}

	n := uint64(0)
	relocs := ldr.Relocs(s)
	for ri := 0; ri < relocs.Count(); ri++ {
		r := relocs.At(ri)
		if r.Type().IsDirectCallOrJump() {
			n++
		}
	}

	if ctxt.IsARM() {
		return n * 20 // Trampolines in ARM range from 3 to 5 instructions.
	}
	if ctxt.IsPPC64() {
		return n * 16 // Trampolines in PPC64 are 4 instructions.
	}
	if ctxt.IsARM64() {
		return n * 12 // Trampolines in ARM64 are 3 instructions.
	}
	panic("unreachable")
}

// Detect too-far jumps in function s, and add trampolines if necessary.
// ARM, PPC64, PPC64LE and RISCV64 support trampoline insertion for internal
// and external linking. On PPC64 and PPC64LE the text sections might be split
// but will still insert trampolines where necessary.
func trampoline(ctxt *Link, s loader.Sym) {
	if thearch.Trampoline == nil {
		return // no need or no support of trampolines on this arch
	}

	ldr := ctxt.loader
	relocs := ldr.Relocs(s)
	for ri := 0; ri < relocs.Count(); ri++ {
		r := relocs.At(ri)
		rt := r.Type()
		if !rt.IsDirectCallOrJump() && !isPLTCall(rt) {
			continue
		}
		rs := r.Sym()
		if !ldr.AttrReachable(rs) || ldr.SymType(rs) == sym.Sxxx {
			continue // something is wrong. skip it here and we'll emit a better error later
		}

		// RISC-V is only able to reach +/-1MiB via a JAL instruction,
		// which we can readily exceed in the same package. As such, we
		// need to generate trampolines when the address is unknown.
		if ldr.SymValue(rs) == 0 && !ctxt.Target.IsRISCV64() && ldr.SymType(rs) != sym.SDYNIMPORT && ldr.SymType(rs) != sym.SUNDEFEXT {
			if ldr.SymPkg(s) != "" && ldr.SymPkg(rs) == ldr.SymPkg(s) {
				// Symbols in the same package are laid out together.
				// Except that if SymPkg(s) == "", it is a host object symbol
				// which may call an external symbol via PLT.
				continue
			}
			if isRuntimeDepPkg(ldr.SymPkg(s)) && isRuntimeDepPkg(ldr.SymPkg(rs)) {
				continue // runtime packages are laid out together
			}
		}
		thearch.Trampoline(ctxt, ldr, ri, rs, s)
	}
}

// whether rt is a (host object) relocation that will be turned into
// a call to PLT.
func isPLTCall(rt objabi.RelocType) bool {
	const pcrel = 1
	switch rt {
	// ARM64
	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_CALL26),
		objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_JUMP26),
		objabi.MachoRelocOffset + MACHO_ARM64_RELOC_BRANCH26*2 + pcrel:
		return true

	// ARM
	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_CALL),
		objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_PC24),
		objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_JUMP24):
		return true
	}
	// TODO: other architectures.
	return false
}

// FoldSubSymbolOffset computes the offset of symbol s to its top-level outer
// symbol. Returns the top-level symbol and the offset.
// This is used in generating external relocations.
func FoldSubSymbolOffset(ldr *loader.Loader, s loader.Sym) (loader.Sym, int64) {
	outer := ldr.OuterSym(s)
	off := int64(0)
	if outer != 0 {
		off += ldr.SymValue(s) - ldr.SymValue(outer)
		s = outer
	}
	return s, off
}

// relocsym resolve relocations in "s", updating the symbol's content
// in "P".
// The main loop walks through the list of relocations attached to "s"
// and resolves them where applicable. Relocations are often
// architecture-specific, requiring calls into the 'archreloc' and/or
// 'archrelocvariant' functions for the architecture. When external
// linking is in effect, it may not be  possible to completely resolve
// the address/offset for a symbol, in which case the goal is to lay
// the groundwork for turning a given relocation into an external reloc
// (to be applied by the external linker). For more on how relocations
// work in general, see
//
//	"Linkers and Loaders", by John R. Levine (Morgan Kaufmann, 1999), ch. 7
//
// This is a performance-critical function for the linker; be careful
// to avoid introducing unnecessary allocations in the main loop.
func (st *relocSymState) relocsym(s loader.Sym, P []byte) {
	ldr := st.ldr
	relocs := ldr.Relocs(s)
	if relocs.Count() == 0 {
		return
	}
	target := st.target
	syms := st.syms
	nExtReloc := 0 // number of external relocations
	for ri := 0; ri < relocs.Count(); ri++ {
		r := relocs.At(ri)
		off := r.Off()
		siz := int32(r.Siz())
		rs := r.Sym()
		rt := r.Type()
		weak := r.Weak()
		if off < 0 || off+siz > int32(len(P)) {
			rname := ""
			if rs != 0 {
				rname = ldr.SymName(rs)
			}
			st.err.Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(P))
			continue
		}
		if siz == 0 { // informational relocation - no work to do
			continue
		}

		var rst sym.SymKind
		if rs != 0 {
			rst = ldr.SymType(rs)
		}

		if rs != 0 && (rst == sym.Sxxx || rst == sym.SXREF) {
			// When putting the runtime but not main into a shared library
			// these symbols are undefined and that's OK.
			if target.IsShared() || target.IsPlugin() {
				if ldr.SymName(rs) == "main.main" || (!target.IsPlugin() && ldr.SymName(rs) == "main..inittask") {
					sb := ldr.MakeSymbolUpdater(rs)
					sb.SetType(sym.SDYNIMPORT)
				} else if strings.HasPrefix(ldr.SymName(rs), "go:info.") {
					// Skip go.info symbols. They are only needed to communicate
					// DWARF info between the compiler and linker.
					continue
				}
			} else if target.IsPPC64() && ldr.SymName(rs) == ".TOC." {
				// TOC symbol doesn't have a type but we do assign a value
				// (see the address pass) and we can resolve it.
				// TODO: give it a type.
			} else {
				st.err.errorUnresolved(ldr, s, rs)
				continue
			}
		}

		if rt >= objabi.ElfRelocOffset {
			continue
		}

		// We need to be able to reference dynimport symbols when linking against
		// shared libraries, and AIX, Darwin, OpenBSD and Solaris always need it.
		if !target.IsAIX() && !target.IsDarwin() && !target.IsSolaris() && !target.IsOpenbsd() && rs != 0 && rst == sym.SDYNIMPORT && !target.IsDynlinkingGo() && !ldr.AttrSubSymbol(rs) {
			if !(target.IsPPC64() && target.IsExternal() && ldr.SymName(rs) == ".TOC.") {
				st.err.Errorf(s, "unhandled relocation for %s (type %d (%s) rtype %d (%s))", ldr.SymName(rs), rst, rst, rt, sym.RelocName(target.Arch, rt))
			}
		}
		if rs != 0 && rst != sym.STLSBSS && !weak && rt != objabi.R_METHODOFF && !ldr.AttrReachable(rs) {
			st.err.Errorf(s, "unreachable sym in relocation: %s", ldr.SymName(rs))
		}

		var rv sym.RelocVariant
		if target.IsPPC64() || target.IsS390X() {
			rv = ldr.RelocVariant(s, ri)
		}

		// TODO(mundaym): remove this special case - see issue 14218.
		if target.IsS390X() {
			switch rt {
			case objabi.R_PCRELDBL:
				rt = objabi.R_PCREL
				rv = sym.RV_390_DBL
			case objabi.R_CALL:
				rv = sym.RV_390_DBL
			}
		}

		var o int64
		switch rt {
		default:
			switch siz {
			default:
				st.err.Errorf(s, "bad reloc size %#x for %s", uint32(siz), ldr.SymName(rs))
			case 1:
				o = int64(P[off])
			case 2:
				o = int64(target.Arch.ByteOrder.Uint16(P[off:]))
			case 4:
				o = int64(target.Arch.ByteOrder.Uint32(P[off:]))
			case 8:
				o = int64(target.Arch.ByteOrder.Uint64(P[off:]))
			}
			out, n, ok := thearch.Archreloc(target, ldr, syms, r, s, o)
			if target.IsExternal() {
				nExtReloc += n
			}
			if ok {
				o = out
			} else {
				st.err.Errorf(s, "unknown reloc to %v: %d (%s)", ldr.SymName(rs), rt, sym.RelocName(target.Arch, rt))
			}
		case objabi.R_TLS_LE:
			if target.IsExternal() && target.IsElf() {
				nExtReloc++
				o = 0
				if !target.IsAMD64() {
					o = r.Add()
				}
				break
			}

			if target.IsElf() && target.IsARM() {
				// On ELF ARM, the thread pointer is 8 bytes before
				// the start of the thread-local data block, so add 8
				// to the actual TLS offset (r->sym->value).
				// This 8 seems to be a fundamental constant of
				// ELF on ARM (or maybe Glibc on ARM); it is not
				// related to the fact that our own TLS storage happens
				// to take up 8 bytes.
				o = 8 + ldr.SymValue(rs)
			} else if target.IsElf() || target.IsPlan9() || target.IsDarwin() {
				o = int64(syms.Tlsoffset) + r.Add()
			} else if target.IsWindows() {
				o = r.Add()
			} else {
				log.Fatalf("unexpected R_TLS_LE relocation for %v", target.HeadType)
			}
		case objabi.R_TLS_IE:
			if target.IsExternal() && target.IsElf() {
				nExtReloc++
				o = 0
				if !target.IsAMD64() {
					o = r.Add()
				}
				if target.Is386() {
					nExtReloc++ // need two ELF relocations on 386, see ../x86/asm.go:elfreloc1
				}
				break
			}
			if target.IsPIE() && target.IsElf() {
				// We are linking the final executable, so we
				// can optimize any TLS IE relocation to LE.
				if thearch.TLSIEtoLE == nil {
					log.Fatalf("internal linking of TLS IE not supported on %v", target.Arch.Family)
				}
				thearch.TLSIEtoLE(P, int(off), int(siz))
				o = int64(syms.Tlsoffset)
			} else {
				log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", ldr.SymName(s))
			}
		case objabi.R_ADDR:
			if weak && !ldr.AttrReachable(rs) {
				// Redirect it to runtime.unreachableMethod, which will throw if called.
				rs = syms.unreachableMethod
			}
			if target.IsExternal() {
				nExtReloc++

				// set up addend for eventual relocation via outer symbol.
				rs := rs
				rs, off := FoldSubSymbolOffset(ldr, rs)
				xadd := r.Add() + off
				rst := ldr.SymType(rs)
				if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && rst != sym.SUNDEFEXT && ldr.SymSect(rs) == nil {
					st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs))
				}

				o = xadd
				if target.IsElf() {
					if target.IsAMD64() {
						o = 0
					}
				} else if target.IsDarwin() {
					if ldr.SymType(rs) != sym.SHOSTOBJ {
						o += ldr.SymValue(rs)
					}
				} else if target.IsWindows() {
					// nothing to do
				} else if target.IsAIX() {
					o = ldr.SymValue(rs) + xadd
				} else {
					st.err.Errorf(s, "unhandled pcrel relocation to %s on %v", ldr.SymName(rs), target.HeadType)
				}

				break
			}

			// On AIX, a second relocation must be done by the loader,
			// as section addresses can change once loaded.
			// The "default" symbol address is still needed by the loader so
			// the current relocation can't be skipped.
			if target.IsAIX() && rst != sym.SDYNIMPORT {
				// It's not possible to make a loader relocation in a
				// symbol which is not inside .data section.
				// FIXME: It should be forbidden to have R_ADDR from a
				// symbol which isn't in .data. However, as .text has the
				// same address once loaded, this is possible.
				if ldr.SymSect(s).Seg == &Segdata {
					Xcoffadddynrel(target, ldr, syms, s, r, ri)
				}
			}

			o = ldr.SymValue(rs) + r.Add()

			// On amd64, 4-byte offsets will be sign-extended, so it is impossible to
			// access more than 2GB of static data; fail at link time is better than
			// fail at runtime. See https://golang.org/issue/7980.
			// Instead of special casing only amd64, we treat this as an error on all
			// 64-bit architectures so as to be future-proof.
			if int32(o) < 0 && target.Arch.PtrSize > 4 && siz == 4 {
				st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", ldr.SymName(rs), uint64(o), ldr.SymValue(rs), r.Add())
				errorexit()
			}
		case objabi.R_DWARFSECREF:
			if ldr.SymSect(rs) == nil {
				st.err.Errorf(s, "missing DWARF section for relocation target %s", ldr.SymName(rs))
			}

			if target.IsExternal() {
				// On most platforms, the external linker needs to adjust DWARF references
				// as it combines DWARF sections. However, on Darwin, dsymutil does the
				// DWARF linking, and it understands how to follow section offsets.
				// Leaving in the relocation records confuses it (see
				// https://golang.org/issue/22068) so drop them for Darwin.
				if !target.IsDarwin() {
					nExtReloc++
				}

				xadd := r.Add() + ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr)

				o = xadd
				if target.IsElf() && target.IsAMD64() {
					o = 0
				}
				break
			}
			o = ldr.SymValue(rs) + r.Add() - int64(ldr.SymSect(rs).Vaddr)
		case objabi.R_METHODOFF:
			if !ldr.AttrReachable(rs) {
				// Set it to a sentinel value. The runtime knows this is not pointing to
				// anything valid.
				o = -1
				break
			}
			fallthrough
		case objabi.R_ADDROFF:
			if weak && !ldr.AttrReachable(rs) {
				continue
			}
			if ldr.SymSect(rs) == nil {
				st.err.Errorf(s, "unreachable sym in relocation: %s", ldr.SymName(rs))
				continue
			}

			// The method offset tables using this relocation expect the offset to be relative
			// to the start of the first text section, even if there are multiple.
			if ldr.SymSect(rs).Name == ".text" {
				o = ldr.SymValue(rs) - int64(Segtext.Sections[0].Vaddr) + r.Add()
			} else {
				o = ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr) + r.Add()
			}

		case objabi.R_ADDRCUOFF:
			// debug_range and debug_loc elements use this relocation type to get an
			// offset from the start of the compile unit.
			o = ldr.SymValue(rs) + r.Add() - ldr.SymValue(loader.Sym(ldr.SymUnit(rs).Textp[0]))

		// r.Sym() can be 0 when CALL $(constant) is transformed from absolute PC to relative PC call.
		case objabi.R_GOTPCREL:
			if target.IsDynlinkingGo() && target.IsDarwin() && rs != 0 {
				nExtReloc++
				o = r.Add()
				break
			}
			if target.Is386() && target.IsExternal() && target.IsELF {
				nExtReloc++ // need two ELF relocations on 386, see ../x86/asm.go:elfreloc1
			}
			fallthrough
		case objabi.R_CALL, objabi.R_PCREL:
			if target.IsExternal() && rs != 0 && rst == sym.SUNDEFEXT {
				// pass through to the external linker.
				nExtReloc++
				o = 0
				break
			}
			if target.IsExternal() && rs != 0 && (ldr.SymSect(rs) != ldr.SymSect(s) || rt == objabi.R_GOTPCREL) {
				nExtReloc++

				// set up addend for eventual relocation via outer symbol.
				rs := rs
				rs, off := FoldSubSymbolOffset(ldr, rs)
				xadd := r.Add() + off - int64(siz) // relative to address after the relocated chunk
				rst := ldr.SymType(rs)
				if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && ldr.SymSect(rs) == nil {
					st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs))
				}

				o = xadd
				if target.IsElf() {
					if target.IsAMD64() {
						o = 0
					}
				} else if target.IsDarwin() {
					if rt == objabi.R_CALL {
						if target.IsExternal() && rst == sym.SDYNIMPORT {
							if target.IsAMD64() {
								// AMD64 dynamic relocations are relative to the end of the relocation.
								o += int64(siz)
							}
						} else {
							if rst != sym.SHOSTOBJ {
								o += int64(uint64(ldr.SymValue(rs)) - ldr.SymSect(rs).Vaddr)
							}
							o -= int64(off) // relative to section offset, not symbol
						}
					} else {
						o += int64(siz)
					}
				} else if target.IsWindows() && target.IsAMD64() { // only amd64 needs PCREL
					// PE/COFF's PC32 relocation uses the address after the relocated
					// bytes as the base. Compensate by skewing the addend.
					o += int64(siz)
				} else {
					st.err.Errorf(s, "unhandled pcrel relocation to %s on %v", ldr.SymName(rs), target.HeadType)
				}

				break
			}

			o = 0
			if rs != 0 {
				o = ldr.SymValue(rs)
			}

			o += r.Add() - (ldr.SymValue(s) + int64(off) + int64(siz))
		case objabi.R_SIZE:
			o = ldr.SymSize(rs) + r.Add()

		case objabi.R_XCOFFREF:
			if !target.IsAIX() {
				st.err.Errorf(s, "find XCOFF R_REF on non-XCOFF files")
			}
			if !target.IsExternal() {
				st.err.Errorf(s, "find XCOFF R_REF with internal linking")
			}
			nExtReloc++
			continue

		case objabi.R_DWARFFILEREF:
			// We don't renumber files in dwarf.go:writelines anymore.
			continue

		case objabi.R_CONST:
			o = r.Add()

		case objabi.R_GOTOFF:
			o = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.GOT)
		}

		if target.IsPPC64() || target.IsS390X() {
			if rv != sym.RV_NONE {
				o = thearch.Archrelocvariant(target, ldr, r, rv, s, o, P)
			}
		}

		switch siz {
		default:
			st.err.Errorf(s, "bad reloc size %#x for %s", uint32(siz), ldr.SymName(rs))
		case 1:
			P[off] = byte(int8(o))
		case 2:
			if o != int64(int16(o)) {
				st.err.Errorf(s, "relocation address for %s is too big: %#x", ldr.SymName(rs), o)
			}
			target.Arch.ByteOrder.PutUint16(P[off:], uint16(o))
		case 4:
			if rt == objabi.R_PCREL || rt == objabi.R_CALL {
				if o != int64(int32(o)) {
					st.err.Errorf(s, "pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), o)
				}
			} else {
				if o != int64(int32(o)) && o != int64(uint32(o)) {
					st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), uint64(o))
				}
			}
			target.Arch.ByteOrder.PutUint32(P[off:], uint32(o))
		case 8:
			target.Arch.ByteOrder.PutUint64(P[off:], uint64(o))
		}
	}
	if target.IsExternal() {
		// We'll stream out the external relocations in asmb2 (e.g. elfrelocsect)
		// and we only need the count here.
		atomic.AddUint32(&ldr.SymSect(s).Relcount, uint32(nExtReloc))
	}
}

// Convert a Go relocation to an external relocation.
func extreloc(ctxt *Link, ldr *loader.Loader, s loader.Sym, r loader.Reloc) (loader.ExtReloc, bool) {
	var rr loader.ExtReloc
	target := &ctxt.Target
	siz := int32(r.Siz())
	if siz == 0 { // informational relocation - no work to do
		return rr, false
	}

	rt := r.Type()
	if rt >= objabi.ElfRelocOffset {
		return rr, false
	}
	rr.Type = rt
	rr.Size = uint8(siz)

	// TODO(mundaym): remove this special case - see issue 14218.
	if target.IsS390X() {
		switch rt {
		case objabi.R_PCRELDBL:
			rt = objabi.R_PCREL
		}
	}

	switch rt {
	default:
		return thearch.Extreloc(target, ldr, r, s)

	case objabi.R_TLS_LE, objabi.R_TLS_IE:
		if target.IsElf() {
			rs := r.Sym()
			rr.Xsym = rs
			if rr.Xsym == 0 {
				rr.Xsym = ctxt.Tlsg
			}
			rr.Xadd = r.Add()
			break
		}
		return rr, false

	case objabi.R_ADDR:
		// set up addend for eventual relocation via outer symbol.
		rs := r.Sym()
		if r.Weak() && !ldr.AttrReachable(rs) {
			rs = ctxt.ArchSyms.unreachableMethod
		}
		rs, off := FoldSubSymbolOffset(ldr, rs)
		rr.Xadd = r.Add() + off
		rr.Xsym = rs

	case objabi.R_DWARFSECREF:
		// On most platforms, the external linker needs to adjust DWARF references
		// as it combines DWARF sections. However, on Darwin, dsymutil does the
		// DWARF linking, and it understands how to follow section offsets.
		// Leaving in the relocation records confuses it (see
		// https://golang.org/issue/22068) so drop them for Darwin.
		if target.IsDarwin() {
			return rr, false
		}
		rs := r.Sym()
		rr.Xsym = loader.Sym(ldr.SymSect(rs).Sym)
		rr.Xadd = r.Add() + ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr)

	// r.Sym() can be 0 when CALL $(constant) is transformed from absolute PC to relative PC call.
	case objabi.R_GOTPCREL, objabi.R_CALL, objabi.R_PCREL:
		rs := r.Sym()
		if rt == objabi.R_GOTPCREL && target.IsDynlinkingGo() && target.IsDarwin() && rs != 0 {
			rr.Xadd = r.Add()
			rr.Xadd -= int64(siz) // relative to address after the relocated chunk
			rr.Xsym = rs
			break
		}
		if rs != 0 && ldr.SymType(rs) == sym.SUNDEFEXT {
			// pass through to the external linker.
			rr.Xadd = 0
			if target.IsElf() {
				rr.Xadd -= int64(siz)
			}
			rr.Xsym = rs
			break
		}
		if rs != 0 && (ldr.SymSect(rs) != ldr.SymSect(s) || rt == objabi.R_GOTPCREL) {
			// set up addend for eventual relocation via outer symbol.
			rs := rs
			rs, off := FoldSubSymbolOffset(ldr, rs)
			rr.Xadd = r.Add() + off
			rr.Xadd -= int64(siz) // relative to address after the relocated chunk
			rr.Xsym = rs
			break
		}
		return rr, false

	case objabi.R_XCOFFREF:
		return ExtrelocSimple(ldr, r), true

	// These reloc types don't need external relocations.
	case objabi.R_ADDROFF, objabi.R_METHODOFF, objabi.R_ADDRCUOFF,
		objabi.R_SIZE, objabi.R_CONST, objabi.R_GOTOFF:
		return rr, false
	}
	return rr, true
}

// ExtrelocSimple creates a simple external relocation from r, with the same
// symbol and addend.
func ExtrelocSimple(ldr *loader.Loader, r loader.Reloc) loader.ExtReloc {
	var rr loader.ExtReloc
	rs := r.Sym()
	rr.Xsym = rs
	rr.Xadd = r.Add()
	rr.Type = r.Type()
	rr.Size = r.Siz()
	return rr
}

// ExtrelocViaOuterSym creates an external relocation from r targeting the
// outer symbol and folding the subsymbol's offset into the addend.
func ExtrelocViaOuterSym(ldr *loader.Loader, r loader.Reloc, s loader.Sym) loader.ExtReloc {
	// set up addend for eventual relocation via outer symbol.
	var rr loader.ExtReloc
	rs := r.Sym()
	rs, off := FoldSubSymbolOffset(ldr, rs)
	rr.Xadd = r.Add() + off
	rst := ldr.SymType(rs)
	if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && rst != sym.SUNDEFEXT && ldr.SymSect(rs) == nil {
		ldr.Errorf(s, "missing section for %s", ldr.SymName(rs))
	}
	rr.Xsym = rs
	rr.Type = r.Type()
	rr.Size = r.Siz()
	return rr
}

// relocSymState hold state information needed when making a series of
// successive calls to relocsym(). The items here are invariant
// (meaning that they are set up once initially and then don't change
// during the execution of relocsym), with the exception of a slice
// used to facilitate batch allocation of external relocations. Calls
// to relocsym happen in parallel; the assumption is that each
// parallel thread will have its own state object.
type relocSymState struct {
	target *Target
	ldr    *loader.Loader
	err    *ErrorReporter
	syms   *ArchSyms
}

// makeRelocSymState creates a relocSymState container object to
// pass to relocsym(). If relocsym() calls happen in parallel,
// each parallel thread should have its own state object.
func (ctxt *Link) makeRelocSymState() *relocSymState {
	return &relocSymState{
		target: &ctxt.Target,
		ldr:    ctxt.loader,
		err:    &ctxt.ErrorReporter,
		syms:   &ctxt.ArchSyms,
	}
}

// windynrelocsym examines a text symbol 's' and looks for relocations
// from it that correspond to references to symbols defined in DLLs,
// then fixes up those relocations as needed. A reference to a symbol
// XYZ from some DLL will fall into one of two categories: an indirect
// ref via "__imp_XYZ", or a direct ref to "XYZ". Here's an example of
// an indirect ref (this is an excerpt from objdump -ldr):
//
//	     1c1: 48 89 c6                     	movq	%rax, %rsi
//	     1c4: ff 15 00 00 00 00            	callq	*(%rip)
//			00000000000001c6:  IMAGE_REL_AMD64_REL32	__imp__errno
//
// In the assembly above, the code loads up the value of __imp_errno
// and then does an indirect call to that value.
//
// Here is what a direct reference might look like:
//
//	     137: e9 20 06 00 00               	jmp	0x75c <pow+0x75c>
//	     13c: e8 00 00 00 00               	callq	0x141 <pow+0x141>
//			000000000000013d:  IMAGE_REL_AMD64_REL32	_errno
//
// The assembly below dispenses with the import symbol and just makes
// a direct call to _errno.
//
// The code below handles indirect refs by redirecting the target of
// the relocation from "__imp_XYZ" to "XYZ" (since the latter symbol
// is what the Windows loader is expected to resolve). For direct refs
// the call is redirected to a stub, where the stub first loads the
// symbol and then direct an indirect call to that value.
//
// Note that for a given symbol (as above) it is perfectly legal to
// have both direct and indirect references.
func windynrelocsym(ctxt *Link, rel *loader.SymbolBuilder, s loader.Sym) error {
	var su *loader.SymbolBuilder
	relocs := ctxt.loader.Relocs(s)
	for ri := 0; ri < relocs.Count(); ri++ {
		r := relocs.At(ri)
		if r.IsMarker() {
			continue // skip marker relocations
		}
		targ := r.Sym()
		if targ == 0 {
			continue
		}
		if !ctxt.loader.AttrReachable(targ) {
			if r.Weak() {
				continue
			}
			return fmt.Errorf("dynamic relocation to unreachable symbol %s",
				ctxt.loader.SymName(targ))
		}
		tgot := ctxt.loader.SymGot(targ)
		if tgot == loadpe.RedirectToDynImportGotToken {

			// Consistency check: name should be __imp_X
			sname := ctxt.loader.SymName(targ)
			if !strings.HasPrefix(sname, "__imp_") {
				return fmt.Errorf("internal error in windynrelocsym: redirect GOT token applied to non-import symbol %s", sname)
			}

			// Locate underlying symbol (which originally had type
			// SDYNIMPORT but has since been retyped to SWINDOWS).
			ds, err := loadpe.LookupBaseFromImport(targ, ctxt.loader, ctxt.Arch)
			if err != nil {
				return err
			}
			dstyp := ctxt.loader.SymType(ds)
			if dstyp != sym.SWINDOWS {
				return fmt.Errorf("internal error in windynrelocsym: underlying sym for %q has wrong type %s", sname, dstyp.String())
			}

			// Redirect relocation to the dynimport.
			r.SetSym(ds)
			continue
		}

		tplt := ctxt.loader.SymPlt(targ)
		if tplt == loadpe.CreateImportStubPltToken {

			// Consistency check: don't want to see both PLT and GOT tokens.
			if tgot != -1 {
				return fmt.Errorf("internal error in windynrelocsym: invalid GOT setting %d for reloc to %s", tgot, ctxt.loader.SymName(targ))
			}

			// make dynimport JMP table for PE object files.
			tplt := int32(rel.Size())
			ctxt.loader.SetPlt(targ, tplt)

			if su == nil {
				su = ctxt.loader.MakeSymbolUpdater(s)
			}
			r.SetSym(rel.Sym())
			r.SetAdd(int64(tplt))

			// jmp *addr
			switch ctxt.Arch.Family {
			default:
				return fmt.Errorf("internal error in windynrelocsym: unsupported arch %v", ctxt.Arch.Family)
			case sys.I386:
				rel.AddUint8(0xff)
				rel.AddUint8(0x25)
				rel.AddAddrPlus(ctxt.Arch, targ, 0)
				rel.AddUint8(0x90)
				rel.AddUint8(0x90)
			case sys.AMD64:
				rel.AddUint8(0xff)
				rel.AddUint8(0x24)
				rel.AddUint8(0x25)
				rel.AddAddrPlus4(ctxt.Arch, targ, 0)
				rel.AddUint8(0x90)
			}
		} else if tplt >= 0 {
			if su == nil {
				su = ctxt.loader.MakeSymbolUpdater(s)
			}
			r.SetSym(rel.Sym())
			r.SetAdd(int64(tplt))
		}
	}
	return nil
}

// windynrelocsyms generates jump table to C library functions that will be
// added later. windynrelocsyms writes the table into .rel symbol.
func (ctxt *Link) windynrelocsyms() {
	if !(ctxt.IsWindows() && iscgo && ctxt.IsInternal()) {
		return
	}

	rel := ctxt.loader.CreateSymForUpdate(".rel", 0)
	rel.SetType(sym.STEXT)

	for _, s := range ctxt.Textp {
		if err := windynrelocsym(ctxt, rel, s); err != nil {
			ctxt.Errorf(s, "%v", err)
		}
	}

	ctxt.Textp = append(ctxt.Textp, rel.Sym())
}

func dynrelocsym(ctxt *Link, s loader.Sym) {
	target := &ctxt.Target
	ldr := ctxt.loader
	syms := &ctxt.ArchSyms
	relocs := ldr.Relocs(s)
	for ri := 0; ri < relocs.Count(); ri++ {
		r := relocs.At(ri)
		if r.IsMarker() {
			continue // skip marker relocations
		}
		rSym := r.Sym()
		if r.Weak() && !ldr.AttrReachable(rSym) {
			continue
		}
		if ctxt.BuildMode == BuildModePIE && ctxt.LinkMode == LinkInternal {
			// It's expected that some relocations will be done
			// later by relocsym (R_TLS_LE, R_ADDROFF), so
			// don't worry if Adddynrel returns false.
			thearch.Adddynrel(target, ldr, syms, s, r, ri)
			continue
		}

		if rSym != 0 && ldr.SymType(rSym) == sym.SDYNIMPORT || r.Type() >= objabi.ElfRelocOffset {
			if rSym != 0 && !ldr.AttrReachable(rSym) {
				ctxt.Errorf(s, "dynamic relocation to unreachable symbol %s", ldr.SymName(rSym))
			}
			if !thearch.Adddynrel(target, ldr, syms, s, r, ri) {
				ctxt.Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", ldr.SymName(rSym), r.Type(), sym.RelocName(ctxt.Arch, r.Type()), ldr.SymType(rSym), ldr.SymType(rSym))
			}
		}
	}
}

func (state *dodataState) dynreloc(ctxt *Link) {
	if ctxt.HeadType == objabi.Hwindows {
		return
	}
	// -d suppresses dynamic loader format, so we may as well not
	// compute these sections or mark their symbols as reachable.
	if *FlagD {
		return
	}

	for _, s := range ctxt.Textp {
		dynrelocsym(ctxt, s)
	}
	for _, syms := range state.data {
		for _, s := range syms {
			dynrelocsym(ctxt, s)
		}
	}
	if ctxt.IsELF {
		elfdynhash(ctxt)
	}
}

func CodeblkPad(ctxt *Link, out *OutBuf, addr int64, size int64, pad []byte) {
	writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, ctxt.Textp, addr, size, pad)
}

const blockSize = 1 << 20 // 1MB chunks written at a time.

// writeBlocks writes a specified chunk of symbols to the output buffer. It
// breaks the write up into ≥blockSize chunks to write them out, and schedules
// as many goroutines as necessary to accomplish this task. This call then
// blocks, waiting on the writes to complete. Note that we use the sem parameter
// to limit the number of concurrent writes taking place.
func writeBlocks(ctxt *Link, out *OutBuf, sem chan int, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) {
	for i, s := range syms {
		if ldr.SymValue(s) >= addr && !ldr.AttrSubSymbol(s) {
			syms = syms[i:]
			break
		}
	}

	var wg sync.WaitGroup
	max, lastAddr, written := int64(blockSize), addr+size, int64(0)
	for addr < lastAddr {
		// Find the last symbol we'd write.
		idx := -1
		for i, s := range syms {
			if ldr.AttrSubSymbol(s) {
				continue
			}

			// If the next symbol's size would put us out of bounds on the total length,
			// stop looking.
			end := ldr.SymValue(s) + ldr.SymSize(s)
			if end > lastAddr {
				break
			}

			// We're gonna write this symbol.
			idx = i

			// If we cross over the max size, we've got enough symbols.
			if end > addr+max {
				break
			}
		}

		// If we didn't find any symbols to write, we're done here.
		if idx < 0 {
			break
		}

		// Compute the length to write, including padding.
		// We need to write to the end address (lastAddr), or the next symbol's
		// start address, whichever comes first. If there is no more symbols,
		// just write to lastAddr. This ensures we don't leave holes between the
		// blocks or at the end.
		length := int64(0)
		if idx+1 < len(syms) {
			// Find the next top-level symbol.
			// Skip over sub symbols so we won't split a container symbol
			// into two blocks.
			next := syms[idx+1]
			for ldr.AttrSubSymbol(next) {
				idx++
				next = syms[idx+1]
			}
			length = ldr.SymValue(next) - addr
		}
		if length == 0 || length > lastAddr-addr {
			length = lastAddr - addr
		}

		// Start the block output operator.
		if o, err := out.View(uint64(out.Offset() + written)); err == nil {
			sem <- 1
			wg.Add(1)
			go func(o *OutBuf, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) {
				writeBlock(ctxt, o, ldr, syms, addr, size, pad)
				wg.Done()
				<-sem
			}(o, ldr, syms, addr, length, pad)
		} else { // output not mmaped, don't parallelize.
			writeBlock(ctxt, out, ldr, syms, addr, length, pad)
		}

		// Prepare for the next loop.
		if idx != -1 {
			syms = syms[idx+1:]
		}
		written += length
		addr += length
	}
	wg.Wait()
}

func writeBlock(ctxt *Link, out *OutBuf, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) {

	st := ctxt.makeRelocSymState()

	// This doesn't distinguish the memory size from the file
	// size, and it lays out the file based on Symbol.Value, which
	// is the virtual address. DWARF compression changes file sizes,
	// so dwarfcompress will fix this up later if necessary.
	eaddr := addr + size
	for _, s := range syms {
		if ldr.AttrSubSymbol(s) {
			continue
		}
		val := ldr.SymValue(s)
		if val >= eaddr {
			break
		}
		if val < addr {
			ldr.Errorf(s, "phase error: addr=%#x but sym=%#x type=%v sect=%v", addr, val, ldr.SymType(s), ldr.SymSect(s).Name)
			errorexit()
		}
		if addr < val {
			out.WriteStringPad("", int(val-addr), pad)
			addr = val
		}
		P := out.WriteSym(ldr, s)
		st.relocsym(s, P)
		if f, ok := ctxt.generatorSyms[s]; ok {
			f(ctxt, s)
		}
		addr += int64(len(P))
		siz := ldr.SymSize(s)
		if addr < val+siz {
			out.WriteStringPad("", int(val+siz-addr), pad)
			addr = val + siz
		}
		if addr != val+siz {
			ldr.Errorf(s, "phase error: addr=%#x value+size=%#x", addr, val+siz)
			errorexit()
		}
		if val+siz >= eaddr {
			break
		}
	}

	if addr < eaddr {
		out.WriteStringPad("", int(eaddr-addr), pad)
	}
}

type writeFn func(*Link, *OutBuf, int64, int64)

// writeParallel handles scheduling parallel execution of data write functions.
func writeParallel(wg *sync.WaitGroup, fn writeFn, ctxt *Link, seek, vaddr, length uint64) {
	if out, err := ctxt.Out.View(seek); err != nil {
		ctxt.Out.SeekSet(int64(seek))
		fn(ctxt, ctxt.Out, int64(vaddr), int64(length))
	} else {
		wg.Add(1)
		go func() {
			defer wg.Done()
			fn(ctxt, out, int64(vaddr), int64(length))
		}()
	}
}

func datblk(ctxt *Link, out *OutBuf, addr, size int64) {
	writeDatblkToOutBuf(ctxt, out, addr, size)
}

// Used only on Wasm for now.
func DatblkBytes(ctxt *Link, addr int64, size int64) []byte {
	buf := make([]byte, size)
	out := &OutBuf{heap: buf}
	writeDatblkToOutBuf(ctxt, out, addr, size)
	return buf
}

func writeDatblkToOutBuf(ctxt *Link, out *OutBuf, addr int64, size int64) {
	writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, ctxt.datap, addr, size, zeros[:])
}

func dwarfblk(ctxt *Link, out *OutBuf, addr int64, size int64) {
	// Concatenate the section symbol lists into a single list to pass
	// to writeBlocks.
	//
	// NB: ideally we would do a separate writeBlocks call for each
	// section, but this would run the risk of undoing any file offset
	// adjustments made during layout.
	n := 0
	for i := range dwarfp {
		n += len(dwarfp[i].syms)
	}
	syms := make([]loader.Sym, 0, n)
	for i := range dwarfp {
		syms = append(syms, dwarfp[i].syms...)
	}
	writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, syms, addr, size, zeros[:])
}

var covCounterDataStartOff, covCounterDataLen uint64

var zeros [512]byte

var (
	strdata  = make(map[string]string)
	strnames []string
)

func addstrdata1(ctxt *Link, arg string) {
	eq := strings.Index(arg, "=")
	dot := strings.LastIndex(arg[:eq+1], ".")
	if eq < 0 || dot < 0 {
		Exitf("-X flag requires argument of the form importpath.name=value")
	}
	pkg := arg[:dot]
	if ctxt.BuildMode == BuildModePlugin && pkg == "main" {
		pkg = *flagPluginPath
	}
	pkg = objabi.PathToPrefix(pkg)
	name := pkg + arg[dot:eq]
	value := arg[eq+1:]
	if _, ok := strdata[name]; !ok {
		strnames = append(strnames, name)
	}
	strdata[name] = value
}

// addstrdata sets the initial value of the string variable name to value.
func addstrdata(arch *sys.Arch, l *loader.Loader, name, value string) {
	s := l.Lookup(name, 0)
	if s == 0 {
		return
	}
	if goType := l.SymGoType(s); goType == 0 {
		return
	} else if typeName := l.SymName(goType); typeName != "type:string" {
		Errorf(nil, "%s: cannot set with -X: not a var of type string (%s)", name, typeName)
		return
	}
	if !l.AttrReachable(s) {
		return // don't bother setting unreachable variable
	}
	bld := l.MakeSymbolUpdater(s)
	if bld.Type() == sym.SBSS {
		bld.SetType(sym.SDATA)
	}

	p := fmt.Sprintf("%s.str", name)
	sbld := l.CreateSymForUpdate(p, 0)
	sbld.Addstring(value)
	sbld.SetType(sym.SRODATA)

	// Don't reset the variable's size. String variable usually has size of
	// 2*PtrSize, but in ASAN build it can be larger due to red zone.
	// (See issue 56175.)
	bld.SetData(make([]byte, arch.PtrSize*2))
	bld.SetReadOnly(false)
	bld.ResetRelocs()
	bld.SetAddrPlus(arch, 0, sbld.Sym(), 0)
	bld.SetUint(arch, int64(arch.PtrSize), uint64(len(value)))
}

func (ctxt *Link) dostrdata() {
	for _, name := range strnames {
		addstrdata(ctxt.Arch, ctxt.loader, name, strdata[name])
	}
}

// addgostring adds str, as a Go string value, to s. symname is the name of the
// symbol used to define the string data and must be unique per linked object.
func addgostring(ctxt *Link, ldr *loader.Loader, s *loader.SymbolBuilder, symname, str string) {
	sdata := ldr.CreateSymForUpdate(symname, 0)
	if sdata.Type() != sym.Sxxx {
		ctxt.Errorf(s.Sym(), "duplicate symname in addgostring: %s", symname)
	}
	sdata.SetLocal(true)
	sdata.SetType(sym.SRODATA)
	sdata.SetSize(int64(len(str)))
	sdata.SetData([]byte(str))
	s.AddAddr(ctxt.Arch, sdata.Sym())
	s.AddUint(ctxt.Arch, uint64(len(str)))
}

func addinitarrdata(ctxt *Link, ldr *loader.Loader, s loader.Sym) {
	p := ldr.SymName(s) + ".ptr"
	sp := ldr.CreateSymForUpdate(p, 0)
	sp.SetType(sym.SINITARR)
	sp.SetSize(0)
	sp.SetDuplicateOK(true)
	sp.AddAddr(ctxt.Arch, s)
}

// symalign returns the required alignment for the given symbol s.
func symalign(ldr *loader.Loader, s loader.Sym) int32 {
	min := int32(thearch.Minalign)
	align := ldr.SymAlign(s)
	if align >= min {
		return align
	} else if align != 0 {
		return min
	}
	align = int32(thearch.Maxalign)
	ssz := ldr.SymSize(s)
	for int64(align) > ssz && align > min {
		align >>= 1
	}
	ldr.SetSymAlign(s, align)
	return align
}

func aligndatsize(state *dodataState, datsize int64, s loader.Sym) int64 {
	return Rnd(datsize, int64(symalign(state.ctxt.loader, s)))
}

const debugGCProg = false

type GCProg struct {
	ctxt *Link
	sym  *loader.SymbolBuilder
	w    gcprog.Writer
}

func (p *GCProg) Init(ctxt *Link, name string) {
	p.ctxt = ctxt
	p.sym = ctxt.loader.CreateSymForUpdate(name, 0)
	p.w.Init(p.writeByte())
	if debugGCProg {
		fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
		p.w.Debug(os.Stderr)
	}
}

func (p *GCProg) writeByte() func(x byte) {
	return func(x byte) {
		p.sym.AddUint8(x)
	}
}

func (p *GCProg) End(size int64) {
	p.w.ZeroUntil(size / int64(p.ctxt.Arch.PtrSize))
	p.w.End()
	if debugGCProg {
		fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
	}
}

func (p *GCProg) AddSym(s loader.Sym) {
	ldr := p.ctxt.loader
	typ := ldr.SymGoType(s)

	// Things without pointers should be in sym.SNOPTRDATA or sym.SNOPTRBSS;
	// everything we see should have pointers and should therefore have a type.
	if typ == 0 {
		switch ldr.SymName(s) {
		case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss":
			// Ignore special symbols that are sometimes laid out
			// as real symbols. See comment about dyld on darwin in
			// the address function.
			return
		}
		p.ctxt.Errorf(p.sym.Sym(), "missing Go type information for global symbol %s: size %d", ldr.SymName(s), ldr.SymSize(s))
		return
	}

	ptrsize := int64(p.ctxt.Arch.PtrSize)
	typData := ldr.Data(typ)
	nptr := decodetypePtrdata(p.ctxt.Arch, typData) / ptrsize

	if debugGCProg {
		fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", ldr.SymName(s), ldr.SymValue(s), ldr.SymValue(s)/ptrsize, nptr)
	}

	sval := ldr.SymValue(s)
	if decodetypeUsegcprog(p.ctxt.Arch, typData) == 0 {
		// Copy pointers from mask into program.
		mask := decodetypeGcmask(p.ctxt, typ)
		for i := int64(0); i < nptr; i++ {
			if (mask[i/8]>>uint(i%8))&1 != 0 {
				p.w.Ptr(sval/ptrsize + i)
			}
		}
		return
	}

	// Copy program.
	prog := decodetypeGcprog(p.ctxt, typ)
	p.w.ZeroUntil(sval / ptrsize)
	p.w.Append(prog[4:], nptr)
}

// cutoff is the maximum data section size permitted by the linker
// (see issue #9862).
const cutoff = 2e9 // 2 GB (or so; looks better in errors than 2^31)

func (state *dodataState) checkdatsize(symn sym.SymKind) {
	if state.datsize > cutoff {
		Errorf(nil, "too much data in section %v (over %v bytes)", symn, cutoff)
	}
}

// fixZeroSizedSymbols gives a few special symbols with zero size some space.
func fixZeroSizedSymbols(ctxt *Link) {
	// The values in moduledata are filled out by relocations
	// pointing to the addresses of these special symbols.
	// Typically these symbols have no size and are not laid
	// out with their matching section.
	//
	// However on darwin, dyld will find the special symbol
	// in the first loaded module, even though it is local.
	//
	// (An hypothesis, formed without looking in the dyld sources:
	// these special symbols have no size, so their address
	// matches a real symbol. The dynamic linker assumes we
	// want the normal symbol with the same address and finds
	// it in the other module.)
	//
	// To work around this we lay out the symbls whose
	// addresses are vital for multi-module programs to work
	// as normal symbols, and give them a little size.
	//
	// On AIX, as all DATA sections are merged together, ld might not put
	// these symbols at the beginning of their respective section if there
	// aren't real symbols, their alignment might not match the
	// first symbol alignment. Therefore, there are explicitly put at the
	// beginning of their section with the same alignment.
	if !(ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) && !(ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) {
		return
	}

	ldr := ctxt.loader
	bss := ldr.CreateSymForUpdate("runtime.bss", 0)
	bss.SetSize(8)
	ldr.SetAttrSpecial(bss.Sym(), false)

	ebss := ldr.CreateSymForUpdate("runtime.ebss", 0)
	ldr.SetAttrSpecial(ebss.Sym(), false)

	data := ldr.CreateSymForUpdate("runtime.data", 0)
	data.SetSize(8)
	ldr.SetAttrSpecial(data.Sym(), false)

	edata := ldr.CreateSymForUpdate("runtime.edata", 0)
	ldr.SetAttrSpecial(edata.Sym(), false)

	if ctxt.HeadType == objabi.Haix {
		// XCOFFTOC symbols are part of .data section.
		edata.SetType(sym.SXCOFFTOC)
	}

	types := ldr.CreateSymForUpdate("runtime.types", 0)
	types.SetType(sym.STYPE)
	types.SetSize(8)
	ldr.SetAttrSpecial(types.Sym(), false)

	etypes := ldr.CreateSymForUpdate("runtime.etypes", 0)
	etypes.SetType(sym.SFUNCTAB)
	ldr.SetAttrSpecial(etypes.Sym(), false)

	if ctxt.HeadType == objabi.Haix {
		rodata := ldr.CreateSymForUpdate("runtime.rodata", 0)
		rodata.SetType(sym.SSTRING)
		rodata.SetSize(8)
		ldr.SetAttrSpecial(rodata.Sym(), false)

		erodata := ldr.CreateSymForUpdate("runtime.erodata", 0)
		ldr.SetAttrSpecial(erodata.Sym(), false)
	}
}

// makeRelroForSharedLib creates a section of readonly data if necessary.
func (state *dodataState) makeRelroForSharedLib(target *Link) {
	if !target.UseRelro() {
		return
	}

	// "read only" data with relocations needs to go in its own section
	// when building a shared library. We do this by boosting objects of
	// type SXXX with relocations to type SXXXRELRO.
	ldr := target.loader
	for _, symnro := range sym.ReadOnly {
		symnrelro := sym.RelROMap[symnro]

		ro := []loader.Sym{}
		relro := state.data[symnrelro]

		for _, s := range state.data[symnro] {
			relocs := ldr.Relocs(s)
			isRelro := relocs.Count() > 0
			switch state.symType(s) {
			case sym.STYPE, sym.STYPERELRO, sym.SGOFUNCRELRO:
				// Symbols are not sorted yet, so it is possible
				// that an Outer symbol has been changed to a
				// relro Type before it reaches here.
				isRelro = true
			case sym.SFUNCTAB:
				if ldr.SymName(s) == "runtime.etypes" {
					// runtime.etypes must be at the end of
					// the relro data.
					isRelro = true
				}
			case sym.SGOFUNC:
				// The only SGOFUNC symbols that contain relocations are .stkobj,
				// and their relocations are of type objabi.R_ADDROFF,
				// which always get resolved during linking.
				isRelro = false
			}
			if isRelro {
				state.setSymType(s, symnrelro)
				if outer := ldr.OuterSym(s); outer != 0 {
					state.setSymType(outer, symnrelro)
				}
				relro = append(relro, s)
			} else {
				ro = append(ro, s)
			}
		}

		// Check that we haven't made two symbols with the same .Outer into
		// different types (because references two symbols with non-nil Outer
		// become references to the outer symbol + offset it's vital that the
		// symbol and the outer end up in the same section).
		for _, s := range relro {
			if outer := ldr.OuterSym(s); outer != 0 {
				st := state.symType(s)
				ost := state.symType(outer)
				if st != ost {
					state.ctxt.Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)",
						ldr.SymName(outer), st, ost)
				}
			}
		}

		state.data[symnro] = ro
		state.data[symnrelro] = relro
	}
}

// dodataState holds bits of state information needed by dodata() and the
// various helpers it calls. The lifetime of these items should not extend
// past the end of dodata().
type dodataState struct {
	// Link context
	ctxt *Link
	// Data symbols bucketed by type.
	data [sym.SXREF][]loader.Sym
	// Max alignment for each flavor of data symbol.
	dataMaxAlign [sym.SXREF]int32
	// Overridden sym type
	symGroupType []sym.SymKind
	// Current data size so far.
	datsize int64
}

// A note on symType/setSymType below:
//
// In the legacy linker, the types of symbols (notably data symbols) are
// changed during the symtab() phase so as to insure that similar symbols
// are bucketed together, then their types are changed back again during
// dodata. Symbol to section assignment also plays tricks along these lines
// in the case where a relro segment is needed.
//
// The value returned from setType() below reflects the effects of
// any overrides made by symtab and/or dodata.

// symType returns the (possibly overridden) type of 's'.
func (state *dodataState) symType(s loader.Sym) sym.SymKind {
	if int(s) < len(state.symGroupType) {
		if override := state.symGroupType[s]; override != 0 {
			return override
		}
	}
	return state.ctxt.loader.SymType(s)
}

// setSymType sets a new override type for 's'.
func (state *dodataState) setSymType(s loader.Sym, kind sym.SymKind) {
	if s == 0 {
		panic("bad")
	}
	if int(s) < len(state.symGroupType) {
		state.symGroupType[s] = kind
	} else {
		su := state.ctxt.loader.MakeSymbolUpdater(s)
		su.SetType(kind)
	}
}

func (ctxt *Link) dodata(symGroupType []sym.SymKind) {

	// Give zeros sized symbols space if necessary.
	fixZeroSizedSymbols(ctxt)

	// Collect data symbols by type into data.
	state := dodataState{ctxt: ctxt, symGroupType: symGroupType}
	ldr := ctxt.loader
	for s := loader.Sym(1); s < loader.Sym(ldr.NSym()); s++ {
		if !ldr.AttrReachable(s) || ldr.AttrSpecial(s) || ldr.AttrSubSymbol(s) ||
			!ldr.TopLevelSym(s) {
			continue
		}

		st := state.symType(s)

		if st <= sym.STEXT || st >= sym.SXREF {
			continue
		}
		state.data[st] = append(state.data[st], s)

		// Similarly with checking the onlist attr.
		if ldr.AttrOnList(s) {
			log.Fatalf("symbol %s listed multiple times", ldr.SymName(s))
		}
		ldr.SetAttrOnList(s, true)
	}

	// Now that we have the data symbols, but before we start
	// to assign addresses, record all the necessary
	// dynamic relocations. These will grow the relocation
	// symbol, which is itself data.
	//
	// On darwin, we need the symbol table numbers for dynreloc.
	if ctxt.HeadType == objabi.Hdarwin {
		machosymorder(ctxt)
	}
	state.dynreloc(ctxt)

	// Move any RO data with relocations to a separate section.
	state.makeRelroForSharedLib(ctxt)

	// Set alignment for the symbol with the largest known index,
	// so as to trigger allocation of the loader's internal
	// alignment array. This will avoid data races in the parallel
	// section below.
	lastSym := loader.Sym(ldr.NSym() - 1)
	ldr.SetSymAlign(lastSym, ldr.SymAlign(lastSym))

	// Sort symbols.
	var wg sync.WaitGroup
	for symn := range state.data {
		symn := sym.SymKind(symn)
		wg.Add(1)
		go func() {
			state.data[symn], state.dataMaxAlign[symn] = state.dodataSect(ctxt, symn, state.data[symn])
			wg.Done()
		}()
	}
	wg.Wait()

	if ctxt.IsELF {
		// Make .rela and .rela.plt contiguous, the ELF ABI requires this
		// and Solaris actually cares.
		syms := state.data[sym.SELFROSECT]
		reli, plti := -1, -1
		for i, s := range syms {
			switch ldr.SymName(s) {
			case ".rel.plt", ".rela.plt":
				plti = i
			case ".rel", ".rela":
				reli = i
			}
		}
		if reli >= 0 && plti >= 0 && plti != reli+1 {
			var first, second int
			if plti > reli {
				first, second = reli, plti
			} else {
				first, second = plti, reli
			}
			rel, plt := syms[reli], syms[plti]
			copy(syms[first+2:], syms[first+1:second])
			syms[first+0] = rel
			syms[first+1] = plt

			// Make sure alignment doesn't introduce a gap.
			// Setting the alignment explicitly prevents
			// symalign from basing it on the size and
			// getting it wrong.
			ldr.SetSymAlign(rel, int32(ctxt.Arch.RegSize))
			ldr.SetSymAlign(plt, int32(ctxt.Arch.RegSize))
		}
		state.data[sym.SELFROSECT] = syms
	}

	if ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal {
		// These symbols must have the same alignment as their section.
		// Otherwise, ld might change the layout of Go sections.
		ldr.SetSymAlign(ldr.Lookup("runtime.data", 0), state.dataMaxAlign[sym.SDATA])
		ldr.SetSymAlign(ldr.Lookup("runtime.bss", 0), state.dataMaxAlign[sym.SBSS])
	}

	// Create *sym.Section objects and assign symbols to sections for
	// data/rodata (and related) symbols.
	state.allocateDataSections(ctxt)

	// Create *sym.Section objects and assign symbols to sections for
	// DWARF symbols.
	state.allocateDwarfSections(ctxt)

	/* number the sections */
	n := int16(1)

	for _, sect := range Segtext.Sections {
		sect.Extnum = n
		n++
	}
	for _, sect := range Segrodata.Sections {
		sect.Extnum = n
		n++
	}
	for _, sect := range Segrelrodata.Sections {
		sect.Extnum = n
		n++
	}
	for _, sect := range Segdata.Sections {
		sect.Extnum = n
		n++
	}
	for _, sect := range Segdwarf.Sections {
		sect.Extnum = n
		n++
	}
}

// allocateDataSectionForSym creates a new sym.Section into which a a
// single symbol will be placed. Here "seg" is the segment into which
// the section will go, "s" is the symbol to be placed into the new
// section, and "rwx" contains permissions for the section.
func (state *dodataState) allocateDataSectionForSym(seg *sym.Segment, s loader.Sym, rwx int) *sym.Section {
	ldr := state.ctxt.loader
	sname := ldr.SymName(s)
	if strings.HasPrefix(sname, "go:") {
		sname = ".go." + sname[len("go:"):]
	}
	sect := addsection(ldr, state.ctxt.Arch, seg, sname, rwx)
	sect.Align = symalign(ldr, s)
	state.datsize = Rnd(state.datsize, int64(sect.Align))
	sect.Vaddr = uint64(state.datsize)
	return sect
}

// allocateNamedDataSection creates a new sym.Section for a category
// of data symbols. Here "seg" is the segment into which the section
// will go, "sName" is the name to give to the section, "types" is a
// range of symbol types to be put into the section, and "rwx"
// contains permissions for the section.
func (state *dodataState) allocateNamedDataSection(seg *sym.Segment, sName string, types []sym.SymKind, rwx int) *sym.Section {
	sect := addsection(state.ctxt.loader, state.ctxt.Arch, seg, sName, rwx)
	if len(types) == 0 {
		sect.Align = 1
	} else if len(types) == 1 {
		sect.Align = state.dataMaxAlign[types[0]]
	} else {
		for _, symn := range types {
			align := state.dataMaxAlign[symn]
			if sect.Align < align {
				sect.Align = align
			}
		}
	}
	state.datsize = Rnd(state.datsize, int64(sect.Align))
	sect.Vaddr = uint64(state.datsize)
	return sect
}

// assignDsymsToSection assigns a collection of data symbols to a
// newly created section. "sect" is the section into which to place
// the symbols, "syms" holds the list of symbols to assign,
// "forceType" (if non-zero) contains a new sym type to apply to each
// sym during the assignment, and "aligner" is a hook to call to
// handle alignment during the assignment process.
func (state *dodataState) assignDsymsToSection(sect *sym.Section, syms []loader.Sym, forceType sym.SymKind, aligner func(state *dodataState, datsize int64, s loader.Sym) int64) {
	ldr := state.ctxt.loader
	for _, s := range syms {
		state.datsize = aligner(state, state.datsize, s)
		ldr.SetSymSect(s, sect)
		if forceType != sym.Sxxx {
			state.setSymType(s, forceType)
		}
		ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr))
		state.datsize += ldr.SymSize(s)
	}
	sect.Length = uint64(state.datsize) - sect.Vaddr
}

func (state *dodataState) assignToSection(sect *sym.Section, symn sym.SymKind, forceType sym.SymKind) {
	state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize)
	state.checkdatsize(symn)
}

// allocateSingleSymSections walks through the bucketed data symbols
// with type 'symn', creates a new section for each sym, and assigns
// the sym to a newly created section. Section name is set from the
// symbol name. "Seg" is the segment into which to place the new
// section, "forceType" is the new sym.SymKind to assign to the symbol
// within the section, and "rwx" holds section permissions.
func (state *dodataState) allocateSingleSymSections(seg *sym.Segment, symn sym.SymKind, forceType sym.SymKind, rwx int) {
	ldr := state.ctxt.loader
	for _, s := range state.data[symn] {
		sect := state.allocateDataSectionForSym(seg, s, rwx)
		ldr.SetSymSect(s, sect)
		state.setSymType(s, forceType)
		ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr))
		state.datsize += ldr.SymSize(s)
		sect.Length = uint64(state.datsize) - sect.Vaddr
	}
	state.checkdatsize(symn)
}

// allocateNamedSectionAndAssignSyms creates a new section with the
// specified name, then walks through the bucketed data symbols with
// type 'symn' and assigns each of them to this new section. "Seg" is
// the segment into which to place the new section, "secName" is the
// name to give to the new section, "forceType" (if non-zero) contains
// a new sym type to apply to each sym during the assignment, and
// "rwx" holds section permissions.
func (state *dodataState) allocateNamedSectionAndAssignSyms(seg *sym.Segment, secName string, symn sym.SymKind, forceType sym.SymKind, rwx int) *sym.Section {

	sect := state.allocateNamedDataSection(seg, secName, []sym.SymKind{symn}, rwx)
	state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize)
	return sect
}

// allocateDataSections allocates sym.Section objects for data/rodata
// (and related) symbols, and then assigns symbols to those sections.
func (state *dodataState) allocateDataSections(ctxt *Link) {
	// Allocate sections.
	// Data is processed before segtext, because we need
	// to see all symbols in the .data and .bss sections in order
	// to generate garbage collection information.

	// Writable data sections that do not need any specialized handling.
	writable := []sym.SymKind{
		sym.SBUILDINFO,
		sym.SELFSECT,
		sym.SMACHO,
		sym.SMACHOGOT,
		sym.SWINDOWS,
	}
	for _, symn := range writable {
		state.allocateSingleSymSections(&Segdata, symn, sym.SDATA, 06)
	}
	ldr := ctxt.loader

	// .got
	if len(state.data[sym.SELFGOT]) > 0 {
		state.allocateNamedSectionAndAssignSyms(&Segdata, ".got", sym.SELFGOT, sym.SDATA, 06)
	}

	/* pointer-free data */
	sect := state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrdata", sym.SNOPTRDATA, sym.SDATA, 06)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.noptrdata", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.enoptrdata", 0), sect)

	hasinitarr := ctxt.linkShared

	/* shared library initializer */
	switch ctxt.BuildMode {
	case BuildModeCArchive, BuildModeCShared, BuildModeShared, BuildModePlugin:
		hasinitarr = true
	}

	if ctxt.HeadType == objabi.Haix {
		if len(state.data[sym.SINITARR]) > 0 {
			Errorf(nil, "XCOFF format doesn't allow .init_array section")
		}
	}

	if hasinitarr && len(state.data[sym.SINITARR]) > 0 {
		state.allocateNamedSectionAndAssignSyms(&Segdata, ".init_array", sym.SINITARR, sym.Sxxx, 06)
	}

	/* data */
	sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".data", sym.SDATA, sym.SDATA, 06)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.data", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.edata", 0), sect)
	dataGcEnd := state.datsize - int64(sect.Vaddr)

	// On AIX, TOC entries must be the last of .data
	// These aren't part of gc as they won't change during the runtime.
	state.assignToSection(sect, sym.SXCOFFTOC, sym.SDATA)
	state.checkdatsize(sym.SDATA)
	sect.Length = uint64(state.datsize) - sect.Vaddr

	/* bss */
	sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".bss", sym.SBSS, sym.Sxxx, 06)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.bss", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.ebss", 0), sect)
	bssGcEnd := state.datsize - int64(sect.Vaddr)

	// Emit gcdata for bss symbols now that symbol values have been assigned.
	gcsToEmit := []struct {
		symName string
		symKind sym.SymKind
		gcEnd   int64
	}{
		{"runtime.gcdata", sym.SDATA, dataGcEnd},
		{"runtime.gcbss", sym.SBSS, bssGcEnd},
	}
	for _, g := range gcsToEmit {
		var gc GCProg
		gc.Init(ctxt, g.symName)
		for _, s := range state.data[g.symKind] {
			gc.AddSym(s)
		}
		gc.End(g.gcEnd)
	}

	/* pointer-free bss */
	sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrbss", sym.SNOPTRBSS, sym.Sxxx, 06)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.noptrbss", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.enoptrbss", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.end", 0), sect)

	// Code coverage counters are assigned to the .noptrbss section.
	// We assign them in a separate pass so that they stay aggregated
	// together in a single blob (coverage runtime depends on this).
	covCounterDataStartOff = sect.Length
	state.assignToSection(sect, sym.SCOVERAGE_COUNTER, sym.SNOPTRBSS)
	covCounterDataLen = sect.Length - covCounterDataStartOff
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.covctrs", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.ecovctrs", 0), sect)

	// Coverage instrumentation counters for libfuzzer.
	if len(state.data[sym.SLIBFUZZER_8BIT_COUNTER]) > 0 {
		sect := state.allocateNamedSectionAndAssignSyms(&Segdata, ".go.fuzzcntrs", sym.SLIBFUZZER_8BIT_COUNTER, sym.Sxxx, 06)
		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.__start___sancov_cntrs", 0), sect)
		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.__stop___sancov_cntrs", 0), sect)
		ldr.SetSymSect(ldr.LookupOrCreateSym("internal/fuzz._counters", 0), sect)
		ldr.SetSymSect(ldr.LookupOrCreateSym("internal/fuzz._ecounters", 0), sect)
	}

	if len(state.data[sym.STLSBSS]) > 0 {
		var sect *sym.Section
		// FIXME: not clear why it is sometimes necessary to suppress .tbss section creation.
		if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && (ctxt.LinkMode == LinkExternal || !*FlagD) {
			sect = addsection(ldr, ctxt.Arch, &Segdata, ".tbss", 06)
			sect.Align = int32(ctxt.Arch.PtrSize)
			// FIXME: why does this need to be set to zero?
			sect.Vaddr = 0
		}
		state.datsize = 0

		for _, s := range state.data[sym.STLSBSS] {
			state.datsize = aligndatsize(state, state.datsize, s)
			if sect != nil {
				ldr.SetSymSect(s, sect)
			}
			ldr.SetSymValue(s, state.datsize)
			state.datsize += ldr.SymSize(s)
		}
		state.checkdatsize(sym.STLSBSS)

		if sect != nil {
			sect.Length = uint64(state.datsize)
		}
	}

	/*
	 * We finished data, begin read-only data.
	 * Not all systems support a separate read-only non-executable data section.
	 * ELF and Windows PE systems do.
	 * OS X and Plan 9 do not.
	 * And if we're using external linking mode, the point is moot,
	 * since it's not our decision; that code expects the sections in
	 * segtext.
	 */
	var segro *sym.Segment
	if ctxt.IsELF && ctxt.LinkMode == LinkInternal {
		segro = &Segrodata
	} else if ctxt.HeadType == objabi.Hwindows {
		segro = &Segrodata
	} else {
		segro = &Segtext
	}

	state.datsize = 0

	/* read-only executable ELF, Mach-O sections */
	if len(state.data[sym.STEXT]) != 0 {
		culprit := ldr.SymName(state.data[sym.STEXT][0])
		Errorf(nil, "dodata found an sym.STEXT symbol: %s", culprit)
	}
	state.allocateSingleSymSections(&Segtext, sym.SELFRXSECT, sym.SRODATA, 05)
	state.allocateSingleSymSections(&Segtext, sym.SMACHOPLT, sym.SRODATA, 05)

	/* read-only data */
	sect = state.allocateNamedDataSection(segro, ".rodata", sym.ReadOnly, 04)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.rodata", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.erodata", 0), sect)
	if !ctxt.UseRelro() {
		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.types", 0), sect)
		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.etypes", 0), sect)
	}
	for _, symn := range sym.ReadOnly {
		symnStartValue := state.datsize
		if len(state.data[symn]) != 0 {
			symnStartValue = aligndatsize(state, symnStartValue, state.data[symn][0])
		}
		state.assignToSection(sect, symn, sym.SRODATA)
		setCarrierSize(symn, state.datsize-symnStartValue)
		if ctxt.HeadType == objabi.Haix {
			// Read-only symbols might be wrapped inside their outer
			// symbol.
			// XCOFF symbol table needs to know the size of
			// these outer symbols.
			xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn)
		}
	}

	/* read-only ELF, Mach-O sections */
	state.allocateSingleSymSections(segro, sym.SELFROSECT, sym.SRODATA, 04)

	// There is some data that are conceptually read-only but are written to by
	// relocations. On GNU systems, we can arrange for the dynamic linker to
	// mprotect sections after relocations are applied by giving them write
	// permissions in the object file and calling them ".data.rel.ro.FOO". We
	// divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
	// but for the other sections that this applies to, we just write a read-only
	// .FOO section or a read-write .data.rel.ro.FOO section depending on the
	// situation.
	// TODO(mwhudson): It would make sense to do this more widely, but it makes
	// the system linker segfault on darwin.
	const relroPerm = 06
	const fallbackPerm = 04
	relroSecPerm := fallbackPerm
	genrelrosecname := func(suffix string) string {
		if suffix == "" {
			return ".rodata"
		}
		return suffix
	}
	seg := segro

	if ctxt.UseRelro() {
		segrelro := &Segrelrodata
		if ctxt.LinkMode == LinkExternal && !ctxt.IsAIX() && !ctxt.IsDarwin() {
			// Using a separate segment with an external
			// linker results in some programs moving
			// their data sections unexpectedly, which
			// corrupts the moduledata. So we use the
			// rodata segment and let the external linker
			// sort out a rel.ro segment.
			segrelro = segro
		} else {
			// Reset datsize for new segment.
			state.datsize = 0
		}

		if !ctxt.IsDarwin() { // We don't need the special names on darwin.
			genrelrosecname = func(suffix string) string {
				return ".data.rel.ro" + suffix
			}
		}

		relroReadOnly := []sym.SymKind{}
		for _, symnro := range sym.ReadOnly {
			symn := sym.RelROMap[symnro]
			relroReadOnly = append(relroReadOnly, symn)
		}
		seg = segrelro
		relroSecPerm = relroPerm

		/* data only written by relocations */
		sect = state.allocateNamedDataSection(segrelro, genrelrosecname(""), relroReadOnly, relroSecPerm)

		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.types", 0), sect)
		ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.etypes", 0), sect)

		for i, symnro := range sym.ReadOnly {
			if i == 0 && symnro == sym.STYPE && ctxt.HeadType != objabi.Haix {
				// Skip forward so that no type
				// reference uses a zero offset.
				// This is unlikely but possible in small
				// programs with no other read-only data.
				state.datsize++
			}

			symn := sym.RelROMap[symnro]
			symnStartValue := state.datsize
			if len(state.data[symn]) != 0 {
				symnStartValue = aligndatsize(state, symnStartValue, state.data[symn][0])
			}

			for _, s := range state.data[symn] {
				outer := ldr.OuterSym(s)
				if s != 0 && ldr.SymSect(outer) != nil && ldr.SymSect(outer) != sect {
					ctxt.Errorf(s, "s.Outer (%s) in different section from s, %s != %s", ldr.SymName(outer), ldr.SymSect(outer).Name, sect.Name)
				}
			}
			state.assignToSection(sect, symn, sym.SRODATA)
			setCarrierSize(symn, state.datsize-symnStartValue)
			if ctxt.HeadType == objabi.Haix {
				// Read-only symbols might be wrapped inside their outer
				// symbol.
				// XCOFF symbol table needs to know the size of
				// these outer symbols.
				xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn)
			}
		}

		sect.Length = uint64(state.datsize) - sect.Vaddr
	}

	/* typelink */
	sect = state.allocateNamedDataSection(seg, genrelrosecname(".typelink"), []sym.SymKind{sym.STYPELINK}, relroSecPerm)

	typelink := ldr.CreateSymForUpdate("runtime.typelink", 0)
	ldr.SetSymSect(typelink.Sym(), sect)
	typelink.SetType(sym.SRODATA)
	state.datsize += typelink.Size()
	state.checkdatsize(sym.STYPELINK)
	sect.Length = uint64(state.datsize) - sect.Vaddr

	/* itablink */
	sect = state.allocateNamedDataSection(seg, genrelrosecname(".itablink"), []sym.SymKind{sym.SITABLINK}, relroSecPerm)

	itablink := ldr.CreateSymForUpdate("runtime.itablink", 0)
	ldr.SetSymSect(itablink.Sym(), sect)
	itablink.SetType(sym.SRODATA)
	state.datsize += itablink.Size()
	state.checkdatsize(sym.SITABLINK)
	sect.Length = uint64(state.datsize) - sect.Vaddr

	/* gosymtab */
	sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gosymtab"), sym.SSYMTAB, sym.SRODATA, relroSecPerm)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.symtab", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.esymtab", 0), sect)

	/* gopclntab */
	sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gopclntab"), sym.SPCLNTAB, sym.SRODATA, relroSecPerm)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pclntab", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pcheader", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.funcnametab", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.cutab", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.filetab", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pctab", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.functab", 0), sect)
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.epclntab", 0), sect)
	setCarrierSize(sym.SPCLNTAB, int64(sect.Length))
	if ctxt.HeadType == objabi.Haix {
		xcoffUpdateOuterSize(ctxt, int64(sect.Length), sym.SPCLNTAB)
	}

	// 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
	if state.datsize != int64(uint32(state.datsize)) {
		Errorf(nil, "read-only data segment too large: %d", state.datsize)
	}

	siz := 0
	for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ {
		siz += len(state.data[symn])
	}
	ctxt.datap = make([]loader.Sym, 0, siz)
	for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ {
		ctxt.datap = append(ctxt.datap, state.data[symn]...)
	}
}

// allocateDwarfSections allocates sym.Section objects for DWARF
// symbols, and assigns symbols to sections.
func (state *dodataState) allocateDwarfSections(ctxt *Link) {

	alignOne := func(state *dodataState, datsize int64, s loader.Sym) int64 { return datsize }

	ldr := ctxt.loader
	for i := 0; i < len(dwarfp); i++ {
		// First the section symbol.
		s := dwarfp[i].secSym()
		sect := state.allocateNamedDataSection(&Segdwarf, ldr.SymName(s), []sym.SymKind{}, 04)
		ldr.SetSymSect(s, sect)
		sect.Sym = sym.LoaderSym(s)
		curType := ldr.SymType(s)
		state.setSymType(s, sym.SRODATA)
		ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr))
		state.datsize += ldr.SymSize(s)

		// Then any sub-symbols for the section symbol.
		subSyms := dwarfp[i].subSyms()
		state.assignDsymsToSection(sect, subSyms, sym.SRODATA, alignOne)

		for j := 0; j < len(subSyms); j++ {
			s := subSyms[j]
			if ctxt.HeadType == objabi.Haix && curType == sym.SDWARFLOC {
				// Update the size of .debug_loc for this symbol's
				// package.
				addDwsectCUSize(".debug_loc", ldr.SymPkg(s), uint64(ldr.SymSize(s)))
			}
		}
		sect.Length = uint64(state.datsize) - sect.Vaddr
		state.checkdatsize(curType)
	}
}

type symNameSize struct {
	name string
	sz   int64
	val  int64
	sym  loader.Sym
}

func (state *dodataState) dodataSect(ctxt *Link, symn sym.SymKind, syms []loader.Sym) (result []loader.Sym, maxAlign int32) {
	var head, tail loader.Sym
	ldr := ctxt.loader
	sl := make([]symNameSize, len(syms))
	for k, s := range syms {
		ss := ldr.SymSize(s)
		sl[k] = symNameSize{name: ldr.SymName(s), sz: ss, sym: s}
		ds := int64(len(ldr.Data(s)))
		switch {
		case ss < ds:
			ctxt.Errorf(s, "initialize bounds (%d < %d)", ss, ds)
		case ss < 0:
			ctxt.Errorf(s, "negative size (%d bytes)", ss)
		case ss > cutoff:
			ctxt.Errorf(s, "symbol too large (%d bytes)", ss)
		}

		// If the usually-special section-marker symbols are being laid
		// out as regular symbols, put them either at the beginning or
		// end of their section.
		if (ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) || (ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) {
			switch ldr.SymName(s) {
			case "runtime.text", "runtime.bss", "runtime.data", "runtime.types", "runtime.rodata":
				head = s
				continue
			case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes", "runtime.erodata":
				tail = s
				continue
			}
		}
	}

	// For ppc64, we want to interleave the .got and .toc sections
	// from input files. Both are type sym.SELFGOT, so in that case
	// we skip size comparison and fall through to the name
	// comparison (conveniently, .got sorts before .toc).
	checkSize := symn != sym.SELFGOT

	// Perform the sort.
	if symn != sym.SPCLNTAB {
		sort.Slice(sl, func(i, j int) bool {
			si, sj := sl[i].sym, sl[j].sym
			switch {
			case si == head, sj == tail:
				return true
			case sj == head, si == tail:
				return false
			}
			if checkSize {
				isz := sl[i].sz
				jsz := sl[j].sz
				if isz != jsz {
					return isz < jsz
				}
			}
			iname := sl[i].name
			jname := sl[j].name
			if iname != jname {
				return iname < jname
			}
			return si < sj
		})
	} else {
		// PCLNTAB was built internally, and already has the proper order.
	}

	// Set alignment, construct result
	syms = syms[:0]
	for k := range sl {
		s := sl[k].sym
		if s != head && s != tail {
			align := symalign(ldr, s)
			if maxAlign < align {
				maxAlign = align
			}
		}
		syms = append(syms, s)
	}

	return syms, maxAlign
}

// Add buildid to beginning of text segment, on non-ELF systems.
// Non-ELF binary formats are not always flexible enough to
// give us a place to put the Go build ID. On those systems, we put it
// at the very beginning of the text segment.
// This “header” is read by cmd/go.
func (ctxt *Link) textbuildid() {
	if ctxt.IsELF || ctxt.BuildMode == BuildModePlugin || *flagBuildid == "" {
		return
	}

	ldr := ctxt.loader
	s := ldr.CreateSymForUpdate("go:buildid", 0)
	// The \xff is invalid UTF-8, meant to make it less likely
	// to find one of these accidentally.
	data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff"
	s.SetType(sym.STEXT)
	s.SetData([]byte(data))
	s.SetSize(int64(len(data)))

	ctxt.Textp = append(ctxt.Textp, 0)
	copy(ctxt.Textp[1:], ctxt.Textp)
	ctxt.Textp[0] = s.Sym()
}

func (ctxt *Link) buildinfo() {
	if ctxt.linkShared || ctxt.BuildMode == BuildModePlugin {
		// -linkshared and -buildmode=plugin get confused
		// about the relocations in go.buildinfo
		// pointing at the other data sections.
		// The version information is only available in executables.
		return
	}

	// Write the buildinfo symbol, which go version looks for.
	// The code reading this data is in package debug/buildinfo.
	ldr := ctxt.loader
	s := ldr.CreateSymForUpdate("go:buildinfo", 0)
	s.SetType(sym.SBUILDINFO)
	s.SetAlign(16)
	// The \xff is invalid UTF-8, meant to make it less likely
	// to find one of these accidentally.
	const prefix = "\xff Go buildinf:" // 14 bytes, plus 2 data bytes filled in below
	data := make([]byte, 32)
	copy(data, prefix)
	data[len(prefix)] = byte(ctxt.Arch.PtrSize)
	data[len(prefix)+1] = 0
	if ctxt.Arch.ByteOrder == binary.BigEndian {
		data[len(prefix)+1] = 1
	}
	data[len(prefix)+1] |= 2 // signals new pointer-free format
	data = appendString(data, strdata["runtime.buildVersion"])
	data = appendString(data, strdata["runtime.modinfo"])
	// MacOS linker gets very upset if the size os not a multiple of alignment.
	for len(data)%16 != 0 {
		data = append(data, 0)
	}
	s.SetData(data)
	s.SetSize(int64(len(data)))

	// Add reference to go:buildinfo from the rodata section,
	// so that external linking with -Wl,--gc-sections does not
	// delete the build info.
	sr := ldr.CreateSymForUpdate("go:buildinfo.ref", 0)
	sr.SetType(sym.SRODATA)
	sr.SetAlign(int32(ctxt.Arch.PtrSize))
	sr.AddAddr(ctxt.Arch, s.Sym())
}

// appendString appends s to data, prefixed by its varint-encoded length.
func appendString(data []byte, s string) []byte {
	var v [binary.MaxVarintLen64]byte
	n := binary.PutUvarint(v[:], uint64(len(s)))
	data = append(data, v[:n]...)
	data = append(data, s...)
	return data
}

// assign addresses to text
func (ctxt *Link) textaddress() {
	addsection(ctxt.loader, ctxt.Arch, &Segtext, ".text", 05)

	// Assign PCs in text segment.
	// Could parallelize, by assigning to text
	// and then letting threads copy down, but probably not worth it.
	sect := Segtext.Sections[0]

	sect.Align = int32(Funcalign)

	ldr := ctxt.loader

	text := ctxt.xdefine("runtime.text", sym.STEXT, 0)
	etext := ctxt.xdefine("runtime.etext", sym.STEXT, 0)
	ldr.SetSymSect(text, sect)
	if ctxt.IsAIX() && ctxt.IsExternal() {
		// Setting runtime.text has a real symbol prevents ld to
		// change its base address resulting in wrong offsets for
		// reflect methods.
		u := ldr.MakeSymbolUpdater(text)
		u.SetAlign(sect.Align)
		u.SetSize(8)
	}

	if (ctxt.DynlinkingGo() && ctxt.IsDarwin()) || (ctxt.IsAIX() && ctxt.IsExternal()) {
		ldr.SetSymSect(etext, sect)
		ctxt.Textp = append(ctxt.Textp, etext, 0)
		copy(ctxt.Textp[1:], ctxt.Textp)
		ctxt.Textp[0] = text
	}

	start := uint64(Rnd(*FlagTextAddr, int64(Funcalign)))
	va := start
	n := 1
	sect.Vaddr = va

	limit := thearch.TrampLimit
	if limit == 0 {
		limit = 1 << 63 // unlimited
	}
	if *FlagDebugTextSize != 0 {
		limit = uint64(*FlagDebugTextSize)
	}
	if *FlagDebugTramp > 1 {
		limit = 1 // debug mode, force generating trampolines for everything
	}

	if ctxt.IsAIX() && ctxt.IsExternal() {
		// On AIX, normally we won't generate direct calls to external symbols,
		// except in one test, cmd/go/testdata/script/link_syso_issue33139.txt.
		// That test doesn't make much sense, and I'm not sure it ever works.
		// Just generate trampoline for now (which will turn a direct call to
		// an indirect call, which at least builds).
		limit = 1
	}

	// First pass: assign addresses assuming the program is small and
	// don't generate trampolines.
	big := false
	for _, s := range ctxt.Textp {
		sect, n, va = assignAddress(ctxt, sect, n, s, va, false, big)
		if va-start >= limit {
			big = true
			break
		}
	}

	// Second pass: only if it is too big, insert trampolines for too-far
	// jumps and targets with unknown addresses.
	if big {
		// reset addresses
		for _, s := range ctxt.Textp {
			if ldr.OuterSym(s) != 0 || s == text {
				continue
			}
			oldv := ldr.SymValue(s)
			for sub := s; sub != 0; sub = ldr.SubSym(sub) {
				ldr.SetSymValue(sub, ldr.SymValue(sub)-oldv)
			}
		}
		va = start

		ntramps := 0
		for _, s := range ctxt.Textp {
			sect, n, va = assignAddress(ctxt, sect, n, s, va, false, big)

			trampoline(ctxt, s) // resolve jumps, may add trampolines if jump too far

			// lay down trampolines after each function
			for ; ntramps < len(ctxt.tramps); ntramps++ {
				tramp := ctxt.tramps[ntramps]
				if ctxt.IsAIX() && strings.HasPrefix(ldr.SymName(tramp), "runtime.text.") {
					// Already set in assignAddress
					continue
				}
				sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true, big)
			}
		}

		// merge tramps into Textp, keeping Textp in address order
		if ntramps != 0 {
			newtextp := make([]loader.Sym, 0, len(ctxt.Textp)+ntramps)
			i := 0
			for _, s := range ctxt.Textp {
				for ; i < ntramps && ldr.SymValue(ctxt.tramps[i]) < ldr.SymValue(s); i++ {
					newtextp = append(newtextp, ctxt.tramps[i])
				}
				newtextp = append(newtextp, s)
			}
			newtextp = append(newtextp, ctxt.tramps[i:ntramps]...)

			ctxt.Textp = newtextp
		}
	}

	sect.Length = va - sect.Vaddr
	ldr.SetSymSect(etext, sect)
	if ldr.SymValue(etext) == 0 {
		// Set the address of the start/end symbols, if not already
		// (i.e. not darwin+dynlink or AIX+external, see above).
		ldr.SetSymValue(etext, int64(va))
		ldr.SetSymValue(text, int64(Segtext.Sections[0].Vaddr))
	}
}

// assigns address for a text symbol, returns (possibly new) section, its number, and the address.
func assignAddress(ctxt *Link, sect *sym.Section, n int, s loader.Sym, va uint64, isTramp, big bool) (*sym.Section, int, uint64) {
	ldr := ctxt.loader
	if thearch.AssignAddress != nil {
		return thearch.AssignAddress(ldr, sect, n, s, va, isTramp)
	}

	ldr.SetSymSect(s, sect)
	if ldr.AttrSubSymbol(s) {
		return sect, n, va
	}

	align := ldr.SymAlign(s)
	if align == 0 {
		align = int32(Funcalign)
	}
	va = uint64(Rnd(int64(va), int64(align)))
	if sect.Align < align {
		sect.Align = align
	}

	funcsize := uint64(MINFUNC) // spacing required for findfunctab
	if ldr.SymSize(s) > MINFUNC {
		funcsize = uint64(ldr.SymSize(s))
	}

	// If we need to split text sections, and this function doesn't fit in the current
	// section, then create a new one.
	//
	// Only break at outermost syms.
	if big && splitTextSections(ctxt) && ldr.OuterSym(s) == 0 {
		// For debugging purposes, allow text size limit to be cranked down,
		// so as to stress test the code that handles multiple text sections.
		var textSizelimit uint64 = thearch.TrampLimit
		if *FlagDebugTextSize != 0 {
			textSizelimit = uint64(*FlagDebugTextSize)
		}

		// Sanity check: make sure the limit is larger than any
		// individual text symbol.
		if funcsize > textSizelimit {
			panic(fmt.Sprintf("error: text size limit %d less than text symbol %s size of %d", textSizelimit, ldr.SymName(s), funcsize))
		}

		if va-sect.Vaddr+funcsize+maxSizeTrampolines(ctxt, ldr, s, isTramp) > textSizelimit {
			sectAlign := int32(thearch.Funcalign)
			if ctxt.IsPPC64() {
				// Align the next text section to the worst case function alignment likely
				// to be encountered when processing function symbols. The start address
				// is rounded against the final alignment of the text section later on in
				// (*Link).address. This may happen due to usage of PCALIGN directives
				// larger than Funcalign, or usage of ISA 3.1 prefixed instructions
				// (see ISA 3.1 Book I 1.9).
				const ppc64maxFuncalign = 64
				sectAlign = ppc64maxFuncalign
				va = uint64(Rnd(int64(va), ppc64maxFuncalign))
			}

			// Set the length for the previous text section
			sect.Length = va - sect.Vaddr

			// Create new section, set the starting Vaddr
			sect = addsection(ctxt.loader, ctxt.Arch, &Segtext, ".text", 05)

			sect.Vaddr = va
			sect.Align = sectAlign
			ldr.SetSymSect(s, sect)

			// Create a symbol for the start of the secondary text sections
			ntext := ldr.CreateSymForUpdate(fmt.Sprintf("runtime.text.%d", n), 0)
			ntext.SetSect(sect)
			if ctxt.IsAIX() {
				// runtime.text.X must be a real symbol on AIX.
				// Assign its address directly in order to be the
				// first symbol of this new section.
				ntext.SetType(sym.STEXT)
				ntext.SetSize(int64(MINFUNC))
				ntext.SetOnList(true)
				ntext.SetAlign(sectAlign)
				ctxt.tramps = append(ctxt.tramps, ntext.Sym())

				ntext.SetValue(int64(va))
				va += uint64(ntext.Size())

				if align := ldr.SymAlign(s); align != 0 {
					va = uint64(Rnd(int64(va), int64(align)))
				} else {
					va = uint64(Rnd(int64(va), int64(Funcalign)))
				}
			}
			n++
		}
	}

	ldr.SetSymValue(s, 0)
	for sub := s; sub != 0; sub = ldr.SubSym(sub) {
		ldr.SetSymValue(sub, ldr.SymValue(sub)+int64(va))
		if ctxt.Debugvlog > 2 {
			fmt.Println("assign text address:", ldr.SymName(sub), ldr.SymValue(sub))
		}
	}

	va += funcsize

	return sect, n, va
}

// Return whether we may need to split text sections.
//
// On PPC64x, when external linking, a text section should not be
// larger than 2^25 bytes due to the size of call target offset field
// in the 'bl' instruction. Splitting into smaller text sections
// smaller than this limit allows the system linker to modify the long
// calls appropriately. The limit allows for the space needed for
// tables inserted by the linker.
//
// The same applies to Darwin/ARM64, with 2^27 byte threshold.
//
// Similarly for ARM, we split sections (at 2^25 bytes) to avoid
// inconsistencies between the Go linker's reachability calculations
// (e.g. will direct call from X to Y need a trampoline) and similar
// machinery in the external linker; see #58425 for more on the
// history here.
func splitTextSections(ctxt *Link) bool {
	return (ctxt.IsARM() || ctxt.IsPPC64() || (ctxt.IsARM64() && ctxt.IsDarwin())) && ctxt.IsExternal()
}

// On Wasm, we reserve 4096 bytes for zero page, then 8192 bytes for wasm_exec.js
// to store command line args and environment variables.
// Data sections starts from at least address 12288.
// Keep in sync with wasm_exec.js.
const wasmMinDataAddr = 4096 + 8192

// address assigns virtual addresses to all segments and sections and
// returns all segments in file order.
func (ctxt *Link) address() []*sym.Segment {
	var order []*sym.Segment // Layout order

	va := uint64(*FlagTextAddr)
	order = append(order, &Segtext)
	Segtext.Rwx = 05
	Segtext.Vaddr = va
	for i, s := range Segtext.Sections {
		va = uint64(Rnd(int64(va), int64(s.Align)))
		s.Vaddr = va
		va += s.Length

		if ctxt.IsWasm() && i == 0 && va < wasmMinDataAddr {
			va = wasmMinDataAddr
		}
	}

	Segtext.Length = va - uint64(*FlagTextAddr)

	if len(Segrodata.Sections) > 0 {
		// align to page boundary so as not to mix
		// rodata and executable text.
		//
		// Note: gold or GNU ld will reduce the size of the executable
		// file by arranging for the relro segment to end at a page
		// boundary, and overlap the end of the text segment with the
		// start of the relro segment in the file.  The PT_LOAD segments
		// will be such that the last page of the text segment will be
		// mapped twice, once r-x and once starting out rw- and, after
		// relocation processing, changed to r--.
		//
		// Ideally the last page of the text segment would not be
		// writable even for this short period.
		va = uint64(Rnd(int64(va), int64(*FlagRound)))

		order = append(order, &Segrodata)
		Segrodata.Rwx = 04
		Segrodata.Vaddr = va
		for _, s := range Segrodata.Sections {
			va = uint64(Rnd(int64(va), int64(s.Align)))
			s.Vaddr = va
			va += s.Length
		}

		Segrodata.Length = va - Segrodata.Vaddr
	}
	if len(Segrelrodata.Sections) > 0 {
		// align to page boundary so as not to mix
		// rodata, rel-ro data, and executable text.
		va = uint64(Rnd(int64(va), int64(*FlagRound)))
		if ctxt.HeadType == objabi.Haix {
			// Relro data are inside data segment on AIX.
			va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE)
		}

		order = append(order, &Segrelrodata)
		Segrelrodata.Rwx = 06
		Segrelrodata.Vaddr = va
		for _, s := range Segrelrodata.Sections {
			va = uint64(Rnd(int64(va), int64(s.Align)))
			s.Vaddr = va
			va += s.Length
		}

		Segrelrodata.Length = va - Segrelrodata.Vaddr
	}

	va = uint64(Rnd(int64(va), int64(*FlagRound)))
	if ctxt.HeadType == objabi.Haix && len(Segrelrodata.Sections) == 0 {
		// Data sections are moved to an unreachable segment
		// to ensure that they are position-independent.
		// Already done if relro sections exist.
		va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE)
	}
	order = append(order, &Segdata)
	Segdata.Rwx = 06
	Segdata.Vaddr = va
	var data *sym.Section
	var noptr *sym.Section
	var bss *sym.Section
	var noptrbss *sym.Section
	var fuzzCounters *sym.Section
	for i, s := range Segdata.Sections {
		if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && s.Name == ".tbss" {
			continue
		}
		vlen := int64(s.Length)
		if i+1 < len(Segdata.Sections) && !((ctxt.IsELF || ctxt.HeadType == objabi.Haix) && Segdata.Sections[i+1].Name == ".tbss") {
			vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr)
		}
		s.Vaddr = va
		va += uint64(vlen)
		Segdata.Length = va - Segdata.Vaddr
		switch s.Name {
		case ".data":
			data = s
		case ".noptrdata":
			noptr = s
		case ".bss":
			bss = s
		case ".noptrbss":
			noptrbss = s
		case ".go.fuzzcntrs":
			fuzzCounters = s
		}
	}

	// Assign Segdata's Filelen omitting the BSS. We do this here
	// simply because right now we know where the BSS starts.
	Segdata.Filelen = bss.Vaddr - Segdata.Vaddr

	va = uint64(Rnd(int64(va), int64(*FlagRound)))
	order = append(order, &Segdwarf)
	Segdwarf.Rwx = 06
	Segdwarf.Vaddr = va
	for i, s := range Segdwarf.Sections {
		vlen := int64(s.Length)
		if i+1 < len(Segdwarf.Sections) {
			vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr)
		}
		s.Vaddr = va
		va += uint64(vlen)
		if ctxt.HeadType == objabi.Hwindows {
			va = uint64(Rnd(int64(va), PEFILEALIGN))
		}
		Segdwarf.Length = va - Segdwarf.Vaddr
	}

	ldr := ctxt.loader
	var (
		rodata  = ldr.SymSect(ldr.LookupOrCreateSym("runtime.rodata", 0))
		symtab  = ldr.SymSect(ldr.LookupOrCreateSym("runtime.symtab", 0))
		pclntab = ldr.SymSect(ldr.LookupOrCreateSym("runtime.pclntab", 0))
		types   = ldr.SymSect(ldr.LookupOrCreateSym("runtime.types", 0))
	)

	for _, s := range ctxt.datap {
		if sect := ldr.SymSect(s); sect != nil {
			ldr.AddToSymValue(s, int64(sect.Vaddr))
		}
		v := ldr.SymValue(s)
		for sub := ldr.SubSym(s); sub != 0; sub = ldr.SubSym(sub) {
			ldr.AddToSymValue(sub, v)
		}
	}

	for _, si := range dwarfp {
		for _, s := range si.syms {
			if sect := ldr.SymSect(s); sect != nil {
				ldr.AddToSymValue(s, int64(sect.Vaddr))
			}
			sub := ldr.SubSym(s)
			if sub != 0 {
				panic(fmt.Sprintf("unexpected sub-sym for %s %s", ldr.SymName(s), ldr.SymType(s).String()))
			}
			v := ldr.SymValue(s)
			for ; sub != 0; sub = ldr.SubSym(sub) {
				ldr.AddToSymValue(s, v)
			}
		}
	}

	if ctxt.BuildMode == BuildModeShared {
		s := ldr.LookupOrCreateSym("go:link.abihashbytes", 0)
		sect := ldr.SymSect(ldr.LookupOrCreateSym(".note.go.abihash", 0))
		ldr.SetSymSect(s, sect)
		ldr.SetSymValue(s, int64(sect.Vaddr+16))
	}

	// If there are multiple text sections, create runtime.text.n for
	// their section Vaddr, using n for index
	n := 1
	for _, sect := range Segtext.Sections[1:] {
		if sect.Name != ".text" {
			break
		}
		symname := fmt.Sprintf("runtime.text.%d", n)
		if ctxt.HeadType != objabi.Haix || ctxt.LinkMode != LinkExternal {
			// Addresses are already set on AIX with external linker
			// because these symbols are part of their sections.
			ctxt.xdefine(symname, sym.STEXT, int64(sect.Vaddr))
		}
		n++
	}

	ctxt.xdefine("runtime.rodata", sym.SRODATA, int64(rodata.Vaddr))
	ctxt.xdefine("runtime.erodata", sym.SRODATA, int64(rodata.Vaddr+rodata.Length))
	ctxt.xdefine("runtime.types", sym.SRODATA, int64(types.Vaddr))
	ctxt.xdefine("runtime.etypes", sym.SRODATA, int64(types.Vaddr+types.Length))

	s := ldr.Lookup("runtime.gcdata", 0)
	ldr.SetAttrLocal(s, true)
	ctxt.xdefine("runtime.egcdata", sym.SRODATA, ldr.SymAddr(s)+ldr.SymSize(s))
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.egcdata", 0), ldr.SymSect(s))

	s = ldr.LookupOrCreateSym("runtime.gcbss", 0)
	ldr.SetAttrLocal(s, true)
	ctxt.xdefine("runtime.egcbss", sym.SRODATA, ldr.SymAddr(s)+ldr.SymSize(s))
	ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.egcbss", 0), ldr.SymSect(s))

	ctxt.xdefine("runtime.symtab", sym.SRODATA, int64(symtab.Vaddr))
	ctxt.xdefine("runtime.esymtab", sym.SRODATA, int64(symtab.Vaddr+symtab.Length))
	ctxt.xdefine("runtime.pclntab", sym.SRODATA, int64(pclntab.Vaddr))
	ctxt.defineInternal("runtime.pcheader", sym.SRODATA)
	ctxt.defineInternal("runtime.funcnametab", sym.SRODATA)
	ctxt.defineInternal("runtime.cutab", sym.SRODATA)
	ctxt.defineInternal("runtime.filetab", sym.SRODATA)
	ctxt.defineInternal("runtime.pctab", sym.SRODATA)
	ctxt.defineInternal("runtime.functab", sym.SRODATA)
	ctxt.xdefine("runtime.epclntab", sym.SRODATA, int64(pclntab.Vaddr+pclntab.Length))
	ctxt.xdefine("runtime.noptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr))
	ctxt.xdefine("runtime.enoptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length))
	ctxt.xdefine("runtime.bss", sym.SBSS, int64(bss.Vaddr))
	ctxt.xdefine("runtime.ebss", sym.SBSS, int64(bss.Vaddr+bss.Length))
	ctxt.xdefine("runtime.data", sym.SDATA, int64(data.Vaddr))
	ctxt.xdefine("runtime.edata", sym.SDATA, int64(data.Vaddr+data.Length))
	ctxt.xdefine("runtime.noptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr))
	ctxt.xdefine("runtime.enoptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length))
	ctxt.xdefine("runtime.covctrs", sym.SCOVERAGE_COUNTER, int64(noptrbss.Vaddr+covCounterDataStartOff))
	ctxt.xdefine("runtime.ecovctrs", sym.SCOVERAGE_COUNTER, int64(noptrbss.Vaddr+covCounterDataStartOff+covCounterDataLen))
	ctxt.xdefine("runtime.end", sym.SBSS, int64(Segdata.Vaddr+Segdata.Length))

	if fuzzCounters != nil {
		ctxt.xdefine("runtime.__start___sancov_cntrs", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr))
		ctxt.xdefine("runtime.__stop___sancov_cntrs", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr+fuzzCounters.Length))
		ctxt.xdefine("internal/fuzz._counters", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr))
		ctxt.xdefine("internal/fuzz._ecounters", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr+fuzzCounters.Length))
	}

	if ctxt.IsSolaris() {
		// On Solaris, in the runtime it sets the external names of the
		// end symbols. Unset them and define separate symbols, so we
		// keep both.
		etext := ldr.Lookup("runtime.etext", 0)
		edata := ldr.Lookup("runtime.edata", 0)
		end := ldr.Lookup("runtime.end", 0)
		ldr.SetSymExtname(etext, "runtime.etext")
		ldr.SetSymExtname(edata, "runtime.edata")
		ldr.SetSymExtname(end, "runtime.end")
		ctxt.xdefine("_etext", ldr.SymType(etext), ldr.SymValue(etext))
		ctxt.xdefine("_edata", ldr.SymType(edata), ldr.SymValue(edata))
		ctxt.xdefine("_end", ldr.SymType(end), ldr.SymValue(end))
		ldr.SetSymSect(ldr.Lookup("_etext", 0), ldr.SymSect(etext))
		ldr.SetSymSect(ldr.Lookup("_edata", 0), ldr.SymSect(edata))
		ldr.SetSymSect(ldr.Lookup("_end", 0), ldr.SymSect(end))
	}

	if ctxt.IsPPC64() && ctxt.IsElf() {
		// Resolve .TOC. symbols for all objects. Only one TOC region is supported. If a
		// GOT section is present, compute it as suggested by the ELFv2 ABI. Otherwise,
		// choose a similar offset from the start of the data segment.
		tocAddr := int64(Segdata.Vaddr) + 0x8000
		if gotAddr := ldr.SymValue(ctxt.GOT); gotAddr != 0 {
			tocAddr = gotAddr + 0x8000
		}
		for i := range ctxt.DotTOC {
			if i >= sym.SymVerABICount && i < sym.SymVerStatic { // these versions are not used currently
				continue
			}
			if toc := ldr.Lookup(".TOC.", i); toc != 0 {
				ldr.SetSymValue(toc, tocAddr)
			}
		}
	}

	return order
}

// layout assigns file offsets and lengths to the segments in order.
// Returns the file size containing all the segments.
func (ctxt *Link) layout(order []*sym.Segment) uint64 {
	var prev *sym.Segment
	for _, seg := range order {
		if prev == nil {
			seg.Fileoff = uint64(HEADR)
		} else {
			switch ctxt.HeadType {
			default:
				// Assuming the previous segment was
				// aligned, the following rounding
				// should ensure that this segment's
				// VA ≡ Fileoff mod FlagRound.
				seg.Fileoff = uint64(Rnd(int64(prev.Fileoff+prev.Filelen), int64(*FlagRound)))
				if seg.Vaddr%uint64(*FlagRound) != seg.Fileoff%uint64(*FlagRound) {
					Exitf("bad segment rounding (Vaddr=%#x Fileoff=%#x FlagRound=%#x)", seg.Vaddr, seg.Fileoff, *FlagRound)
				}
			case objabi.Hwindows:
				seg.Fileoff = prev.Fileoff + uint64(Rnd(int64(prev.Filelen), PEFILEALIGN))
			case objabi.Hplan9:
				seg.Fileoff = prev.Fileoff + prev.Filelen
			}
		}
		if seg != &Segdata {
			// Link.address already set Segdata.Filelen to
			// account for BSS.
			seg.Filelen = seg.Length
		}
		prev = seg
	}
	return prev.Fileoff + prev.Filelen
}

// add a trampoline with symbol s (to be laid down after the current function)
func (ctxt *Link) AddTramp(s *loader.SymbolBuilder) {
	s.SetType(sym.STEXT)
	s.SetReachable(true)
	s.SetOnList(true)
	ctxt.tramps = append(ctxt.tramps, s.Sym())
	if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 {
		ctxt.Logf("trampoline %s inserted\n", s.Name())
	}
}

// compressSyms compresses syms and returns the contents of the
// compressed section. If the section would get larger, it returns nil.
func compressSyms(ctxt *Link, syms []loader.Sym) []byte {
	ldr := ctxt.loader
	var total int64
	for _, sym := range syms {
		total += ldr.SymSize(sym)
	}

	var buf bytes.Buffer
	if ctxt.IsELF {
		switch ctxt.Arch.PtrSize {
		case 8:
			binary.Write(&buf, ctxt.Arch.ByteOrder, elf.Chdr64{
				Type:      uint32(elf.COMPRESS_ZLIB),
				Size:      uint64(total),
				Addralign: uint64(ctxt.Arch.Alignment),
			})
		case 4:
			binary.Write(&buf, ctxt.Arch.ByteOrder, elf.Chdr32{
				Type:      uint32(elf.COMPRESS_ZLIB),
				Size:      uint32(total),
				Addralign: uint32(ctxt.Arch.Alignment),
			})
		default:
			log.Fatalf("can't compress header size:%d", ctxt.Arch.PtrSize)
		}
	} else {
		buf.Write([]byte("ZLIB"))
		var sizeBytes [8]byte
		binary.BigEndian.PutUint64(sizeBytes[:], uint64(total))
		buf.Write(sizeBytes[:])
	}

	var relocbuf []byte // temporary buffer for applying relocations

	// Using zlib.BestSpeed achieves very nearly the same
	// compression levels of zlib.DefaultCompression, but takes
	// substantially less time. This is important because DWARF
	// compression can be a significant fraction of link time.
	z, err := zlib.NewWriterLevel(&buf, zlib.BestSpeed)
	if err != nil {
		log.Fatalf("NewWriterLevel failed: %s", err)
	}
	st := ctxt.makeRelocSymState()
	for _, s := range syms {
		// Symbol data may be read-only. Apply relocations in a
		// temporary buffer, and immediately write it out.
		P := ldr.Data(s)
		relocs := ldr.Relocs(s)
		if relocs.Count() != 0 {
			relocbuf = append(relocbuf[:0], P...)
			P = relocbuf
			st.relocsym(s, P)
		}
		if _, err := z.Write(P); err != nil {
			log.Fatalf("compression failed: %s", err)
		}
		for i := ldr.SymSize(s) - int64(len(P)); i > 0; {
			b := zeros[:]
			if i < int64(len(b)) {
				b = b[:i]
			}
			n, err := z.Write(b)
			if err != nil {
				log.Fatalf("compression failed: %s", err)
			}
			i -= int64(n)
		}
	}
	if err := z.Close(); err != nil {
		log.Fatalf("compression failed: %s", err)
	}
	if int64(buf.Len()) >= total {
		// Compression didn't save any space.
		return nil
	}
	return buf.Bytes()
}